JPH02189453A - Oxygen concentration measuring instrument - Google Patents

Oxygen concentration measuring instrument

Info

Publication number
JPH02189453A
JPH02189453A JP1009173A JP917389A JPH02189453A JP H02189453 A JPH02189453 A JP H02189453A JP 1009173 A JP1009173 A JP 1009173A JP 917389 A JP917389 A JP 917389A JP H02189453 A JPH02189453 A JP H02189453A
Authority
JP
Japan
Prior art keywords
oxygen
pressure
sensor
oxygen concentration
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1009173A
Other languages
Japanese (ja)
Inventor
Atsunari Ishibashi
石橋 功成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1009173A priority Critical patent/JPH02189453A/en
Publication of JPH02189453A publication Critical patent/JPH02189453A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To enable measurement of the relative concentration of oxygen without being affected by a pressure by conducting computation by using a signal outputted from an oxygen sensor and being proportional to the partial pressure of oxygen in ambience and a signal outputted from a pressure sensor and being proportional to the total pressure of the ambience. CONSTITUTION:In an oxygen sensor 1, an electrolytic solution 3 is filled up in a cell 2 and both an anode 4 and a cathode 5 fitted with a diaphragm 6 are immersed in the electrolytic solution 3, the diaphragm 6 being fitted to the cell 2 so that it is positioned outside the cathode 5. A voltmeter 11 is con nected electrically to wirings 7 and 8 of the oxygen sensor 1, and the main body 12 of a measurer is connected to the voltmeter 11. A pressure sensor 13 outputs a signal P proportional to the total pressure of ambience to the main body 12 of the measuring inotrument. The oxygen sensor 1 outputs a signal proportional to the partial pressure of oxygen in the ambience. The main body 12 of the measuring inotrument computes the relative concentration of oxygen in the ambience from the signals of the oxygen sensor 1 and the pressure sensor 13 and displays the value thereof.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、測定する系の圧力の影響を受けることなく相
対酸素濃度を測定できるようにした酸素濃度測定器に関
する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an oxygen concentration measuring device that can measure relative oxygen concentration without being affected by the pressure of a measuring system.

「従来の技術」 従来、環境監視システム等で行われる酸素濃度の測定は
、低消費電力でかつ構成が簡単で小型なガルバニ電池式
酸素セン、すと電圧計等とよりなる測定器により行われ
ていた。
"Conventional Technology" Conventionally, oxygen concentration measurements in environmental monitoring systems, etc. have been carried out using low power consumption, simple and compact measuring instruments such as galvanic cell-type oxygen sensors and voltmeters. was.

ガルバニ電池式酸素センサは、アノードと隔膜が取り付
けられたカソードと電解液とから概略構成され、隔膜を
透過した酸素がカソード表面で還元されて起こる電池反
応により流れる電流が酸素分圧に比例することを利用し
て、雰囲気の酸素分圧に比例した信号(電圧等)を出力
するものである。
A galvanic cell type oxygen sensor generally consists of an anode, a cathode with a diaphragm attached, and an electrolyte. Oxygen that has passed through the diaphragm is reduced on the cathode surface, resulting in a battery reaction that causes the current flowing to be proportional to the oxygen partial pressure. It outputs a signal (voltage, etc.) proportional to the oxygen partial pressure in the atmosphere.

そして、従来このガルバニ電池式酸素センサの信号を電
圧計等により読み取ることにより酸素濃度を測定してい
た。
Conventionally, the oxygen concentration has been measured by reading the signal from this galvanic cell type oxygen sensor using a voltmeter or the like.

[発明が解決しようとする課題」 ところが、上述のようにガルバニ電池式酸素センサの出
力信号は雰囲気の酸素分圧に比例したものであるため、
酸素濃度が同じでも雰囲気の圧力(全圧)により電圧計
等の指示値が異なり、上記のような゛測定器を用いた場
合には、測定の度に圧力補正のための校正を行う必要が
あった。このことは、下記のような不具合をもたらして
いた。
[Problem to be solved by the invention] However, as mentioned above, the output signal of the galvanic cell type oxygen sensor is proportional to the oxygen partial pressure in the atmosphere.
Even if the oxygen concentration is the same, the readings of a voltmeter, etc. will vary depending on the atmospheric pressure (total pressure), and when using a measuring device like the one above, it is necessary to calibrate the pressure to correct it every time you make a measurement. there were. This caused the following problems.

(a)測定作業に手間がかかる。(a) Measurement work is time-consuming.

(b)リアルタイムで測定することができない。(b) It cannot be measured in real time.

本発明は上記従来の問題点に鑑みなされたものであって
、圧力の影響を受けることなく相対酸素濃度が測定可能
な酸素濃度測定器を提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide an oxygen concentration measuring device capable of measuring relative oxygen concentration without being affected by pressure.

「課題を解決するための手段」 本発明の酸素濃度測定器は、雰囲気の酸素分圧に比例し
た信号を出力する酸素センサと、雰囲気の全圧に比例し
た信号を出力する圧力センサと、前記酸素センサと前記
圧力センサの信号により雰囲気の相対酸素濃度を演算し
、この値に応じた信号を出力する測定器本体とを具備し
てなることを特徴としている。
"Means for Solving the Problems" The oxygen concentration measuring device of the present invention comprises: an oxygen sensor that outputs a signal proportional to the partial pressure of oxygen in the atmosphere; a pressure sensor that outputs a signal proportional to the total pressure of the atmosphere; It is characterized by comprising an oxygen sensor and a measuring device main body that calculates the relative oxygen concentration of the atmosphere based on the signal from the pressure sensor and outputs a signal according to this value.

「作用」 本発明の酸素濃度測定器において、酸素センサは、雰囲
気の酸素分圧に比例した信号を出力する。
"Operation" In the oxygen concentration measuring device of the present invention, the oxygen sensor outputs a signal proportional to the oxygen partial pressure of the atmosphere.

また、圧力センサは雰囲気の全圧に比例した信号を出力
する。そして、測定器本体は前記酸素センサと前記圧力
センサの信号により雰囲気の相対酸素濃度を演算し、こ
の値を表示するかこの値に応じた信号を出力する。
Moreover, the pressure sensor outputs a signal proportional to the total pressure of the atmosphere. Then, the main body of the measuring device calculates the relative oxygen concentration of the atmosphere based on the signals from the oxygen sensor and the pressure sensor, and displays this value or outputs a signal corresponding to this value.

U実施例j 以下、本発明の一実施例を第1図〜第2図により説明す
る。
Embodiment j An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図において、符号Iで示すものは酸素センサである
。酸素センサIは一般にガルバニ式酸素濃度センサと呼
ばれるもので、第2図に示すように、セル2内に電解液
3を充填し、アノード4と隔膜6が取り付けられたカソ
ード5とを前記電解l夜3の中に共に浸漬してなり、前
記隔膜6がセル2の外部を臨むようにカソード5をセル
2に取り付けたものである。
In FIG. 1, the symbol I indicates an oxygen sensor. The oxygen sensor I is generally called a galvanic oxygen concentration sensor, and as shown in FIG. The cathode 5 is attached to the cell 2 so that the diaphragm 6 faces the outside of the cell 2.

ここで、セル2はガラス等により密閉状態に形成された
もので、互いに密閉状態に仕切られた電解液室2aと電
子計測室2bとを有し、前記電解液3はこの電解液室2
aに充填されている。また、前記電解液3としては、例
えば水酸化カリウムの40〜70%水溶液を用いること
ができ、アノード4とカソード5の材料としては、それ
ぞれ鉛と白金を用いることができる。また、隔膜6は、
酸素のみを選択的に透過するもので、例えば10〜20
μmの厚さのポリ弗化エチレン膜等を用いることができ
る。また、符号7及び8で示すものは、それぞれアノー
ド4とカソード5に電気的に接続された配線である。さ
らに、符号9及びlOで示すものは、前記電子計測室g
b内に配され、配線7.8間に直列に接続された、それ
ぞれ定抵抗と忍度浦正のためのサーミスタである。
Here, the cell 2 is formed in a hermetically sealed state using glass or the like, and has an electrolyte chamber 2a and an electronic measurement chamber 2b that are hermetically partitioned from each other.
It is filled in a. Further, as the electrolytic solution 3, for example, a 40 to 70% aqueous solution of potassium hydroxide can be used, and as the materials for the anode 4 and the cathode 5, lead and platinum can be used, respectively. Moreover, the diaphragm 6 is
It selectively permeates only oxygen, for example 10 to 20
A polyfluoroethylene film or the like having a thickness of μm can be used. Moreover, what is indicated by the symbols 7 and 8 are wirings electrically connected to the anode 4 and the cathode 5, respectively. Furthermore, what is indicated by the symbols 9 and 1O is the electronic measurement chamber g.
These are the thermistors for constant resistance and Shinobu Uramasa, respectively, which are arranged in b and connected in series between wires 7 and 8.

この酸素センサlの配線7,8には、電圧計11が電気
的に接続されている。電圧計11は前記配線7,8間の
電圧に比例する信号Eを後述する測定器本体12に出力
するものである。この電圧計11には、測定器本体12
が接続されている。
A voltmeter 11 is electrically connected to the wirings 7 and 8 of this oxygen sensor l. The voltmeter 11 outputs a signal E proportional to the voltage between the wires 7 and 8 to a measuring device main body 12, which will be described later. This voltmeter 11 includes a measuring device body 12.
is connected.

測定器本体12は前記信号Eと後述する圧力センサ13
からの信号Pにより、相対酸素濃度に応じた値Cを演算
し、この値Cを表示するか信号として出力するものであ
る。この測定器本体I2には圧力センサ13が接続され
ているJ圧力センサ13は雰囲気の全圧に比例した信号
Pを測定器本体12に出力するものである。
The measuring device main body 12 receives the signal E and a pressure sensor 13 to be described later.
A value C corresponding to the relative oxygen concentration is calculated based on the signal P from the sensor, and this value C is displayed or output as a signal. A pressure sensor 13 is connected to this measuring device main body I2, and the J pressure sensor 13 outputs a signal P proportional to the total pressure of the atmosphere to the measuring device main body 12.

ここで、上記測定器本体12の演算処理とじては、具体
的には、例えば下記の式のようにすればよい。
Here, specifically, the arithmetic processing of the measuring instrument main body 12 may be performed using the following equation, for example.

CccE/P               ・=−=
−(1)今、上記構成からなる酸素濃度測定器を用いて
、例えば室A内の酸素濃度を測定するためには、酸素セ
ンサlと圧力センサ13を室A内に取り付け、電圧計1
1と測定器本体12を動作させればよい。
CccE/P ・=-=
- (1) Now, in order to measure the oxygen concentration in room A, for example, using the oxygen concentration measuring device having the above configuration, install oxygen sensor l and pressure sensor 13 in room A, and install voltmeter 1 in room A.
1 and the measuring instrument main body 12 should be operated.

すると、酸素センサ1においては、室Δ内から隔膜5を
透過した酸素がカソード5上で下記式に従って還元され
る。
Then, in the oxygen sensor 1, oxygen that has passed through the diaphragm 5 from inside the chamber Δ is reduced on the cathode 5 according to the following formula.

Ox +2 Ht O+4 e−→40 H−・旧・・
(■)また、この反応に伴ってアノード4上では下記式
に従って酸化反応が進行する。
Ox +2 Ht O+4 e-→40 H-・Old・・
(■) Additionally, along with this reaction, an oxidation reaction proceeds on the anode 4 according to the following formula.

2Pb茸”+408−→2Pb(OH)、・・・・・・
<m>このカソード5上の還元反応とアノード4上の酸
化反応により、アノード4とカソード5間に定抵抗9と
サーミスタ10を介して電流が流れる。そして、この電
流は室A内の酸素分圧ρに比例するため、配線7,8間
の電圧及び電圧計IIの出力、信号Eも酸素分圧pに比
例し、下記の式が成り立つ。
2Pb mushroom"+408-→2Pb(OH),...
<m> Due to this reduction reaction on the cathode 5 and oxidation reaction on the anode 4, a current flows between the anode 4 and the cathode 5 via the constant resistor 9 and thermistor 10. Since this current is proportional to the oxygen partial pressure ρ in the room A, the voltage between the wirings 7 and 8, the output of the voltmeter II, and the signal E are also proportional to the oxygen partial pressure p, and the following equation holds true.

E=に−1)            ・・・・・・(
IV)ここで、kは隔膜6の厚さ等に依存する酸素セン
サlの特性により決まる比例定数である。
E=ni-1) ・・・・・・(
IV) Here, k is a proportionality constant determined by the characteristics of the oxygen sensor l, which depends on the thickness of the diaphragm 6 and the like.

また、圧力センサ13は室への全圧p0に比例した信号
Pを出力し、下記式が成り立つ。
Moreover, the pressure sensor 13 outputs a signal P proportional to the total pressure p0 into the chamber, and the following equation holds true.

p=ko・po          ・・・・・・(V
)ここで、koは圧力センサI3の特性により決まる比
例定数である。
p=ko・po・・・・・・(V
) Here, ko is a proportionality constant determined by the characteristics of the pressure sensor I3.

そして、測定器本体12は上記信号E及びP hzら式
(1)に基づいてCの値を演算し、これを表示するか信
号として出力する。ここで、Cの値(ま具体的には式(
r)に式(IV )、 (V )  を代入して下j己
のようになる。
Then, the measuring device main body 12 calculates the value of C based on the above-mentioned signal E and Phz et al. equation (1), and displays or outputs it as a signal. Here, the value of C (or more specifically, the formula (
By substituting equations (IV) and (V) into r), the following is obtained.

Ccx−(k/ko)−p/po     ・=−(V
l)また、室への全体積をvo、室A内の酸素力(占め
る体積をVとすると、 p、−V=p’Vo         ・・・・・・(
■)という関係が成り立つので、式(■)により式(V
l)を変形すれば、 C”(k/に、)・v/vo      −・−・・(
■)となる。したがって、前記定数に、に、は既知であ
るので、Cの値により室A内の体積の相対酸素濃度v 
/ v oを知ることができる。
Ccx-(k/ko)-p/po ・=-(V
l) Also, if the total volume to the chamber is vo, and the oxygen power in chamber A (occupied volume is V, then p, -V=p'Vo...
Since the relationship (■) holds true, the formula (■) allows the formula (V
If we transform l), we get C”(k/, )・v/vo −・−・・(
■). Therefore, since the above constants, and are known, the relative oxygen concentration v of the volume in the chamber A is determined by the value of C.
/ vo can be known.

本実施例の酸素濃度測定器によれば、測定しようとする
室の圧力(全圧p。)にかかわらず、出力される信号C
の値と相対酸素濃度の関係は式(■)に示すように一定
しているので、圧力に影響されないで相対酸素濃度を測
定することができる。このため、圧力補正のための校正
を行う必要がなく、測定作業が容易になるとともに、リ
アルタイムで測定することができるという効果がある。
According to the oxygen concentration measuring device of this embodiment, the signal C is output regardless of the pressure (total pressure p.) in the chamber to be measured.
Since the relationship between the value of and the relative oxygen concentration is constant as shown in equation (■), the relative oxygen concentration can be measured without being affected by pressure. Therefore, there is no need to perform calibration for pressure correction, which makes the measurement work easier and allows for real-time measurement.

また、酸素センサlは電池反応を利用したものであるの
で電力を必要としない、このため測定器全体としては圧
力センサ13や電圧計11等の他には外部電源が不要な
ので、測定器の消費電力が少ないという効果がある。さ
らに、一般に長寿、命と言われているガルバニ式酸素セ
ンサは、測定器の寿命をも長くすることができるという
効果がある。
In addition, since the oxygen sensor l uses a battery reaction, it does not require electric power. Therefore, the measuring device as a whole does not require an external power source other than the pressure sensor 13, voltmeter 11, etc., so the consumption of the measuring device is reduced. This has the effect of requiring less electricity. Furthermore, the galvanic oxygen sensor, which is generally said to have a long life, has the effect of extending the life of the measuring device.

「発明の効果」 本発明の酸素濃度測定器によれば、測定器本体は酸素セ
ンサと圧力センサの信号により雰囲気の相対酸素濃度を
演算し、この値を表示するかこの値に応じた信号を出力
するので、圧力に影響されないで相対酸素濃度を測定す
ることができる。このため、圧力補正のための校正を行
う必要がなく、測定作業が容易になるとともに、リアル
タイムで測定することができるという効果がある。
"Effects of the Invention" According to the oxygen concentration measuring instrument of the present invention, the measuring instrument body calculates the relative oxygen concentration of the atmosphere based on the signals from the oxygen sensor and the pressure sensor, and displays this value or sends a signal corresponding to this value. Since the output is output, relative oxygen concentration can be measured without being affected by pressure. Therefore, there is no need to perform calibration for pressure correction, which makes the measurement work easier and allows for real-time measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第2図は本発明の酸素濃度測定器を示す図であ
って、第1図は酸素濃度測定器の全体を表すブロック図
、第2図は酸素センサの縦断面図である。 ■・・・・・・酸素センサ、12・・・・・・測定器本
体、I3・・・・・・圧力スイッチ。 第1図 第2図
1 and 2 are diagrams showing an oxygen concentration measuring device of the present invention, in which FIG. 1 is a block diagram showing the entire oxygen concentration measuring device, and FIG. 2 is a longitudinal sectional view of the oxygen sensor. ■...Oxygen sensor, 12...Meter body, I3...Pressure switch. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 雰囲気の酸素分圧に比例した信号を出力する酸素センサ
と、雰囲気の全圧に比例した信号を出力する圧力センサ
と、前記酸素センサと前記圧力センサの信号により雰囲
気の相対酸素濃度を演算し、この値に応じた信号を出力
する測定器本体とを具備してなる酸素濃度測定器。
an oxygen sensor that outputs a signal proportional to the oxygen partial pressure of the atmosphere, a pressure sensor that outputs a signal proportional to the total pressure of the atmosphere, and a relative oxygen concentration of the atmosphere calculated from the signals of the oxygen sensor and the pressure sensor, An oxygen concentration measuring device comprising a measuring device main body that outputs a signal according to this value.
JP1009173A 1989-01-18 1989-01-18 Oxygen concentration measuring instrument Pending JPH02189453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1009173A JPH02189453A (en) 1989-01-18 1989-01-18 Oxygen concentration measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009173A JPH02189453A (en) 1989-01-18 1989-01-18 Oxygen concentration measuring instrument

Publications (1)

Publication Number Publication Date
JPH02189453A true JPH02189453A (en) 1990-07-25

Family

ID=11713190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009173A Pending JPH02189453A (en) 1989-01-18 1989-01-18 Oxygen concentration measuring instrument

Country Status (1)

Country Link
JP (1) JPH02189453A (en)

Similar Documents

Publication Publication Date Title
US2913386A (en) Electrochemical device for chemical analysis
US4065373A (en) Hydrogen patch cell
US6894502B2 (en) pH sensor with internal solution ground
Pearson “Null” Methods Applied to Corrosion Measurements
EP0027005B1 (en) A method of electrochemical sensing and a sensor for oxygen, halothane and nitrous oxide
KR910015851A (en) pH and specific ion concentration measuring method and device
US4152233A (en) Apparatus for electrochemical gas detection and measurement
US4419211A (en) Gas analysis sensor for measuring concentration of gas constituent
US5872454A (en) Calibration procedure that improves accuracy of electrolytic conductivity measurement systems
JPH02189453A (en) Oxygen concentration measuring instrument
JPS60186751A (en) Ph meter
US2885637A (en) Continuous electronic etch depth indicator
GB2097539A (en) Compound measuring electrode
JPS5942694Y2 (en) Residual chlorine meter
US9052282B2 (en) Water analysis measurement arrangement
WO1983004101A1 (en) Oxygen analyzer
US5081420A (en) Method and apparatus for measuring hydrogen ion concentration and activity in an electrolyte
KR910006276B1 (en) Circuit for measuring ion condensation using transistor
KR920006738A (en) Method and apparatus for measuring the pH of a liquid
JPH0136118Y2 (en)
EP0280230B1 (en) Instrument for potentiometric electrochemical measurements in an electrolyte solution
RU164491U1 (en) DEVICE FOR PH MEASUREMENT WITH IONOSELECTIVE ELECTRODES
CN1014461B (en) Measuring method and its instrument for ph value of solution
SU1000882A1 (en) Device for measuring electrochemical potential of ions in solutions
RU2094794C1 (en) Gas generator