JPH02188472A - Ceramic composite material - Google Patents

Ceramic composite material

Info

Publication number
JPH02188472A
JPH02188472A JP1007327A JP732789A JPH02188472A JP H02188472 A JPH02188472 A JP H02188472A JP 1007327 A JP1007327 A JP 1007327A JP 732789 A JP732789 A JP 732789A JP H02188472 A JPH02188472 A JP H02188472A
Authority
JP
Japan
Prior art keywords
ceramic
composite material
weight
titanium
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1007327A
Other languages
Japanese (ja)
Other versions
JPH0587471B2 (en
Inventor
Yukio Shimokawa
下川 行夫
Hirohiko Nakada
博彦 仲田
Masaya Miyake
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINE CERAMICS CENTER
Sumitomo Electric Industries Ltd
Original Assignee
FINE CERAMICS CENTER
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINE CERAMICS CENTER, Sumitomo Electric Industries Ltd filed Critical FINE CERAMICS CENTER
Priority to JP1007327A priority Critical patent/JPH02188472A/en
Publication of JPH02188472A publication Critical patent/JPH02188472A/en
Publication of JPH0587471B2 publication Critical patent/JPH0587471B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To prevent the damage and embrittlement of the ceramic composite material due to the reaction of the reinforcing fiber with a matrix and to obtain the material having high strength and toughness and capable of being effectively used for automobile engine parts, etc., by incorporating a ceramic fiber consisting of Al2O3, SiO2, and B2O3 into the matrix consisting of the oxides of Ti and Cu. CONSTITUTION:A ceramic fiber consisting of 50-85wt.% Al2O3, 10-45wt.% SiO2, and 5-40wt.% B2O3 or the ceramic fiber having a surface coating layer having the same composition and 0.001-100mum thickness is incorporated into the matrix obtained by melting the oxides of titanium and copper such as TiO2 and CuO and/or Cu2O at >=1000 deg.C to obtain the ceramic fiber-reinforced ceramic composite material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックス繊維で強化したセラミックス複
合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic composite material reinforced with ceramic fibers.

〔従来の技術〕[Conventional technology]

チタンと銅の酸化化合物をマトリックスとする複合材料
に関しては、特開昭59−156972号公報にチタン
酸銀のマトリックスにアルミナ繊維のような補強繊維を
一体的に埋設したセラミックス複合材料が提案されてい
るのみである。
Regarding composite materials having a matrix of titanium and copper oxide compounds, Japanese Patent Application Laid-Open No. 156972/1983 proposed a ceramic composite material in which reinforcing fibers such as alumina fibers were integrally embedded in a matrix of silver titanate. There is only one.

このセラミックス複合材料は、チタンと銅の酸化化合物
がセラミックス繊維に対して刈れ性が良く、溶融状態で
の複合化が可能である。上記公報によればCuOとTi
Oとの混合物を1000〜1050Cに加熱して得たチ
タン酸銀に、水と分散剤を加えてスラリーとし、このス
ラリーをアルミナ(A120)繊維のような補強繊維に
含浸させた後、大気中で加熱して複合化することにより
製造される。
In this ceramic composite material, an oxidized compound of titanium and copper has good cutting properties against ceramic fibers, and can be composited in a molten state. According to the above publication, CuO and Ti
Water and a dispersant are added to silver titanate obtained by heating the mixture with O to 1000 to 1050 C to form a slurry. After impregnating reinforcing fibers such as alumina (A120) fibers with this slurry, it is exposed to air. It is manufactured by heating and compounding.

しかしながら、チタン酸銀のようなチタンと窮の酸化化
合物は著しく反応性に富むため、例えばfit O繊維
と加熱して複合化しようとすると直もに反応が進行して
A/ O繊維が消失又は損傷したす、脆性化してしまう
ので、構造用セラミックス材料として適するような高強
度で高靭性のセラミツクス複合体を得ることが出来なか
った。
However, titanium and oxidized compounds such as silver titanate are extremely reactive, so if you try to heat them to form a composite with fit-O fibers, the reaction will proceed immediately and the A/O fibers will disappear or Because the damaged material becomes brittle, it has not been possible to obtain a ceramic composite with high strength and high toughness suitable as a structural ceramic material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の如く、チタンと銅の酸化化合物をマトリックスと
するセラミックス複合材料では、強化繊維としてアルミ
ナ系繊−を使用すると、これが活性なチタンと銅の酸化
化合物と反応して消失又は脆性化するために強化繊維と
して十分に機能せず、強度及び靭性の低いセラミックス
複合体しか得られなかった。
As mentioned above, when alumina fibers are used as reinforcing fibers in ceramic composite materials that have a matrix of titanium and copper oxide compounds, they react with the active titanium and copper oxide compounds and disappear or become brittle. The ceramic composite did not function sufficiently as a reinforcing fiber and only had low strength and toughness.

本発明はかかる従来の事情に鑑み、チタンと銅の酸化化
合物をマトリックスとしながら、強度及び靭性に優れた
セラミックス複合体を提供することを目的とする。
In view of such conventional circumstances, an object of the present invention is to provide a ceramic composite having excellent strength and toughness using an oxide compound of titanium and copper as a matrix.

〔課題を解決するための手段〕 上記の目的を達成するため、本発明におけるセラミック
ス複合材料は、チタンと銅の酸化化合物からなるマトリ
ックスと、該酸化化合物のマトリックス内に含まれる5
0〜85重量%のAl2O3,10〜45重量%の5i
n2及び5〜40重量%のB2O3からなる組成のセラ
ミックス繊維とからなることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the ceramic composite material of the present invention includes a matrix made of an oxide compound of titanium and copper, and a
0-85% by weight Al2O3, 10-45% by weight 5i
N2 and ceramic fibers having a composition of 5 to 40% by weight of B2O3.

又、上記のセラミックス繊維の代りに、50〜85重量
%のAl2O3,10〜45重量%の5in2及び5〜
40重量%のB2O3からなる組成の厚さ0.001〜
100μmの表面フーティング層を有するセラミックス
繊維を用いることも出来る。
Moreover, instead of the above ceramic fibers, 50-85% by weight of Al2O3, 10-45% by weight of 5in2 and 5-
The thickness of the composition consisting of 40% by weight of B2O3 is 0.001~
Ceramic fibers with a 100 μm surface footing layer can also be used.

本発明においてチタンと銅の酸化化合物とは、TiOと
CuOの化合物であるチタン酸鋼など、TlO2とOu
O及び/又はCu Oを1000 C以上に加熱して得
られる化合物を云う。
In the present invention, titanium and copper oxide compounds include titanate steel which is a compound of TiO and CuO, etc.
Refers to a compound obtained by heating O and/or CuO to 1000 C or higher.

〔作用〕[Effect]

本発明でマ) IJラックス強化するために用いるセラ
ミックス繊維は、50〜85重量%のAIO、10〜4
5重量%のSIO2及び5〜40重量%のB2O3から
なる組成であるか、又は上記の組成からなる表面コーテ
ィング層を備えている。
In the present invention, the ceramic fibers used for reinforcing the IJ lux include 50 to 85% by weight of AIO, 10 to 4% by weight of AIO,
It has a composition of 5% by weight SIO2 and 5-40% by weight B2O3, or has a surface coating layer of the above composition.

上記の組成からなるセラミックス繊維又はセラミックス
繊維の表面コーティング層は、極めて活性なチタンと銅
の酸化化合物に対して高い抵抗性を示す。その理由は、
これらのセラミックス繊維又は表面コーティング層では
、チタンと銅の酸化化合物に対して抵抗性の極めて高い
9A10・2BOが生成すること、及び緻密な硼珪酸が
生成して表面を被覆しチタンと銅の酸化化合物の侵入を
防ぐためと考えられる。
Ceramic fibers or surface coating layers of ceramic fibers having the above composition exhibit high resistance to extremely active titanium and copper oxide compounds. The reason is,
In these ceramic fibers or surface coating layers, 9A10.2BO, which is extremely resistant to titanium and copper oxide compounds, is generated, and dense borosilicate is generated to coat the surface and prevent the oxidation of titanium and copper. This is thought to be to prevent compounds from entering.

この結果、上記組成のセラミックス繊維又は表面−−テ
ィング層を有するセラミックス繊維は、マトリックスで
あるチタンと銅の酸化化合物と複合化させてもセラミッ
クス繊維が変化せずそのまま複合体中に維持され、セラ
ミックス繊維の特性を十分に発揮させることが出来るの
で、強度及び靭性に優れたセラミックス複合体が得られ
る。
As a result, even when the ceramic fibers having the above composition or the ceramic fibers having a surface-tinged layer are composited with the titanium and copper oxide compound that is the matrix, the ceramic fibers remain unchanged in the composite, and the ceramic fibers remain unchanged in the composite. Since the characteristics of the fibers can be fully exhibited, a ceramic composite with excellent strength and toughness can be obtained.

上記組成において、AlOを50fifi%以上とした
のは、50重量%未満ではチタンと銅の酸化化合物に対
し抵抗性の高い9AI 0・2BOの生成が少なくなる
と共に、相対的にSiOとBOの量が増加してガラス量
が多くなり、耐熱性が低下するからである。又、S10
  が10重量%未満では硼珪酸ガラスの生成が不足し
、セラミックス繊維又は表面コーティング層の表面に硼
珪酸ガラスで覆われていない部分が露出するので、チタ
ンと銅の酸化化合物のアタックを直接受けて反応し、劣
化する。更にSiOを10重量%以上とすることによっ
て、セラミックス繊維自体も柔軟でしなやかとなり、強
度も向上する利点がある。次に、B0を5重量%以上と
するのは、5重量%未満ではチタンと銅の酸化化合物に
対し抵抗性の高い9A10・2BOの生成及び被N層と
しての硼珪酸の生成が共に少なくなるからである。又、
BOはAlO等の焼結の際に粒成長抑制作用を示すが、
5重量%未満ではこの作用が十分でなくなり、粒成長が
進行して耐熱性が低下する。
In the above composition, the reason why AlO is set to 50 fifi% or more is because if it is less than 50% by weight, the production of 9AI0.2BO, which is highly resistant to titanium and copper oxide compounds, will decrease, and the relative amount of SiO and BO will decrease. This is because the amount of glass increases and the heat resistance decreases. Also, S10
If it is less than 10% by weight, the production of borosilicate glass will be insufficient, and the parts not covered with borosilicate glass will be exposed on the surface of the ceramic fiber or surface coating layer, so it will be directly attacked by the oxidized compounds of titanium and copper. react and deteriorate. Furthermore, by adding SiO to 10% by weight or more, the ceramic fiber itself becomes soft and pliable, and has the advantage of improving strength. Next, the reason why B0 is set to 5% by weight or more is that if it is less than 5% by weight, the formation of 9A10.2BO, which is highly resistant to titanium and copper oxide compounds, and the formation of borosilicate as an N layer are reduced. It is from. or,
BO exhibits a grain growth suppressing effect during sintering of AlO etc., but
If it is less than 5% by weight, this effect will not be sufficient, grain growth will progress, and heat resistance will decrease.

又、セラミックス繊維の割合は複合材料全体に対しセラ
ミックス繊維が10〜60体積%となるのが通常であり
、より優れた強度と靭性を得る為には30体積%以上が
好ましい。
Further, the proportion of ceramic fibers is usually 10 to 60% by volume based on the entire composite material, and preferably 30% by volume or more in order to obtain better strength and toughness.

〔実施例〕〔Example〕

実施例1 Tie□とCuOとCu2Oをモル比で1:11に混合
し、1100rにて溶融反応させ、得られたT1とOu
の酸化化合物を粉砕し、平均粒径3.0μmに調整した
Example 1 Tie
The oxidized compound was pulverized and adjusted to an average particle size of 3.0 μm.

このT1とCuの酸化化合物の粉末150gを、第1表
に示した各組成にて作成したセラミックス繊維(平均直
径10.0μm×平均長さ10闘)28gに、1150
Cで溶融含浸させ、複合材料を製造した。
150 g of this T1 and Cu oxide compound powder was added to 28 g of ceramic fibers (average diameter 10.0 μm x average length 10 mm) made with each composition shown in Table 1.
A composite material was produced by melt impregnation with C.

得られた複合材料を3X4X401に11の試験片に加
工し、室温での4点曲げ強度とインデンテーション法に
よる破壊靭性値(K  )を測定した。又、複c 合化時におけるT1とCuの酸化化合物と各セラミック
ス繊維の反応の□有無を確認するため、X線回折法によ
り複合化熱処理前の主たる結晶相と複合化熱処理後の同
じ結晶相のX線回折ピーク比(複合化熱処理前を100
とする)を測定した。
The obtained composite material was processed into 11 test pieces measuring 3×4×401, and the four-point bending strength at room temperature and the fracture toughness value (K ) by the indentation method were measured. In addition, in order to confirm the presence or absence of a reaction between the oxidized compound of T1 and Cu and each ceramic fiber during compounding, X-ray diffraction was used to compare the main crystal phase before compounding heat treatment and the same crystal phase after compounding heat treatment. X-ray diffraction peak ratio (100 before composite heat treatment)
) was measured.

各測定結果を第1表に併記した。The measurement results are also listed in Table 1.

第 表 上記第1表から、セラミックス繊維組成においてA/ 
Oが50重量%未満、SiOが10重量%未満、若しく
はBOが5重量%未満の複合材料は、本発明の複合材料
に比較してX線回折ピーク比が極端に小さく、複合化熱
処理によってT1とCuの酸化化合物とセラミックス繊
維との反応が起っていること、その結果として得られた
複合材料の特性が著しく低下していることが判る。
Table 1 From Table 1 above, in ceramic fiber composition A/
A composite material containing less than 50% by weight of O, less than 10% by weight of SiO, or less than 5% by weight of BO has an extremely small X-ray diffraction peak ratio compared to the composite material of the present invention, and has a T1 It can be seen that a reaction occurs between the oxidized compound of Cu and the ceramic fiber, and as a result, the properties of the resulting composite material are significantly deteriorated.

実施例2 TiOとCuOとCu Oをモル比で1:1:1に混合
し、1050Cにて溶融反応させ、得られたT1と(3
uの酸化化合物を粉砕し、平均粒径1.5μmに調整し
た。一方、AIO系連続繊維の織布、及びこの織布にA
IO粉末60重量%、S10  粉末30重量%、BO
粉末10重量%に調整したスラリーをデイッピングによ
り塗布した後熱処理して表面コテイング層を形成したも
のを用意した。これら未被覆の織布と表面コーティング
層で被覆した織布とを上記T1とCuの酸化化合物の粉
末からなるスラリーに投入し、十分に含浸させた後、1
20Cでの乾燥を数回繰返し、1200 Cにて複合化
熱処理した。得られた各複合材料のセラミックス繊維の
割合は夫々35体積%であった。
Example 2 TiO, CuO, and CuO were mixed at a molar ratio of 1:1:1 and melted at 1050C, and the resulting T1 and (3
The oxidized compound of u was pulverized and adjusted to an average particle size of 1.5 μm. On the other hand, AIO-based continuous fiber woven fabric and this woven fabric have A
IO powder 60% by weight, S10 powder 30% by weight, BO
A slurry adjusted to 10% by weight of powder was applied by dipping and then heat treated to form a surface coating layer. These uncoated woven fabrics and the woven fabric coated with the surface coating layer were placed in a slurry consisting of powder of the oxidized compound of T1 and Cu, and after being sufficiently impregnated, 1
Drying at 20C was repeated several times, followed by composite heat treatment at 1200C. The proportion of ceramic fibers in each of the obtained composite materials was 35% by volume.

得られた各複合材料について、実施例1と同様の評価を
行なった結果を第2表に示した。
Each of the obtained composite materials was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

第   2    表 〔発明の効果〕 本発明によれば、補強繊維であるセラミックス繊維がマ
トリックスであるチタンと銅の酸化化合物と反応して損
傷したり脆性化することがないので、強度及び靭性とも
に優れたセラミックス複合材料を提供することが出来る
Table 2 [Effects of the Invention] According to the present invention, the ceramic fibers serving as the reinforcing fibers do not react with the oxidized compound of titanium and copper serving as the matrix and are not damaged or become brittle, resulting in excellent strength and toughness. It is possible to provide a ceramic composite material with

このセラミックス複合材料は、従来の構造用セラミック
ス材料に対して信頼性の点で著しく優れているため、従
来応用化が進まなかった自動車用エンジン部品等の構造
用セラミックス材料分野において極めて有用である。
This ceramic composite material is significantly superior in reliability to conventional structural ceramic materials, and is therefore extremely useful in the field of structural ceramic materials such as automobile engine parts, which have not been widely applied in the past.

Claims (2)

【特許請求の範囲】[Claims] (1) チタンと銅の酸化化合物からなるマトリックス
と、該酸化化合物のマトリックス内に含まれる50〜8
5重量%のAl_2O_3、10〜45重量%のSIO
_2及び5〜40重量%のB_2O_3からなる組成の
セラミックス繊維とからなることを特徴とするセラミッ
クス複合材料。
(1) A matrix consisting of an oxidized compound of titanium and copper, and 50 to 8
5 wt% Al_2O_3, 10-45 wt% SIO
_2 and ceramic fibers having a composition of 5 to 40% by weight of B_2O_3.
(2) チタンと銅の酸化化合物からなるマトリックス
と、該酸化化合物のマトリックス内に含まれる50〜8
5重量%のAl_2O_310〜45重量%のSiO_
2及び5〜40重量%のB_2O_3からなる組成の厚
さ0.001〜100μmの表面コーティング層を有す
るセラミックス繊維とからなることを特徴とするセラミ
ックス複合材料。
(2) A matrix consisting of an oxidized compound of titanium and copper, and a matrix of 50 to 8
5 wt.% Al_2O_310-45 wt.% SiO_
A ceramic composite material comprising a ceramic fiber having a composition of 2 and 5 to 40% by weight of B_2O_3 and having a surface coating layer with a thickness of 0.001 to 100 μm.
JP1007327A 1989-01-13 1989-01-13 Ceramic composite material Granted JPH02188472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007327A JPH02188472A (en) 1989-01-13 1989-01-13 Ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007327A JPH02188472A (en) 1989-01-13 1989-01-13 Ceramic composite material

Publications (2)

Publication Number Publication Date
JPH02188472A true JPH02188472A (en) 1990-07-24
JPH0587471B2 JPH0587471B2 (en) 1993-12-16

Family

ID=11662867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007327A Granted JPH02188472A (en) 1989-01-13 1989-01-13 Ceramic composite material

Country Status (1)

Country Link
JP (1) JPH02188472A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505990A2 (en) * 1991-03-25 1992-09-30 Aluminum Company Of America Fiber reinforced aluminum matrix composite with improved interfacial bonding
JPH05242731A (en) * 1992-02-27 1993-09-21 Kyoritsu Yogyo Genryo Kk Manufacture of temperature compensating dielectric porcelain and raw material composition used therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505990A2 (en) * 1991-03-25 1992-09-30 Aluminum Company Of America Fiber reinforced aluminum matrix composite with improved interfacial bonding
JPH05242731A (en) * 1992-02-27 1993-09-21 Kyoritsu Yogyo Genryo Kk Manufacture of temperature compensating dielectric porcelain and raw material composition used therefor

Also Published As

Publication number Publication date
JPH0587471B2 (en) 1993-12-16

Similar Documents

Publication Publication Date Title
US4996117A (en) High temperature protective coating
US5371050A (en) Aluminum phosphate bonded fiber reinforced composite material containing metal coated fibers
US5955391A (en) Ceramic matrix composite and method of manufacturing the same
EP0134770B1 (en) Carbonaceous articles having oxidation prohibitive coatings thereon
JP2007084421A (en) Article equipped with barrier layer and method of forming coating
JP2008542592A (en) Thermal insulation composite and method for producing the same
JPS64334B2 (en)
AU640107B1 (en) Coated ceramic filler materials
WO2019109753A1 (en) Anti-oxidation coating for tungsten-rhenium thermocouple with high thermal shock resistance and application thereof
US5418194A (en) Coated inorganic fiber reinforcement materials and ceramic composites comprising the same
JPS60238484A (en) Method of setting multilayer chemically hardened refractory coatings on substrate
US5332619A (en) Process for anti-oxidation protection of a material of which at least a surface is made of a ceramic formed from a silicon compound, and a material obtained by said process
JPH02188472A (en) Ceramic composite material
US5292692A (en) Method for improving ceramic fiber reinforced molybdenum disilicide composites
Chawla et al. Interface engineering in alumina/glass composites
EP0639165B1 (en) A CERAMIC COMPOSITE, PARTICULARLY FOR USE AT TEMPERATURES ABOVE 1400 oC
JP2002104892A (en) Ceramic composite material
CN108350560A (en) The method and component and material blends of the corrosion protective layer of thermal insulation layer of the manufacture for being made of hollow alumina balls and outermost glassy layer
JPS63318016A (en) Superconductive oxide ceramics material
DE69924065T2 (en) FORM BODY WITH A COAT OF MODIFIED MULLIT AND METHOD FOR THE PRODUCTION THEREOF
Hsu et al. Oxidation protection for 3D carbon/carbon composites
KR100549030B1 (en) materials and jig for baking electronic parts
JP2964858B2 (en) Cast iron parts with thermal barrier coating
JP2686795B2 (en) Titanium carbide-based composite sintered body
JP2948020B2 (en) Carbon containing refractories