JPH02188628A - Compressed air storage device - Google Patents

Compressed air storage device

Info

Publication number
JPH02188628A
JPH02188628A JP1007033A JP703389A JPH02188628A JP H02188628 A JPH02188628 A JP H02188628A JP 1007033 A JP1007033 A JP 1007033A JP 703389 A JP703389 A JP 703389A JP H02188628 A JPH02188628 A JP H02188628A
Authority
JP
Japan
Prior art keywords
compressed air
pressure
tank
pressure drop
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1007033A
Other languages
Japanese (ja)
Inventor
Shinichi Nakade
伸一 中出
Yasuhiko Suesada
末定 泰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Kansai Electric Power Co Inc
Original Assignee
Sumitomo Rubber Industries Ltd
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd, Kansai Electric Power Co Inc filed Critical Sumitomo Rubber Industries Ltd
Priority to JP1007033A priority Critical patent/JPH02188628A/en
Publication of JPH02188628A publication Critical patent/JPH02188628A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Abstract

PURPOSE:To enhance the effective volume of a compressed air storage tank by arranging drop compensating elements which contract or expand the volume of the tank depending upon the increase or decrease in constant pressure inside the storage tank to take out compressed air under a constant pressure at a high extraction rate. CONSTITUTION:A compressed air storage tank 10 is installed on the ground and is connected to a gas turbine generator plant through an air pipeline 12, wherein a plurality of pressure drop compensating elements 11 are disposed inside the tank 10. The respective elements 11 are formed so that their volumes may contract above constant pressure and expands below constant pressure. It is thus possible to contract the elements 11 to increase the compressed air space in the tank 10 when compressed air is stored in the tank 10, and to expand the elements 11 to supply air at certain pressure with a pressure drop in the tank 10 caused by taking out compressed air when compressed air is supplied to a gas turbine and so forth from the tank 10.

Description

【発明の詳細な説明】 級泉厖へ秤肚外」 本発明は、圧縮空気の貯蔵装置に関し、詳しくは、夜間
の余剰電力を利用して作った圧縮空気を貯蔵装置内に一
旦貯蔵し、昼間の電力利用ピーク時に貯蔵装置から抽出
してガスタービン発電用等に利用するもので、特に、上
記貯蔵装置における容積効率を良好とするものである。
[Detailed Description of the Invention] The present invention relates to a compressed air storage device, and more specifically, compressed air made using surplus electricity at night is temporarily stored in the storage device, It is extracted from the storage device during peak power use during the day and used for gas turbine power generation, etc., and particularly improves the volumetric efficiency of the storage device.

従来の技術 一般に、電力の需要には昼と夜で非常に大きな落差があ
り、夜間電力の必要量は昼間の40%程度で、余剰の夜
間電力を貯蔵して昼間のピーク時に利用出来る技術の開
発が要望されている。
Conventional technology In general, there is a very large difference in electricity demand between day and night, and the amount of electricity required at night is about 40% of that during the day. Development is required.

電力の貯蔵技術としては、既に実用化されている揚水発
電所の他、蓄電池方式、超電導電力貯蔵方式等、種々の
技術開発が進められている。
As for power storage technology, in addition to pumped storage power plants that are already in practical use, various technological developments are underway, such as storage battery systems and superconducting power storage systems.

西ドイツで実用化された圧縮空気貯蔵・ピーク発電方式
もその1つであり、夜間の余剰電力で圧縮空気を作り、
岩塩層に作った地下タンクに貯蔵しておき、昼間の使用
電力ピーク時に圧縮空気を取り出し、ガスタービンの発
電量を増重している。
One such method is the compressed air storage/peak power generation system that was put into practical use in West Germany.
The compressed air is stored in an underground tank built in a rock salt layer, and the compressed air is extracted during peak power usage during the day to increase the power generated by the gas turbine.

今後、益々増大する電力需要に対して、建設が抑制され
る原子力発電や、大気汚染で問題の多い石油火力に変わ
って、電力不足を補うものとして、r、 N Gあるい
は石炭ガスを燃料とするガスタービン発電であることが
予想される。ガスタービン発電においては、燃料の40
〜60%はコンブレツザー動力に使用されるため、圧縮
空気貯蔵・ピーク発電方式を利用して発電することは非
常にイイ利となる。また、該圧縮空気貯蔵・ピーク発電
方式は、圧縮空気を作る際に180℃程度の非常に良質
の排熱か得られ、かつ、圧縮空気発電方式は立地を選ば
ず、小型発電所として都市内分散型あるいは山間での僻
地振興型電源として、熱エネルギーの供給事業を組み合
イつU゛た事業展開も期待出来る。
In the future, in response to the ever-increasing demand for electricity, nuclear power generation, whose construction is being curtailed, and oil-fired power generation, which has many problems with air pollution, will be replaced by R, NG, or coal gas as fuel to compensate for power shortages. It is expected that the power will be generated by gas turbines. In gas turbine power generation, 40% of the fuel
Since ~60% of the power is used for combinator power, it is very advantageous to generate power using compressed air storage and peak power generation methods. In addition, the compressed air storage/peak power generation method can obtain very high quality waste heat of about 180℃ when producing compressed air, and the compressed air power generation method can be used in any location, and can be used as a small power plant in the city. We can also expect U-shaped business development that combines thermal energy supply business as a distributed power source or as a power source for promoting remote areas in the mountains.

しかしながら、上記圧縮空気貯蔵・ピーク発電方式を採
用しようとする場合、圧縮空気を貯蔵するだめの巨大な
タンクを建設する必要があるが、西ドイツのように地下
タンクの建設に有利な岩塩層あるいは強固な岩盤層すら
少なく、軟質地盤の多い日本では地下タンクの建設費が
高く付き、コスト的に採用が困難になっている。
However, when trying to adopt the compressed air storage/peak power generation method mentioned above, it is necessary to construct a huge tank to store the compressed air. In Japan, where there are few solid rock layers and much soft ground, the construction costs of underground tanks are high, making it difficult to adopt them.

また、貯蔵した圧縮空気をガスタービン発電に有効に利
用するためには、定圧の空気を抽出する必要があり、そ
の圧力は現在のガスタービンでは10 kg/am”程
度が最ら望ましく、将来のガスタービンの進歩を考えて
も60 kg/cが程度と考えられる。
In addition, in order to effectively use stored compressed air for gas turbine power generation, it is necessary to extract air at a constant pressure, and the most desirable pressure for current gas turbines is around 10 kg/am. Even considering the advances in gas turbines, 60 kg/c is considered to be around 60 kg/c.

圧縮空気貯蔵装置より一定圧の空気を抽出する方法とし
て、従来、第8図に示す如き水頭補償方式が提供されて
いる。該方式においては、上部に貯水槽Iを作り、該貯
水槽lを送水パイプ2を介して圧縮空気貯蔵用の地下タ
ンク3と連結すると共に、該地下タンク3を空気輸送パ
イプ4を介してガスタービン発電プラント5と連結して
いる。
As a method for extracting air at a constant pressure from a compressed air storage device, a water head compensation system as shown in FIG. 8 has conventionally been provided. In this system, a water storage tank I is formed in the upper part, and the water storage tank I is connected to an underground tank 3 for compressed air storage via a water pipe 2, and the underground tank 3 is connected to a gas tank 3 via an air transport pipe 4. It is connected to a turbine power generation plant 5.

尚、本装置では地下タンク3内の貯蔵圧10気圧の場合
7地下水面下100mに、また、50気圧で地下水面下
500m1.:地下タンク3を建設する必要がある。第
8図(a)は夜間の余剰電力を利用して、ガスタービン
発電プラント5の圧縮ポンプ(図示仕ず)を運転して地
下タンク3に圧縮空気入を貯蔵した状態を示す。この時
、地下タンク3内にあった水Bは送水タンク2を通して
貯水池lに押し出され、よって、貯水池lの水位が上が
っている。第8図(b)は昼間に地下タンク3がら空気
輸送バイブ4を通して圧縮空気入をガスタービン発電プ
ラント5に供給し、発電している状態を示す。この時、
地下タンク3からの圧縮空気の抽出に伴って貯水池1か
ら送水バイブ2を通して地下タンク3内に水Bが送給さ
れる。
In addition, in this device, when the storage pressure in the underground tank 3 is 10 atm, the storage pressure is 100 m below the groundwater level, and when the storage pressure is 50 atm, it is 500 m below the groundwater level. : It is necessary to construct underground tank 3. FIG. 8(a) shows a state in which compressed air is stored in the underground tank 3 by operating the compression pump (not shown) of the gas turbine power generation plant 5 using surplus power during the night. At this time, water B in the underground tank 3 is pushed out to the reservoir l through the water supply tank 2, and the water level in the reservoir l is therefore rising. FIG. 8(b) shows a state in which compressed air is supplied from the underground tank 3 through the air transporting vibrator 4 to the gas turbine power generation plant 5 during the daytime to generate electricity. At this time,
Water B is fed into the underground tank 3 from the reservoir 1 through the water feed vibrator 2 as compressed air is extracted from the underground tank 3.

発明が解決しようとする課題 上記したように、水頭補償方式では、圧力補償の点およ
び安全面より相当地下深くにタンクを建設する必要があ
り、そのため、水頭補償方式らコスト的に採用困難であ
る。かつ、該方式では水に溶けた空気が泡を伴って開放
口から逃げ出し、圧力が降下してしまうシャンパン現象
が発生し、これが未解決の大きな問題となっている。
Problems to be Solved by the Invention As mentioned above, with the water head compensation method, it is necessary to construct a tank considerably deep underground for pressure compensation and safety reasons, and therefore it is difficult to adopt the water head compensation method due to cost. . In addition, in this method, air dissolved in water escapes from the opening with bubbles, causing a champagne phenomenon in which the pressure drops, which is a major unsolved problem.

これに対して、圧縮空気を低圧で貯蔵する場合は、貯蔵
タンクを地上に設置することが可能であるため、建設コ
ストの点より好ましいが、地上タンクにそのまま低圧の
圧縮空気を貯蔵するのみでは、その容積効率が非常に低
くなる。例えば、1万@3のタンクに11気圧で貯蔵し
、10気圧以上の圧縮空気を抽出する場合、抽出空気量
の1万Cに対して、未抽出残存空気量は10万113と
なり、抽出率は9%で非常に効率が悪い。
On the other hand, when storing compressed air at low pressure, it is possible to install the storage tank above ground, which is preferable in terms of construction costs, but it is not possible to simply store low-pressure compressed air in an above-ground tank. , its volumetric efficiency becomes very low. For example, when storing compressed air at 11 atm in a tank of 10,000 @ 3 and extracting compressed air of 10 atm or higher, the amount of unextracted residual air will be 100,113 compared to the amount of extracted air of 10,000 C, and the extraction rate is 9%, which is very inefficient.

従って、本発明は、上記抽出空気率の割合を高めること
により、貯蔵タンクの容積効率を改良することを目的と
するものである。
Therefore, the present invention aims at improving the volumetric efficiency of the storage tank by increasing the extracted air rate.

課題を解決するための手段 上記した目的を達成するため、本発明では、夜間電力で
作った圧縮空気を貯蔵し、該貯蔵した圧縮空気をガスタ
ービン等へ供給して発電に利用する場合等に設置される
圧縮空気貯蔵装置において、貯蔵タンク内に、一定圧力
以上で体積が収縮すると共に一定圧力以下になると体積
が膨張することにより弾性的に圧力降下を補償する素子
を設け、抽出空気量の割合を高めるようにした圧縮空気
の貯蔵装置を提供するものである。
Means for Solving the Problems In order to achieve the above-mentioned object, the present invention provides a method for storing compressed air produced by nighttime electricity and supplying the stored compressed air to a gas turbine or the like for use in power generation. In the compressed air storage device to be installed, an element is installed in the storage tank that elastically compensates for the pressure drop by contracting the volume above a certain pressure and expanding when the pressure falls below a certain pressure. The present invention provides a storage device for compressed air that increases the proportion of compressed air.

さらに、本発明は、上記圧力降下補償素子として、■バ
ネ等の機械系あるいはゴム系の非線型バネを弾性的容器
に収納した構成上りもの、あるいは、液化ガスをバネ素
子とすると共に潜熱蓄熱材を熱溜として、弾性的容器に
収納した構成よりなるものを用いていることを特徴とし
ている。
Furthermore, the present invention provides, as the pressure drop compensating element, an as-built device in which a mechanical or rubber nonlinear spring such as a spring is housed in an elastic container, or a spring element made of liquefied gas and a latent heat storage material. It is characterized by using a structure in which the heat reservoir is housed in an elastic container.

忙瓜 上記した本発明に係わる圧縮空気の貯蔵装置では、弾性
的な圧力降下補償素子を貯蔵タンクに内蔵しているため
、該タンク内に圧縮空気を貯蔵した時は圧力補償素子が
収縮して貯蔵タンク内の圧縮空気スペースを拡大する一
方、貯蔵タンクから圧縮空気をガスタービン等に供給す
る時は、圧縮空気の取り出しによる貯蔵タンク内の圧力
低下に伴い圧力降下補償素子が膨張し、よって、一定圧
の空気をガスタービン等へ送り出せるものである。
In the compressed air storage device according to the present invention described above, the elastic pressure drop compensating element is built into the storage tank, so when compressed air is stored in the tank, the pressure compensating element contracts. While expanding the compressed air space in the storage tank, when supplying compressed air from the storage tank to a gas turbine, etc., the pressure drop compensating element expands as the pressure in the storage tank decreases due to the extraction of compressed air. It can send air at a constant pressure to a gas turbine, etc.

火籠鯉 以下、本発明を図面に示す実施例により詳細に説明する
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be explained in detail with reference to embodiments shown in the drawings.

第1図から第3図において、10は圧縮空気貯蔵タンク
、11は該貯蔵タンクIOに内蔵した多数個の圧力降下
Thi償素子である。
1 to 3, 10 is a compressed air storage tank, and 11 is a large number of pressure drop Thi compensating elements built into the storage tank IO.

上記圧縮空気貯蔵タンク10は地上に設置され、ガスタ
ービン発電プラント5に空気輸送バイブ12を介して連
結している。
The compressed air storage tank 10 is installed on the ground, and is connected to the gas turbine power generation plant 5 via an air transport vibrator 12.

上記した圧力降下補償素子IIは、一定圧以上で体積が
収縮し、該−比以下になると体積が膨張するらのである
。該圧力降下補償素子2は、基本的に二つの素子、即ち
、定仰重で変形する非線形ばね要素と、該ばねとを収容
する弾性的容器要素によって構成されている。
The pressure drop compensating element II described above contracts in volume when the pressure exceeds a certain pressure, and expands when the pressure falls below the -ratio. The pressure drop compensating element 2 basically consists of two elements: a non-linear spring element deformed under constant upward force and an elastic container element accommodating the spring.

上記ばね要素としては、機械ばね系、ゴムばね系、気体
ばね系があり、上記ばね系で反力が大きく且つ定荷重下
での変位量の大きなしのが好適に採用される。また、弾
性的容器としては、圧力変化に応じて容易に変形する柔
軟性を有すると共に、高圧下で十分な耐圧強度および気
密性を保持し得ように設定している。
The spring elements include mechanical springs, rubber springs, and gas springs, and among the springs, springs with a large reaction force and a large displacement under a constant load are preferably employed. Further, the elastic container is designed to have flexibility to easily deform in response to pressure changes, and to maintain sufficient pressure resistance and airtightness under high pressure.

上記機械ばね系としては、ドーナツ形の円板を円錐状に
成形した]■ばねが、小さい空間で大きい負荷容量を有
する他、自由高さと板厚の比によって広範囲の非線型ば
ねが得られるので最も好適に用いられる。該皿ばねを複
数個、直列あるいは並列に組み合わせて使用することも
出来る。
The above-mentioned mechanical spring system is made by molding a donut-shaped disk into a conical shape] ■ The spring has a large load capacity in a small space, and a nonlinear spring with a wide range can be obtained depending on the ratio of free height and plate thickness. Most preferably used. It is also possible to use a plurality of disc springs in series or in parallel.

第4図は皿ばねを用いた圧力降下補償素子11の一実施
例を示すもので、上記皿ばねI5を上下方向にのみ無荷
重で変形できる弾性容器1Gに密封したものであり、機
械ばね系の1■ばね15と気体ばね系の空気ばねとを組
み合わせたものである。
FIG. 4 shows an embodiment of the pressure drop compensating element 11 using a disc spring, in which the disc spring I5 is sealed in an elastic container 1G that can be deformed only in the vertical direction without load, and is a mechanical spring system. 1) This is a combination of spring 15 and a gas spring type air spring.

ゴムばね系を用いる場合は、防舷材系材料のゴムが好適
に使用され、第5図(a)に示す如、π型ゴム17ある
いは、第5図(b)に示す如き、P I VOT型ゴム
17°が非線型ばねとして用い、該非線型ばねを弾性的
容器に収納することで、圧力降下補償素子IIを構成し
ている。
When using a rubber spring type, rubber of fender type material is suitably used, and the π-shaped rubber 17 as shown in FIG. 5(a) or the P I VOT as shown in FIG. 5(b) The molded rubber 17° is used as a non-linear spring, and the non-linear spring is housed in an elastic container to constitute the pressure drop compensating element II.

上記ゴムばね系をばね素子として用いる場合の弾性的容
器は、前記機械ばね系を用いる場合と同様に、ばねの作
動方向と平行な方向に伸縮し、直角方向には変形しない
容器が用いられる。
When using the above-mentioned rubber spring system as a spring element, the elastic container used is a container that expands and contracts in a direction parallel to the operating direction of the spring and does not deform in the right angle direction, as in the case where the mechanical spring system is used.

気体ばね系は、気体と液体間の相変化を非線型ばねとし
て用いている。ばね素子として用いる液化ガスとしては
、例えば、主として!O気圧、0〜50℃で液化する気
体化合物(フロン134a、フロン22、SFl等)を
用い、潜熱蓄熱材を熱溜として弾性的容器に収納して、
圧力降下補償素子を構成している。
Gas spring systems use the phase change between gas and liquid as a nonlinear spring. Examples of liquefied gases used as spring elements include: Using a gaseous compound (Freon 134a, Freon 22, SFl, etc.) that liquefies at 0 to 50°C at O atmospheric pressure, the latent heat storage material is stored in an elastic container as a heat reservoir.
It constitutes a pressure drop compensation element.

この種の圧力降下補償素子I目よ、例えば、第6図(a
Xb)に示す構成よりなり、ゴム製球状の弾性容器16
内に、潜熱蓄熱材を充填した金属製カプセル18を複数
個人れると共に、液化ガス19を入れている。第6図(
a)は体積膨張時の圧力降下補償素子1Kを示し、該圧
力降下補償素子!1が液化ガス19の液化圧力以下の外
圧下に置かれた状態の時で(空気放出時の形@)、容器
16内のカプセル18内の蓄熱材は溶解していると共に
液化ガスは気化している。第6図(1))は体積収縮時
の圧力降下補償素子IIを示し、圧力降下補償素子11
が液化ガスの液化圧力以上の外圧下に置かれた状態の時
で(空気貯蔵時の形態)、カプセル18内の蓄熱材は固
化していると共に、液化ガス19も液化している。
This kind of pressure drop compensation element I, for example, Fig. 6 (a
A spherical rubber elastic container 16 having the configuration shown in Xb)
Inside, a plurality of metal capsules 18 filled with a latent heat storage material are placed, and a liquefied gas 19 is also placed. Figure 6 (
a) shows the pressure drop compensating element 1K during volume expansion, and the pressure drop compensating element! 1 is placed under an external pressure lower than the liquefaction pressure of the liquefied gas 19 (form when air is released), the heat storage material in the capsule 18 in the container 16 is melted, and the liquefied gas is vaporized. ing. FIG. 6(1)) shows the pressure drop compensating element II during volume contraction, and the pressure drop compensating element 11
When the capsule 18 is placed under an external pressure higher than the liquefaction pressure of the liquefied gas (the air storage mode), the heat storage material inside the capsule 18 is solidified, and the liquefied gas 19 is also liquefied.

上記気体ばね系を用いる場合の弾性的容器は、ばねの作
動に方向性がない為、容器の変形に方向性を持たせる必
要はないが、空気に対して十分なバリアー特性を持たせ
ることが必要である。
In the case of an elastic container using the above gas spring system, there is no directionality in the action of the spring, so there is no need for the container to have directionality in deformation, but it is necessary to have sufficient barrier properties against air. is necessary.

上記した各種のばね素子は、前記したように、機械ばね
系と気体ばね系、あるいはゴムばね系と気体ばね系を組
み合わせて好適に使用される。
As described above, the various spring elements described above are preferably used in combination of a mechanical spring system and a gas spring system, or a combination of a rubber spring system and a gas spring system.

弾性的容器としては、第7図(a)(b)に示す構成の
ものが等が用いられ、第7図(a)の容器16°は前記
第6図に示すゴムや、軟質プラスチック製の中空体から
なり、気体ばね系との組み合わせが適している。第7図
(11)の容器16°゛は軟質プラスデック20、金属
円板21.リング22より形成したベローズ型のもので
、機械ばね系あるいはゴムばね系との組み合わせが適し
ている。さらに、弾性的容器としては、図示していない
が、ダイヤフラム型のものが空気ばねとの組み合わせて
用いることが出来る。
As the elastic container, those having the configurations shown in Figures 7(a) and (b) are used, and the container 16° in Figure 7(a) is made of rubber or soft plastic as shown in Figure 6 above. It consists of a hollow body and is suitable for combination with a gas spring system. The container 16° in FIG. 7 (11) is a soft plastic deck 20, a metal disc 21. It is a bellows type formed from a ring 22, and is suitable for combination with a mechanical spring type or a rubber spring type. Furthermore, although not shown, a diaphragm type elastic container can be used in combination with an air spring.

前記第1図から第3図に示す実施例においては、圧縮空
気貯蔵タンク10の容積を1万I3とし、該貯蔵タンク
IOに内蔵する圧力降下補償素子11として、前記気体
ばね系と内包したIm’程度のゴム球を用いている。該
圧力降下補償素子11は10気圧以上では体積が元の2
0%に収縮する10気圧用のものとしている。該圧力降
下補償素子11は上記貯蔵タンクIO内に10気圧以下
の状Jで50%の充填率で入れている。よって、第2図
に示すように、ガスタービン発電プラント5の圧縮ポン
プ(図示せず)を運転して貯蔵タンク10に圧縮空気を
送り込み、該貯蔵タンク10内に圧縮空気を11気圧で
貯蔵する場合、上記圧力降下hli償素子IIの貯蔵タ
ンクlO内の充填率が10%になるため、貯蔵タンクI
O内には11気圧の圧縮空気が0.9万一3貯蔵される
In the embodiment shown in FIGS. 1 to 3, the volume of the compressed air storage tank 10 is 10,000 I3, and the pressure drop compensating element 11 built in the storage tank IO includes the gas spring system and Im A rubber ball of about 100mm is used. The pressure drop compensating element 11 has a volume of 2 of its original value above 10 atm.
It is designed for use at 10 atm and contracts to 0%. The pressure drop compensation element 11 is placed in the storage tank IO at a filling rate of 50% at a pressure J of 10 atmospheres or less. Therefore, as shown in FIG. 2, the compression pump (not shown) of the gas turbine power generation plant 5 is operated to send compressed air into the storage tank 10, and the compressed air is stored in the storage tank 10 at 11 atmospheres. In this case, since the filling rate in the storage tank IO of the pressure drop hli compensation element II is 10%, the storage tank I
0.9 million liters of compressed air at 11 atm is stored inside the chamber.

夜間の余剰電力を利用して貯蔵タンク10内に貯蔵され
た圧縮空気は、第3図に示すように、昼間に貯蔵タンク
10より空気輸送バイブt2を通してガスタービン発電
プラント5に供給し、発電に利用している。その際、圧
縮空気が貯蔵タンク10より取り出されて貯蔵タンク1
0内の圧力が低下し、貯蔵タンク!0に内蔵している圧
力降下補償素子11が図示のように膨張し、一定圧(1
0気圧)の圧縮空気をガスタービン発電プラント5へ送
り出す。
As shown in FIG. 3, the compressed air stored in the storage tank 10 using surplus power during the night is supplied from the storage tank 10 to the gas turbine power generation plant 5 through the air transport vibrator t2 during the day, and is used for power generation. We are using. At that time, compressed air is taken out from the storage tank 10 and
The pressure in 0 drops and the storage tank! The pressure drop compensating element 11 built into the
0 atmospheric pressure) is sent to the gas turbine power generation plant 5.

よって、上記1万l13の貯蔵タンク10に、11気圧
で貯蔵し、10気圧の圧縮空気を抽出する場合、抽出空
気量は0.9万m3と若干低下するが、未抽出残存空気
量は5万l’lとなり、抽出率は15%となる。これは
上記圧力降下補償素子■1を用いない場合には、未抽出
残存空気量がlO万I3で、圧縮空気の抽出率が9%で
あることと比較して、抽出空気量の割合が非常に高めら
れている。
Therefore, when storing compressed air at 11 atm in the 10,000 liter storage tank 10 and extracting compressed air at 10 atm, the amount of extracted air will decrease slightly to 9,000 m3, but the amount of unextracted remaining air will be 5. 10,000 l'l, and the extraction rate is 15%. This is because when the above pressure drop compensating element 1 is not used, the amount of unextracted residual air is 10,000 I3, and the extraction rate of compressed air is 9%. It has been raised to

発明の効果 以上の説明より明らかなように、本発明に係イっる圧縮
空気貯蔵装置によれば、一定圧以下になると体積が膨張
する圧力降下補償素子を内蔵していることにより、一定
圧力の圧縮空気を高い抽出率で取り出すことが出来、貯
蔵タンクの実効体積を高めること力咄来る。また、上記
圧力降下補償素子を貯蔵タンク内に入れるだけの極めて
簡単な構成であるため、容易に実施出来る等の種々の利
点をaするしのである。
Effects of the Invention As is clear from the above explanation, the compressed air storage device according to the present invention has a built-in pressure drop compensating element that expands in volume when the pressure drops below a certain level, so that the compressed air storage device maintains a constant pressure. The compressed air can be extracted at a high extraction rate, increasing the effective volume of the storage tank. Further, since the pressure drop compensating element is extremely simple in that it is simply placed in a storage tank, it has various advantages such as being easy to implement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す概略図、第2図および第
3図は上記実施例の作用説明図、第4図は圧力降下補償
素子の一実施例を示す概略図、第5図(aXb)はゴム
ばね系のばね要素を示す断面図、第6図(aXb)は気
体ばね系のばね要素を示す断面図、第7図(a)(b)
は弾性的容器の断面図、第8図(aXb)は従来例を示
す概略図である。 5・・・ガスタービン発電プラント、 10・・貯蔵タンク、 I[・・圧力降下補償素子、 I2・・空気輸送パイプ。
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Figs. 2 and 3 are explanatory diagrams of the operation of the above embodiment, Fig. 4 is a schematic diagram showing an embodiment of the pressure drop compensating element, and Fig. 5 (aXb) is a cross-sectional view showing a rubber spring type spring element, Figure 6 (aXb) is a cross-sectional view showing a gas spring type spring element, Figures 7 (a) and (b)
8 is a sectional view of an elastic container, and FIG. 8 (aXb) is a schematic diagram showing a conventional example. 5...Gas turbine power generation plant, 10...Storage tank, I[...Pressure drop compensation element, I2...Air transport pipe.

Claims (1)

【特許請求の範囲】 1、夜間電力で作った圧縮空気を貯蔵し、該貯蔵した圧
縮空気をガスタービン等へ供給して発電に利用する場合
等に設置される圧縮空気の貯蔵装置において、 貯蔵タンク内に、一定圧力以上で体積が収縮すると共に
一定圧力以下になると体積が膨張する弾性的な圧力降下
補償素子を内蔵し、抽出空気量の割合を高める構成とし
たことを特徴とする圧縮空気の貯蔵装置。 2、上記圧力降下補償素子は、皿バネ等の機械系あるい
はゴム系の非線型バネを、弾性的容器に収納した構成よ
りなる請求項1記載の圧縮空気の貯蔵装置。 3、上記圧力降下補償素子は、液化ガスをバネ素子とす
ると共に潜熱蓄熱材を熱溜として、弾性的容器に収納し
た構成よりなる請求項1記載の圧縮空気の貯蔵装置。
[Scope of Claims] 1. In a compressed air storage device installed when storing compressed air generated by nighttime electricity and supplying the stored compressed air to a gas turbine etc. for use in power generation, etc. Compressed air characterized by having a built-in elastic pressure drop compensating element that contracts in volume when the pressure exceeds a certain pressure and expands when the pressure falls below a certain pressure, thereby increasing the proportion of extracted air. storage device. 2. The compressed air storage device according to claim 1, wherein the pressure drop compensating element comprises a mechanical or rubber nonlinear spring such as a disc spring housed in an elastic container. 3. The compressed air storage device according to claim 1, wherein the pressure drop compensating element has a configuration in which the liquefied gas is used as a spring element and the latent heat storage material is used as a heat reservoir, which is housed in an elastic container.
JP1007033A 1989-01-12 1989-01-12 Compressed air storage device Pending JPH02188628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007033A JPH02188628A (en) 1989-01-12 1989-01-12 Compressed air storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007033A JPH02188628A (en) 1989-01-12 1989-01-12 Compressed air storage device

Publications (1)

Publication Number Publication Date
JPH02188628A true JPH02188628A (en) 1990-07-24

Family

ID=11654729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007033A Pending JPH02188628A (en) 1989-01-12 1989-01-12 Compressed air storage device

Country Status (1)

Country Link
JP (1) JPH02188628A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009114205A3 (en) * 2008-03-14 2010-02-04 Energy Compression Llc Adsorption-enhanced compressed air energy storage
WO2010138677A3 (en) * 2009-05-27 2011-02-24 Energy Compression Llc Adsorption-enhanced compressed air energy storage
US8136354B2 (en) 2008-03-14 2012-03-20 Energy Compression Inc. Adsorption-enhanced compressed air energy storage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009114205A3 (en) * 2008-03-14 2010-02-04 Energy Compression Llc Adsorption-enhanced compressed air energy storage
GB2470337A (en) * 2008-03-14 2010-11-17 Energy Compression Llc Adsorption-enchanced compressed air energy storage
EP2262993A2 (en) * 2008-03-14 2010-12-22 Energy Compression LLC Adsorption-enhanced compressed air energy storage
US8136354B2 (en) 2008-03-14 2012-03-20 Energy Compression Inc. Adsorption-enhanced compressed air energy storage
EP2262993A4 (en) * 2008-03-14 2013-12-18 Energy Compression Llc Adsorption-enhanced compressed air energy storage
US8621857B2 (en) 2008-03-14 2014-01-07 Energy Compression Inc. Adsorption-enhanced compressed air energy storage
WO2010138677A3 (en) * 2009-05-27 2011-02-24 Energy Compression Llc Adsorption-enhanced compressed air energy storage

Similar Documents

Publication Publication Date Title
Breeze Power system energy storage technologies
Lim et al. Conceptual design of ocean compressed air energy storage system
US4873828A (en) Energy storage for off peak electricity
US20140261132A1 (en) Active volume energy level large scale sub-sea energy fluids storage methods and apparatus for power generation and integration of renewable energy sources
JP2014515339A (en) Device for storing and delivering fluid and method for storing and delivering compressed gas contained in such device
KR102173701B1 (en) System for storing liquefied hydrogen and collecting boil-off hydrogen
US11387707B2 (en) System for energy storage and electrical power generation
DE102011106040A1 (en) pumped storage power plant
US20160327210A1 (en) Reversible h2 storage system with a tank containing metal hydrides, with pressure balancing
Hunt et al. Compressed air seesaw energy storage: A solution for long-term electricity storage
US9777702B2 (en) Generating energy from changes in atmospheric pressure
JPH02188628A (en) Compressed air storage device
Pimm Analysis of flexible fabric structures
US20230009233A1 (en) Method for the regulation of an installation for the geological sequestration of carbon dioxide, suitable for renewable energy supply
KR102379650B1 (en) Ambient type high-pressure hydrogen vaporizer and hydrogen charging apparatus using the same
Ladkany et al. Molten salts and applications III: worldwide molten salt technology developments in energy production and storage
JPH0713470B2 (en) Underwater energy storage device
CN212615208U (en) Electric power energy storage system
CN215730886U (en) Passive fluid infusion system
WO2022168097A1 (en) Combined high pressure receptacles
JPH073179B2 (en) Underwater energy storage device
JP7009004B1 (en) Buoyancy power generation device using bubbles and buoyancy power generation method using bubbles
US20230216340A1 (en) Hydraulic compressed air energy storage system
CN111692070A (en) Electric energy storage system and electric energy storage method
Dunlap Mechanical Energy Storage