JPH021904A - Exposure of mask - Google Patents

Exposure of mask

Info

Publication number
JPH021904A
JPH021904A JP63144351A JP14435188A JPH021904A JP H021904 A JPH021904 A JP H021904A JP 63144351 A JP63144351 A JP 63144351A JP 14435188 A JP14435188 A JP 14435188A JP H021904 A JPH021904 A JP H021904A
Authority
JP
Japan
Prior art keywords
mask
equation
pattern
exposure
temperature rise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63144351A
Other languages
Japanese (ja)
Inventor
Akira Chiba
明 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63144351A priority Critical patent/JPH021904A/en
Publication of JPH021904A publication Critical patent/JPH021904A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To restrain the temperature rise of a mask or a pattern, etc., from occurring for reducing the high load due to thermal stress and the slip in a pattern by a method wherein the pattern is intermittently exposed to an irradiated element through the intermediary of the mask. CONSTITUTION:When the transient deformation process due to the thermal damage resultant from the exposure of a mask and an irradiated element is mathematically analyzed to divide the exposure time taug (t) e.g., into ten each of rectangular pulse rows and further to be intermittently exposed in the period taup longer than the pulse width DELTAtaug, the temperature rise per pulse is reduced to restrain the thermal stress and expansion resultant from the temperature rise from occurring. Through these procedures, the irregular deformation of a pattern on the mask e.g., in case of exposing to a wafer can be restrained from occurring to enhance the patterning precision.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高精度のパターンを形成するために、マス
クと被照射物の熱的なダメージを抑制する方法に関し、
特に露光技術において周期的な矩形波に近似できるパル
スの露光によってマスクと被照射物の熱的なダメージを
抑制する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for suppressing thermal damage to a mask and an irradiated object in order to form a highly accurate pattern.
In particular, the present invention relates to a method of suppressing thermal damage to a mask and an object to be irradiated by exposure using a pulse that can be approximated to a periodic rectangular wave in exposure technology.

〔従来の技術〕[Conventional technology]

第6図は、従来の連続照射によるマスクの露光方法の露
光時間τ と光のパワー密度F。どの関係を示したグラ
フである。tlは照射開始時刻、t2は照射終了時刻で
ある。光のパワー密度F。
FIG. 6 shows the exposure time τ and the light power density F of the conventional mask exposure method using continuous irradiation. This is a graph showing which relationship. tl is the irradiation start time, and t2 is the irradiation end time. Light power density F.

と照射時間τ。で決定される露光量は使用されるレジス
トの感度特性に大ぎく依存する。例えば、感度の低いレ
ジストを使用して所定のパターンを得ようとすると、パ
ワー密度F0が一定の場合、露光時間τ。を長くする必
要がある。このように、レジストにふされしい露光量を
得るための露光方法が第6図に示すような一定パワー密
度F。の連続照射となっている例は数多くあり、例えば
特開昭60−207339.60−224226号公報
等に開示されている。このような露光方法が半導体製造
方法の写真製版工程(リソグラフィー)においで通常用
いられている。
and irradiation time τ. The exposure amount determined by is highly dependent on the sensitivity characteristics of the resist used. For example, when trying to obtain a predetermined pattern using a resist with low sensitivity, when the power density F0 is constant, the exposure time τ. need to be made longer. In this way, the exposure method for obtaining the appropriate exposure amount for the resist is a constant power density F as shown in FIG. There are many examples of continuous irradiation, such as those disclosed in Japanese Patent Laid-Open No. 60-207339.60-224226. Such an exposure method is commonly used in a photolithography process (lithography) of a semiconductor manufacturing method.

マスクに被着しているパターン材料、例えばフォトマス
クにおいてはクロムやモリブデンシリサイド、X線マス
クにおいてはゴールド(金)やタングステンあるいはタ
ングステンチタニウムの合金等は、入射光に対して反射
と吸収の2つの特性を示す。ただしX線マスクでは反射
光が極めて小さく、はとんどが透過と吸収を示ず。吸収
された光の大部分は熱エネルギーに変換される。また、
有機高分子で形成されているレジストパターン材料も効
率良く光を吸収するために容易に発熱する。
Pattern materials attached to masks, such as chromium and molybdenum silicide for photomasks, and gold, tungsten, or tungsten-titanium alloys for X-ray masks, have two effects on incident light: reflection and absorption. Show characteristics. However, with an X-ray mask, the reflected light is extremely small, and most of it does not transmit or absorb. Most of the absorbed light is converted into thermal energy. Also,
Resist pattern materials made of organic polymers also absorb light efficiently and easily generate heat.

マスクパターン材料やレジストパターン材料は各々の熱
伝導率をできるだけ大きくした方が望ましいが、完全に
無限大の熱伝導率を有するものはない。したがってマス
クにおいてはパターン材料、レジストでは露光される部
分が発熱源となり、温度上昇による膨張を誘起し、パタ
ーンの寸法精度に影響を与えることになる。
Although it is desirable that the thermal conductivity of each mask pattern material and resist pattern material be as large as possible, there is no material that has completely infinite thermal conductivity. Therefore, the pattern material of a mask and the exposed portion of a resist become a heat source, inducing expansion due to temperature rise and affecting the dimensional accuracy of the pattern.

次に、パターンの寸法精度に対する熱の影響の数理解析
を非定常−次元半無限体について行ない、温度場と熱応
力の関係式を導き出す。実際の現象は非定常の3次元で
あるが、現象の理解を容易にするという意味で数理解析
を用いた説明は上記のモデルで十分である。
Next, a mathematical analysis of the influence of heat on pattern dimensional accuracy is performed on an unsteady-dimensional semi-infinite body, and a relational expression between the temperature field and thermal stress is derived. Although the actual phenomenon is unsteady and three-dimensional, the above model is sufficient for explanation using mathematical analysis in the sense that it facilitates understanding of the phenomenon.

第7図は表面を加熱された一次元半無限体のモデルを示
した図である。ここで半無限体はマスクのパターン材料
及びレジスト等のバルクと仮定し、さらに表面に一様パ
ワー密度F。(W/li)の熱流束が吸収されると仮定
する。この熱流束は表面加熱を意味するのでこのような
熱源に近似できるものであれば、例えば高圧水銀灯、レ
ーザ光、電子ビーム、イオンビーム、プラズマ、X線等
によるものであってもよい。温度場を支配する方程式と
初朋条件及び境界条件は次式(1)、(2)および(3
)で与えられる。
FIG. 7 is a diagram showing a model of a one-dimensional semi-infinite body whose surface is heated. Here, the semi-infinite body is assumed to be the bulk of the pattern material of the mask, the resist, etc., and the surface has a uniform power density F. Assume that a heat flux of (W/li) is absorbed. Since this heat flux means surface heating, any heat source that can be approximated to such a heat source may be used, such as a high-pressure mercury lamp, laser beam, electron beam, ion beam, plasma, or X-ray. The equations governing the temperature field, the initial conditions, and the boundary conditions are expressed by the following equations (1), (2), and (3).
) is given by

・・・(1) T(z、o)=0    (t=o)    ・・・(
2)T (2=0)          ・・・(3)ここで、
K、ρ、C及びkは各々、熱伝導率、密度、比熱及び熱
拡散率である。さらに表面加熱の境界条件(3)式にお
いてH(t)は時間に関するヘビサイドの単位ステップ
関数を表わす。しだがつて、(3)式は連続露光の時間
i1<’j<1:2における一様パワー密度F。の熱流
束による加熱過程と、t2〈tにおけるF。=0となる
冷却過程とを含んでいる。なお12−11+で。である
...(1) T(z, o)=0 (t=o) ...(
2) T (2=0) ... (3) Here,
K, ρ, C and k are thermal conductivity, density, specific heat and thermal diffusivity, respectively. Furthermore, in the surface heating boundary condition equation (3), H(t) represents a Heaviside unit step function with respect to time. However, equation (3) is the uniform power density F at the continuous exposure time i1<'j<1:2. The heating process due to the heat flux of and F at t2<t. = 0. In addition, it is 12-11+. It is.

熱伝導方程式(1)は線形偏微分方程式であり、しかも
−次元半無限体に関するものであるから、フーリエ変換
法あるいはラプラス変換法によって容易に厳密解を得る
ことができる。
Since the heat conduction equation (1) is a linear partial differential equation and relates to a -dimensional semi-infinite field, an exact solution can be easily obtained using the Fourier transform method or the Laplace transform method.

まずラプラス変換法により理解を求める。温度T(z、
t)のラプラス変換を次式で定義する。
First, we seek understanding using the Laplace transform method. Temperature T(z,
The Laplace transform of t) is defined by the following equation.

〒(z、s)=た(T (z、t)) f” −5t −。e   T(z、t)dt ・・・(4) またラプラス変換の微分用を用いて(1)式を変換する
と以下(5)式のような2の常微分方程式が得られる。
〒(z, s) = ta(T (z, t)) f'' -5t -.e T(z, t) dt ... (4) Also, using the differential of the Laplace transform, equation (1) can be When converted, an ordinary differential equation 2 as shown in equation (5) below is obtained.

なお(6)式はqの定義式である。Note that equation (6) is a defining equation for q.

(5)、 (6)式より一般解は T(z、5) −qz        qz =C(s)e   +02  (s)e・・・(7) となる。ここで2→ωの自然境界条件を用いると、T(
Z、S)は収束しなければならないので(7)式におい
て02 (s)=Cとなる。
From equations (5) and (6), the general solution is T(z, 5) −qz qz =C(s)e +02 (s)e (7). Here, if we use the natural boundary condition of 2→ω, then T(
Since Z, S) must converge, 02 (s)=C in equation (7).

積分定数C1CS>は(3)式の境界条件をラプラス変
換し、(7)式に代入することによって得られる。ここ
で(3)式のラプラス変換は、9Z   S となる。
The integral constant C1CS> can be obtained by Laplace transforming the boundary condition of equation (3) and substituting it into equation (7). Here, the Laplace transform of equation (3) becomes 9Z S .

(8)式を(7)式に代入してC1(s)求めると、・
・・(5) となる。
Substituting equation (8) into equation (7) to find C1(s), we get:
...(5) becomes.

特解は(1) 式に(9) 式を代入して となる。The special solution is (1) In the formula (9) Substituting the expression becomes.

−H(t−τ9 ここでG (Z。-H(t-τ9 G here (Z.

G(z、を−τg)) ・・・(14) はラプラス変換表よ  q ・・・(10) となる。次に、原関数に対するずらしの法則ξ”1(e
−ち8〒(Z、5)) −H(t −τc+ ) T (z −t  rg) 
・・・(11)を用いて、(10)式を逆変換して原関
数に戻す。ここて、 −qz G(Z、5)−− q ・・・(12) とおけば 、.7G(z、s>=G(z、t)    ・ (13
)なので(10)式の原関数は となる。なJ3 (16)、 (17)式は誤差関数の
定義式である。
G(z, -τg))...(14) is a Laplace transformation table, q...(10). Next, the shift law ξ”1(e
-chi8〒(Z, 5)) -H(t -τc+) T (z -t rg)
...Using (11), equation (10) is inversely transformed back to the original function. Here, if we set -qz G(Z, 5)-- q...(12), then. 7G(z, s>=G(z, t) ・ (13
), so the original function of equation (10) is as follows. J3 Equations (16) and (17) are the defining equations of the error function.

次に、弾性体の理論から導き出された熱膨張に原因する
変位及び応力の公式を示す。物体内に生ずる応力は釣合
の微分方程式を満足しなければならない。物体内部に直
角座標x、y、zを定め、各座標面に平行な面をもつ微
小六面体を仮想するとき、六面体表面に生じている応力
と力の釣合は以下の微分方程式で与えられる。なおσ 
、σ、。
Next, the formulas for displacement and stress caused by thermal expansion derived from the theory of elastic bodies are shown. The stress generated within an object must satisfy a differential equation of balance. When rectangular coordinates x, y, and z are defined inside an object and a microhexahedron is imagined with surfaces parallel to each coordinate plane, the balance of stress and force occurring on the surface of the hexahedron is given by the following differential equation. Note that σ
,σ,.

σ 、τ  τ  τ 、τ  τ 、τ は応z  
   xy’    xz’    yx    yz
’    zx     zy力成分である。
σ , τ τ τ , τ τ , τ are
xy'xz' yx yz
'zx zy force component.

ε 、ε 、ε 及び剪断歪γ  γ 、γ とx  
 y   z       xy’  xz   yz
変位との間には下記(19)、 (20)式のような関
係がある。
ε , ε , ε and shear strain γ γ , γ and x
y z xy' xz yz
There is a relationship between the displacement and the following equations (19) and (20).

u 8w ax    ay    az ax az ax    ay    az 物体が変形すれば物体内の各点は移動する。X。u 8w ax ay az ax az ax ay az When an object is deformed, each point within the object moves. X.

y、z方向の変位をU、V、Wで表わす。垂直歪γxy
= 、9u   av □+□ ay   ax aLI   aw γyz″″ −;−フ”+フ1;− また、熱膨張は等方性の物体においですべての方向に一
様であるから、そのために生ずる歪はαを線膨張係数と
ずれば、ε8=ε、=ε2−αTである。この熱膨張が
拘束されると熱応力を生ずるから、物体の歪みは応力に
よる歪と熱膨張歪みの和として、下記(21)式を得る
Displacements in the y and z directions are represented by U, V, and W. Vertical strain γxy
= , 9u av □+□ ay ax aLI aw γyz""-;-F"+F1;- Also, since thermal expansion is uniform in all directions in an isotropic object, the resulting strain If α is the coefficient of linear expansion, then ε8=ε, = ε2−αT.When this thermal expansion is restricted, thermal stress is generated, so the strain of the object is the sum of the strain due to stress and the strain due to thermal expansion. The following equation (21) is obtained.

ε =−(σ8−ν (ay トσ2))+αTE εソー−(σy−ν(σ8+σ、))+αTε =−(
σ2−ν(σ8+σy))+αTE ・・・(21) となる。ここでF、νは各々ヤング率、ポアソン比であ
る。剪断歪は垂直応力に無関係であるから、横弾性係数
をGとして下記(22)式を得る。
ε = - (σ8 - ν (ay to σ2)) + αTE ε so - (σy - ν (σ8 + σ, )) + αTε = - (
σ2−ν(σ8+σy))+αTE (21). Here, F and ν are Young's modulus and Poisson's ratio, respectively. Since shear strain is unrelated to normal stress, the following equation (22) is obtained, where G is the transverse elastic modulus.

τ8.=Gγxy τxz”’γxz            −(22)
τy7=Gγy2 となる。ここで2G(1+ν)=Eなる関係を用いて、
応力を歪で表わすと、下記(23)式のようになる。ま
た下記(24)式はe。の定義式である。
τ8. =Gγxy τxz”'γxz −(22)
τy7=Gγy2. Here, using the relationship 2G(1+ν)=E,
When stress is expressed in terms of strain, it becomes as shown in equation (23) below. In addition, the following formula (24) is e. This is the definition formula.

ν        1 +ν 1−2ν   ax 第2式、第3式も同様な形で表わされ、・・・(23) eo−ε8+εy+ε2      ・・・(24)こ
こでe。は立方体の体積変化に等しいので体積膨張率と
呼ばれる。応力と歪、歪と変位の関係を応力の釣合式に
代入すれば変位に関する方程式が得られる。すなわち、
(23)式の第1式をXで微分して、(18)式の第1
式に代入し、(19)、 (20)、 (21)式を用
いれば下記(25)式を得る。
ν 1 +ν 1-2ν ax The second and third equations are also expressed in a similar form...(23) eo−ε8+εy+ε2 (24) where e. Since it is equal to the volume change of a cube, it is called the volumetric expansion coefficient. By substituting the relationships between stress and strain and strain and displacement into the stress balance equation, an equation regarding displacement can be obtained. That is,
Differentiating the first equation of equation (23) with respect to X, the first equation of equation (18)
By substituting into the equation and using equations (19), (20), and (21), the following equation (25) is obtained.

士士士−− ax    ay    az    1−2ν  、
9xとおりば下記(27)式のようになる。U、V、W
は下記(28)式で与えられ、またΩは熱弾性ポテンシ
ャルである。
Shishishi -- ax ay az 1-2ν,
If 9x is true, the following equation (27) is obtained. U, V, W
is given by the following equation (28), and Ω is the thermoelastic potential.

1−2ν ax 1 +ν  aΩ U ;       α □ 1−ν  ax 2 (1+ν) 2ν T α□ 、9x 2ν ay 1−2ν ay 1−2ν 2 (1+ν) az 1−2ν T α□ θ2 1−ν  ay 1トν aΩ W(α□ 1−ν  az (27)式は変位の方程式であり、弾性体内の変位はこ
の式を満足していなければならない。変位の方程式の解
は右辺を零とおいた通常の変位の方程式の解と特解の和
である。熱弾性ポテンシャルΩと温度Tとの間には下記
(29)式に示す関係が成立つ。
1-2ν ax 1 +ν aΩ U ; α □ 1-ν ax 2 (1+ν) 2ν T α□ , 9x 2ν ay 1-2ν ay 1-2ν 2 (1+ν) az 1-2ν T α□ θ2 1-ν ay 1tν aΩ W(α□ 1−ν az Equation (27) is a displacement equation, and the displacement in an elastic body must satisfy this equation. The solution to the displacement equation is the normal equation with the right-hand side set to zero. It is the sum of the solution and the special solution of the displacement equation.The relationship shown in the following equation (29) holds between the thermoelastic potential Ω and the temperature T.

2Ω −T           ・・・(29)変位
と歪、歪と応力との関係を用いれば、(23)(28)
式より下記(30)式を得る。
2Ω −T (29) Using the relationship between displacement and strain, and strain and stress, (23) (28)
From the equation, the following equation (30) is obtained.

Eα a2Ω (−T) 0゛=1−ν ax2 σ2=     (−T) 1−ν az2 熱応力を計算するためにはまず温度分布を求めて、(2
9)式よりΩを決定すれば(28)、 (30)式より
熱膨張に原因する変位及び応力が導かれる。
Eα a2Ω (-T) 0゛=1-ν ax2 σ2= (-T) 1-ν az2 To calculate the thermal stress, first find the temperature distribution, and then calculate (2
If Ω is determined from equation (9), the displacement and stress caused by thermal expansion can be derived from equation (28) and (30).

温度場のモデルは一次元半無限体を仮定したので温度T
は深さ方向2と時間tの関数である。この温度場によっ
て生じる熱弾性ポテンシャルΩは(29)式より下記(
31)式となる。
The temperature field model assumes a one-dimensional semi-infinite body, so the temperature T
is a function of depth direction 2 and time t. The thermoelastic potential Ω generated by this temperature field is calculated from equation (29) as follows (
31).

加熱される面に水平な方向には常に温度に比例した圧縮
応力の作用することがわかる。2方向の熱膨張fiW(
Z、t>は(28)式より下記(33)式となる。
It can be seen that compressive stress proportional to temperature always acts in the direction horizontal to the heated surface. Thermal expansion fiW in two directions (
Z, t> becomes the following equation (33) from equation (28).

・・・(33) 上記計算結果をもとにCr  (クロム)材料の温度−
り昇のシミュレーションを行う。下記表1にこのシミュ
レータ1ンにおけるCr材料の物性値を示す。
...(33) Based on the above calculation results, the temperature of Cr (chromium) material -
Simulate the climb. Table 1 below shows the physical property values of the Cr material in this simulator.

発生する熱応力は(30)式より下記(32)式となる
The generated thermal stress is expressed by the following equation (32) from equation (30).

表  1 第8図はCr材料の上昇温度と露光時間との関係を示し
たグラフであり、横軸に露光時間、縦軸にCr材料の上
昇温度をとっている。
Table 1 FIG. 8 is a graph showing the relationship between the temperature increase of the Cr material and the exposure time, in which the horizontal axis represents the exposure time and the vertical axis represents the temperature rise of the Cr material.

第9図は露光時間が3 Q Q 1llsecにおける
深さ方向の上昇温度分布を示した図であり、横軸に表面
からの材料内部への距離、縦軸に上昇温度をとっている
FIG. 9 is a diagram showing the temperature rise distribution in the depth direction when the exposure time is 3 Q Q 1llsec, where the horizontal axis represents the distance from the surface to the inside of the material, and the vertical axis represents the temperature rise.

第10図はCr材料表面の膨張量と露光時間との関係を
示した図であり、横軸に露光時間、縦軸にCr材料の表
面における膨張量をとっている。
FIG. 10 is a diagram showing the relationship between the amount of expansion on the surface of the Cr material and the exposure time, with the horizontal axis representing the exposure time and the vertical axis representing the amount of expansion on the surface of the Cr material.

第11図は300 m5ecの露光時間における深さ方
向の膨張量の分布を示した図であり、横軸に表面からの
材料内部への深さ、縦軸に膨張量をとっている。
FIG. 11 is a diagram showing the distribution of the expansion amount in the depth direction during an exposure time of 300 m5ec, where the horizontal axis represents the depth from the surface to the inside of the material, and the vertical axis represents the expansion amount.

以−りのシミュレーションにおいては、マスクや被照射
物の冷却対策を一切採用Uず、完全に材料の熱伝導に依
存する断熱系としている。この結果から、例えばパワー
密度170W/riの熱流束が吸収された場合、Or材
料の表面で露光時間が3Q Q ll5eCで30℃の
温度上昇を伴い、表面での膨張量が700r+n+にも
増加し、また計算により表面での圧縮応力がおよそ64
0 K9 / ciにも達することが判明する。なお、
露光時間3001sec以上では熱流束の供給がストッ
プしているので、第8図。
In the following simulations, no measures were taken to cool the mask or the irradiated object, and an adiabatic system was used that completely relied on the heat conduction of the material. From this result, for example, when a heat flux with a power density of 170 W/ri is absorbed, the exposure time on the surface of the Or material is 3Q Q ll5eC, and the temperature rises by 30°C, and the amount of expansion at the surface increases to 700r+n+. , and calculated that the compressive stress at the surface is approximately 64
It turns out that it reaches as much as 0 K9/ci. In addition,
When the exposure time is 3001 seconds or more, the supply of heat flux stops, so FIG.

第10図では冷却過程の温度変化と膨張量の変化も示さ
れている。
FIG. 10 also shows the temperature change and the expansion amount change during the cooling process.

(発明が解決しようとする課題〕 従来のマスクの露光方法は以上のように構成されている
ので、有限な熱伝導率を有する被照射物、例えばフォト
マスクやパターンなどが前述したシミュレーションに示
すよ・うに露光により温度上昇しやすくなる。そのため
、被照射物はその熱応力による高負荷を受け、さらにそ
の熱膨張によって局所的なパターンの位置ずれを生じ精
度のよいパターンニングができない等の問題点があった
(Problem to be Solved by the Invention) Since the conventional mask exposure method is configured as described above, the irradiated object with finite thermal conductivity, such as a photomask or pattern, is exposed as shown in the above simulation.・Sea urchin exposure tends to cause the temperature to rise.As a result, the irradiated object is subjected to a high load due to its thermal stress, and furthermore, the thermal expansion causes local pattern misalignment, resulting in problems such as the inability to perform accurate patterning. was there.

この発明は上記のような問題点を解消するためになされ
たもので、露光による被照射物の温度上昇を抑え、例え
ば熱応力による高負荷や熱膨張によるパターンのずれな
どを軽減したマスクの露光方法を得ることを目的とする
This invention was made in order to solve the above-mentioned problems.It suppresses the temperature rise of the irradiated object due to exposure, and reduces, for example, high loads due to thermal stress and pattern deviation due to thermal expansion. The purpose is to obtain a method.

(課題を解決するための手段) この発明に係るマスクの露光方法は、間欠的な露光を特
徴としたちのである。
(Means for Solving the Problems) The mask exposure method according to the present invention is characterized by intermittent exposure.

〔作用〕[Effect]

この発明における間欠的な露光は被照射物、例えばマス
クやパターンなどの温度上昇を抑制する。
The intermittent exposure in this invention suppresses the temperature rise of the irradiated object, such as a mask or a pattern.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例によるマスクの露光方法のパワ
ー密度F。と露光時間τ、(パルス幅Δτ、)との関係
を示したグラフである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows the power density F of the mask exposure method according to an embodiment of the present invention. It is a graph showing the relationship between the exposure time τ, (pulse width Δτ,), and the exposure time τ.

パワー密度F。を有する照射パルスのパルス幅Δτ は
、全露光時間をτ 、矩形パルスの数を(l     
              QN個とするとド記(3
4)式で与えられる。
Power density F. The pulse width Δτ of the illumination pulse has the total exposure time τ and the number of rectangular pulses (l
If there are QN pieces, then C (3
4) Given by Eq.

またパルス列の周期τ は、τ 〉2Δτ。程度p  
    ρ の値とする。
Moreover, the period τ of the pulse train is τ > 2Δτ. degree p
Let it be the value of ρ.

このようなパルス列の照射による表面加熱の境界条件は
、下記(35)式で与えられる。
The boundary condition for surface heating by irradiation with such a pulse train is given by the following equation (35).

−H(t−Δτ −nτpN a (z−0)       ・・・(35)前述した(1
)式の方程式を(35)式の境界条件で解くと周期的な
矩形パルス列による温度変化は下記(36)式のように
なる。
-H(t-Δτ -nτpN a (z-0)...(35) As mentioned above (1
) is solved using the boundary condition of equation (35), the temperature change due to the periodic rectangular pulse train becomes as shown in equation (36) below.

xG(z、t−nτp) −H(を−Δτ −nτp) XQ(Z、を−Δτ −nτp)) ・・・(36) ここでG(Z、t)は前述した(15)式で与えられる
。この露光方法で発生ずる熱応力膨張量は前述した(3
2)式、 (33)式に(36)式を代入することで求
められる。
xG(z, t-nτp) -H(-Δτ-nτp) Given. The amount of thermal stress expansion generated by this exposure method was described above (3
2) is obtained by substituting equation (36) into equation (33).

以下(36)式および(36)式を用いて導出した式に
よりシミュレーションを行う。
A simulation is performed using equations (36) and equations derived using equations (36) below.

第2図は全体の露光時間τ。を300 m5ecとし、
これを10等分、パルス列の周期τ、−1QsOc。
Figure 2 shows the total exposure time τ. is 300 m5ec,
This is divided into 10 equal parts, and the period of the pulse train is τ, -1QsOc.

パルス幅Δτg−30m5ec、パワー密度Fo−17
0W/mにおけるCr材料表面の上昇温度と露光時間と
の関係を示したグラフである。
Pulse width Δτg-30m5ec, power density Fo-17
It is a graph showing the relationship between the temperature increase on the surface of a Cr material and the exposure time at 0 W/m.

第3図は上記と同じ条件で材料内部の深さ方向の温度分
布を示したグラフである。
FIG. 3 is a graph showing the temperature distribution in the depth direction inside the material under the same conditions as above.

第4図は矩形パルス列による材料表面の膨張量の変化を
示したグラフであり、横軸は露光時間、縦軸は膨張量で
ある。
FIG. 4 is a graph showing changes in the amount of expansion of the material surface due to a rectangular pulse train, where the horizontal axis is the exposure time and the vertical axis is the amount of expansion.

第5図は矩形パルス列による材料内部の深さ方向の膨張
量の分布を示したグラフであり、横軸は材料表面から内
部への深さ、縦軸は膨張量である。
FIG. 5 is a graph showing the distribution of the expansion amount in the depth direction inside the material due to the rectangular pulse train, where the horizontal axis is the depth from the material surface to the inside, and the vertical axis is the expansion amount.

以上のシミュレーションの結果から、露光時間r  =
 30011secをパルス幅Δrg−aomsecに
分割し、10パルス露光する場合、1パルスごとの温度
上昇は10℃である。10パルス侵でも最高温度は10
℃程度であり、表面の積算、1−昇温度は僅か数℃にJ
5さまっている。また表面の膨張量は1100n以下に
抑制されている。したがって、本発明による露光方法に
よれば従来法と比較すると温度上昇は1/3、膨張量は
1/7に抑制されている。
From the above simulation results, the exposure time r =
When 30011 sec is divided into pulse widths Δrg-aomsec and 10 pulses are exposed, the temperature rise per pulse is 10°C. Even with 10 pulses, the maximum temperature is 10
The cumulative temperature increase on the surface is only a few degrees Celsius.
5 It's stuck. Further, the amount of surface expansion is suppressed to 1100n or less. Therefore, according to the exposure method of the present invention, the temperature rise is suppressed to 1/3 and the amount of expansion is suppressed to 1/7 compared to the conventional method.

以上のようにマスクと被照射物の露光に伴う熱的なダメ
ージによる過渡的な変形過程を数理解析し、例えば露光
時間で。を10個の矩形パルス列に分割し、パルス幅Δ
τ よりも長い周期τ。で間欠的に露光すると、1パル
スごとの温度上昇が低くなり、温度上昇に伴った熱応力
や膨張量が抑制される。このようにして、例えばウェハ
への露光時におけるマスク上のパターンとレジストパタ
ーンの非定常的な変形を抑制でき、パターンニング精度
が向上する。
As mentioned above, we mathematically analyzed the transient deformation process due to thermal damage caused by exposure of the mask and the irradiated object, for example, based on the exposure time. is divided into 10 rectangular pulse trains, and the pulse width Δ
Period τ longer than τ. When exposed intermittently, the temperature rise per pulse is reduced, and the thermal stress and expansion amount accompanying the temperature rise are suppressed. In this way, unsteady deformation of the pattern on the mask and the resist pattern during, for example, exposure of the wafer can be suppressed, and patterning accuracy is improved.

なお、本実滴例では半無限体の一次元熱伝導について説
明したが、3次元熱伝導についても、温度場とともに熱
応力が生じ、同様な現象が表われるので、本発明のマス
クの露光方法を適用することにより同様の効果を奏する
。また上記実施例ではCr材料について説明したが、モ
リブデンシリナイド、有機高分子膜であってもよく、上
記実施例と同様の効果を奏する。
In addition, in this actual droplet example, one-dimensional heat conduction in a semi-infinite body was explained, but thermal stress occurs along with the temperature field and a similar phenomenon occurs in three-dimensional heat conduction, so the mask exposure method of the present invention A similar effect can be achieved by applying. Further, in the above embodiment, a Cr material has been described, but molybdenum silinide or an organic polymer film may also be used, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば間欠的な露光は被照射物
、例えばマスクやパターンなどの温度上界を抑制するの
で、例えば熱応力による高負荷や熱膨張によるパターン
のずれなどを軽減したマスクの露光方法を得ることがで
きる。
As described above, according to the present invention, intermittent exposure suppresses the upper temperature limit of the irradiated object, such as a mask or pattern, so that, for example, a mask that reduces high loads due to thermal stress and pattern displacement due to thermal expansion, etc. exposure method can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるマスクの露光方法の
露光時間とパワー密度との関係を示すグラフ、第2図は
第1図に示すマスクの露光方法による露光時間と−1:
昇温度との関係を示すグラフ、第3図は第・2図に示す
マスクの露光方法による深さと上昇温度との関係を示す
グラフ、第4図は第2図に示すマスクの露光方法による
露光時間と膨張量との関係を示すグラフ、第5図は第2
図に示すマスクの露光方法による深さと膨張量との関係
を示すグラフ、第6図は従来のマスクの露光方法の露光
時間とパワー密度との関係を示すグラフ、第7図は表面
加熱のモデルを示す図、第8図は第6図に示すマスクの
露光方法による露光時間と上昇温度との関係を示すグラ
フ、第9図は第6図に示すマスクの露光方法による深さ
と上昇温度との関係を示すグラフ、第10図は第6図に
示すマスクの露光方法による露光時間と膨張量との関係
を示すグラフ、第11図は第6図に示すマスクの露光方
法による深さと膨張量との関係を示すグラフで゛ある。 図において、Foはパワー密度、Δτ。はパルス幅であ
る。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a graph showing the relationship between the exposure time and power density of the mask exposure method according to an embodiment of the present invention, and FIG. 2 is a graph showing the relationship between the exposure time and power density of the mask exposure method shown in FIG.
Figure 3 is a graph showing the relationship between depth and temperature rise using the mask exposure method shown in Figures 2 and 4. Figure 4 is a graph showing the relationship between depth and temperature rise using the mask exposure method shown in Figure 2. A graph showing the relationship between time and expansion amount, Figure 5 is the second
Figure 6 is a graph showing the relationship between depth and expansion amount according to the mask exposure method shown in Figure 6. Figure 6 is a graph showing the relationship between exposure time and power density for the conventional mask exposure method. Figure 7 is a model of surface heating. Figure 8 is a graph showing the relationship between exposure time and temperature rise due to the mask exposure method shown in Figure 6, and Figure 9 is a graph showing the relationship between depth and temperature rise due to the mask exposure method shown in Figure 6. FIG. 10 is a graph showing the relationship between the exposure time and the expansion amount according to the mask exposure method shown in FIG. 6, and FIG. 11 is a graph showing the relationship between the depth and expansion amount according to the mask exposure method shown in FIG. 6. This is a graph showing the relationship between. In the figure, Fo is the power density, Δτ. is the pulse width. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)被照射物にマスクを介してパターンを露光する方
法であって、 前記露光を間欠的に行うことを特徴とするマスクの露光
方法。
(1) A method for exposing a pattern onto an object to be irradiated through a mask, the method comprising: performing the exposure intermittently.
JP63144351A 1988-06-10 1988-06-10 Exposure of mask Pending JPH021904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63144351A JPH021904A (en) 1988-06-10 1988-06-10 Exposure of mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63144351A JPH021904A (en) 1988-06-10 1988-06-10 Exposure of mask

Publications (1)

Publication Number Publication Date
JPH021904A true JPH021904A (en) 1990-01-08

Family

ID=15360085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63144351A Pending JPH021904A (en) 1988-06-10 1988-06-10 Exposure of mask

Country Status (1)

Country Link
JP (1) JPH021904A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356211A (en) * 2000-06-16 2001-12-26 Kyodo Printing Co Ltd Method for producing thin film device
JP2006156424A (en) * 2004-10-25 2006-06-15 Sharp Corp Method and apparatus of exposure
WO2017158936A1 (en) * 2016-03-18 2017-09-21 コニカミノルタ株式会社 Organic electroluminescent element patterning method and patterning device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372575A (en) * 1976-12-10 1978-06-28 Thomson Csf Pattern transfer optical device
JPS56111223A (en) * 1980-02-01 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai X-ray exposuring device
JPS57198631A (en) * 1981-05-29 1982-12-06 Ibm Exposing method and device
JPS5814459A (en) * 1981-07-17 1983-01-27 Nippon Telegr & Teleph Corp <Ntt> X-ray generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372575A (en) * 1976-12-10 1978-06-28 Thomson Csf Pattern transfer optical device
JPS56111223A (en) * 1980-02-01 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai X-ray exposuring device
JPS57198631A (en) * 1981-05-29 1982-12-06 Ibm Exposing method and device
JPS5814459A (en) * 1981-07-17 1983-01-27 Nippon Telegr & Teleph Corp <Ntt> X-ray generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356211A (en) * 2000-06-16 2001-12-26 Kyodo Printing Co Ltd Method for producing thin film device
JP2006156424A (en) * 2004-10-25 2006-06-15 Sharp Corp Method and apparatus of exposure
WO2017158936A1 (en) * 2016-03-18 2017-09-21 コニカミノルタ株式会社 Organic electroluminescent element patterning method and patterning device

Similar Documents

Publication Publication Date Title
Olson et al. Vibration studies on some integral rib-stiffened plates
Aggarangsi et al. Melt pool size and stress control for laser-based deposition near a free edge
Abbas Generalized magneto-thermoelasticity in a nonhomogeneous isotropic hollow cylinder using the finite element method
Naqavi et al. Laser heating of multilayer assembly and stress levels: elasto-plastic consideration
O’day et al. A superposition framework for discrete dislocation plasticity
Malekzadeh et al. Dynamic response of functionally graded plates under moving heat source
Mahmoudkhani et al. Nonlinear vibration of viscoelastic sandwich plates under narrow-band random excitations
JPH021904A (en) Exposure of mask
Clayton et al. Distributions of stretch and rotation in polycrystalline OFHC Cu
Emery et al. A comparison of some of the thermal characteristics of finite-element and finite-difference calculations of transient problems
Ham et al. Measurement of creep and relaxation behaviors of wafer-level CSP assembly using moiré interferometry
Awwad et al. Photo-thermoelastic behavior of a functionally graded? Semiconductor medium excited by thermal laser pulses
Hu et al. Predictive modeling and uncertainty quantification of laser shock processing by bayesian gaussian processes with multiple outputs
Saucedo-Zendejo et al. Meshfree numerical approach based on the finite pointset method for two-way coupled transient linear thermoelasticity
Ang A Laplace transformation dual‐reciprocity boundary element method for a class of two‐dimensional microscale thermal problems
Kim et al. Adjoint design sensitivity analysis of reduced atomic systems using generalized Langevin equation for lattice structures
Lakhsasi et al. Dynamic finite element approach for analyzing stress and distortion in multilevel devices
Lorenz et al. Recent advances and new developments in hot forming simulation with LS-DYNA
Dai et al. A hybrid finite element‐finite difference method for thermal analysis in X‐ray lithography
Al-Duhaim et al. Hyperbolic Nature of Heat Conduction for Short Pulse Laser Irradiation of Solid Surfaces: Analytical Solution for the Thermal Stress Field.
Dai et al. A generalized Douglas ADI method for solving three‐dimensional parabolic differential equations on multilayers
Blottner Nonuniform grid method for turbulent boundary layers
Ohno et al. Warpage variation analysis of Si/solder/Cu layered plates subjected to cyclic thermal loading
Zhao Thermomechanical behavior of ball grid array solder joints under thermal and vibration loading: testing and modeling
Yilbas et al. Laser short-pulse heating with time-varying intensity and thermal stress development in the lattice subsystem