JPH02188158A - Electromagnetic flow coupler - Google Patents

Electromagnetic flow coupler

Info

Publication number
JPH02188158A
JPH02188158A JP494289A JP494289A JPH02188158A JP H02188158 A JPH02188158 A JP H02188158A JP 494289 A JP494289 A JP 494289A JP 494289 A JP494289 A JP 494289A JP H02188158 A JPH02188158 A JP H02188158A
Authority
JP
Japan
Prior art keywords
passage
flux density
electromagnetic flow
flow coupler
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP494289A
Other languages
Japanese (ja)
Inventor
Goro Aoyama
吾朗 青山
Hisamichi Inoue
久道 井上
Naohisa Watabiki
直久 綿引
Takashi Ikeda
孝志 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP494289A priority Critical patent/JPH02188158A/en
Publication of JPH02188158A publication Critical patent/JPH02188158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To reduce the change of flux density and to miniaturize an electromagnetic flow coupler by providing a bending section in the passage of a region where the flux density changes. CONSTITUTION:A ring-shaped flow coupler makes use of a ring-shaped space formed by a passage inner wall 6 and a passage outer wall 5 as its passage. The ring-shaped space is divided circumferentially by a passage pipe 1. An external pole 3 and an exciting coil 2 are arranged outside the passage outer wall 5 surrounding the passage. In this ring-shaped electromagnetic flow coupler at an end section in the passage direction and an exciting coil section the flux density changes steeply. Then, by twisting the passage pipe 1 of the exciting coil section, a bending section is provided. In this way, the distance passing through the exciting coil section along the center of passage is lengthened and the rate of change in flux density apparent against the fluid inside the passage gets reduced. The occurrence of overcurrent can thereby be blocked and the efficiency of the electromagnetic flow coupler improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体金属を駆動する装置である電磁フローカプ
ラに係り、特に、効率を高めるための流路の配置を考慮
した環状型電磁フローカプラに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electromagnetic flow coupler, which is a device for driving liquid metal, and particularly relates to an annular electromagnetic flow coupler that takes into consideration the arrangement of flow channels to improve efficiency. Regarding.

〔従来の技術〕[Conventional technology]

電磁フローカプラの流れ方向端部における磁束密度の分
布の変化の割合が電磁フローカプラの効率に及ぼす影響
について、マグネトハイドロダイナミクス、第19号、
第2巻(1983)第211頁から第215頁(Mag
netohydrodynamics、 Vo119、
No、2(1983)PP211−215)において論
じられている。しかし、効率を向上させるための磁極構
造、流路構造については論じられていない。
Regarding the influence of the rate of change in the distribution of magnetic flux density at the ends of the flow direction of an electromagnetic flow coupler on the efficiency of the electromagnetic flow coupler, Magneto Hydrodynamics, No. 19,
Volume 2 (1983), pages 211 to 215 (Mag
netohydrodynamics, Vo119,
No. 2 (1983) PP 211-215). However, the magnetic pole structure and flow path structure for improving efficiency are not discussed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記論文では、電磁フローカプラの流れ方向の端部にお
ける磁束密度の変化の割合が小さくなる程効率が向上す
るとされている。一般に、磁極間の磁束密度の変化の割
合を小さくするには、磁極を長くシ、磁極間の距離が徐
々に大きくなるようにすればよいが、磁極が長くなる分
電磁フローカブラが流れ方向に長くなるという問題が生
じる。
The above paper states that the efficiency improves as the rate of change in magnetic flux density at the ends of the electromagnetic flow coupler in the flow direction decreases. Generally, in order to reduce the rate of change in magnetic flux density between magnetic poles, it is possible to make the magnetic poles longer and gradually increase the distance between them. The problem arises that it becomes long.

また、特に、環状型電磁フローカプラの場合では、径方
向磁界を利用するため、電磁フローカプラの流れ方向に
たいし、第2図に示すように、磁界の方向が反転し、励
磁コイル部でも磁束密度分布が急激に変化する。この励
磁コイル部における磁束密度分布の変化も効率向上のた
めの大きな課題となる。
In addition, especially in the case of an annular electromagnetic flow coupler, since a radial magnetic field is used, the direction of the magnetic field is reversed with respect to the flow direction of the electromagnetic flow coupler, as shown in Figure 2, and even in the excitation coil part. The magnetic flux density distribution changes rapidly. Changes in the magnetic flux density distribution in this excitation coil section also pose a major challenge for improving efficiency.

本発明の目的は、磁束密度が変化する領域における変化
の割合を小さくし、かつ電磁フローカプラをできるだけ
小型化することにある。
An object of the present invention is to reduce the rate of change in a region where magnetic flux density changes and to miniaturize an electromagnetic flow coupler as much as possible.

(illjlを解決するための手段〕 上記目的は、電磁フローカプラの流れ方向端部または、
環状型電磁フローカプラの励磁コイル部等、磁束密度が
変化する領領において、流路に曲折部を設け、磁束密度
が変化する領域を通過する長さが実効果に長くなるよう
に構成することにより達成される。第3図にこの様子を
示す、第3図では、簡単のため発電機側流路7とポンプ
側流路8の一組を取り出している。励磁コイル2が磁極
3に挟まれている部分、及び、磁極3の上下端部に流路
の曲折部を設けている。
(Means for solving illjl) The above purpose is to solve the flow direction end of the electromagnetic flow coupler or
In an area where the magnetic flux density changes, such as the excitation coil part of an annular electromagnetic flow coupler, a bending part is provided in the flow path so that the length passing through the area where the magnetic flux density changes is effectively increased. This is achieved by This situation is shown in FIG. 3. In FIG. 3, one set of the generator side flow path 7 and the pump side flow path 8 are taken out for simplicity. Bent portions of the flow path are provided at the portion where the excitation coil 2 is sandwiched between the magnetic poles 3 and at the upper and lower ends of the magnetic poles 3.

〔作用〕[Effect]

磁束密度が変化する領域で流路に曲折部を設けたことに
より、磁束密度が変化する領域を通過する距離が実効的
に長くなるので、流路内の流体に対する見かけの磁束密
度の変化の割合が小さくなり、渦電流の発生を抑制する
ことができる。
By providing a bend in the flow path in the region where the magnetic flux density changes, the distance traveled through the region where the magnetic flux density changes effectively increases, so the ratio of change in the apparent magnetic flux density to the fluid in the flow path increases. becomes small, and the generation of eddy currents can be suppressed.

【実施例〕【Example〕

以下、本発明°の一実施例を第1図を用いて説明する。 An embodiment of the present invention will be described below with reference to FIG.

磁束密度の変化は、径方向磁界を利用する環状型電磁フ
ローカプラにおいて、特に1問題となるので、環状型電
磁フローカプラを例に説明する。環状型電磁フローカプ
ラは、第1図に示すように、流路外壁5、及び、流路内
壁6となる二つの円筒を同軸上に配置し、これら円筒で
形成される環状空間を流路として利用する。環状空間は
、電気伝導率の高い流路管1で周方向に分割される。
Changes in magnetic flux density are a particular problem in annular electromagnetic flow couplers that utilize radial magnetic fields, so an annular electromagnetic flow coupler will be explained as an example. As shown in Fig. 1, the annular electromagnetic flow coupler has two cylinders that are the outer wall 5 and the inner wall 6 of the flow path arranged coaxially, and the annular space formed by these cylinders as the flow path. Make use of it. The annular space is circumferentially divided by flow pipes 1 having high electrical conductivity.

流路外壁5の外側には、外部磁極3及び励磁コイルが流
路を取り巻くように配置されている。また、流路内壁6
の内側には、内部磁極4を配置している。これら流路外
壁5、流路内壁6、及び、励磁コイル2は、流路に径方
向内向き、または、外向きの磁界を発生する。流路管1
の内部の流体は外力により強制的に1!環され、磁界と
流れが作用し、フレミングの右手の法則に従って起電力
を生じるので発電機側流路7と呼ばれる。一方、流路管
1の外側では、発電機側流路7で生じた起電力により電
流が流れ、この電流がフレミングの左手の法則に従って
、磁界から電磁力を受け、流体に対するポンプ力を生じ
るのでポンプ側流路8と呼ばれる。第2図に、環状型電
磁フローカプラの磁束密度分布を例を示す、第2図のよ
うに、環状型電磁フローカプラでは、磁界の方向が流れ
方向に進むにつれて変化する。特に、流れ方向端部、及
び。
Outside the flow path outer wall 5, an external magnetic pole 3 and an excitation coil are arranged to surround the flow path. In addition, the flow path inner wall 6
An internal magnetic pole 4 is arranged inside. These channel outer wall 5, channel inner wall 6, and excitation coil 2 generate a radially inward or outward magnetic field in the channel. Channel pipe 1
The fluid inside is forced to 1 by an external force! It is called the generator side flow path 7 because it is surrounded by a magnetic field and a flow acts on it, and generates an electromotive force according to Fleming's right-hand rule. On the other hand, on the outside of the flow pipe 1, a current flows due to the electromotive force generated in the generator side flow path 7, and this current receives electromagnetic force from the magnetic field according to Fleming's left-hand rule, and generates a pumping force on the fluid. It is called a pump side flow path 8. FIG. 2 shows an example of the magnetic flux density distribution of an annular electromagnetic flow coupler. As shown in FIG. 2, in an annular electromagnetic flow coupler, the direction of the magnetic field changes as it advances in the flow direction. In particular, the machine direction ends and.

励磁コイル部では、磁束密度が急激に変化し、流体内部
に渦電流を発生させる。第1図では、この励磁コイル部
で流路管1に曲折部を設け、発電機側流路7.及び、ポ
ンプ側流路の双方に周方向のひねりを加えることによっ
て、流路中心に沿った励磁コイル部を通過する距離を長
くとり、流路内部の流体に対する見かけ上の磁束密度の
変化の割合を小さくしている。第1図には示していない
が。
In the excitation coil section, the magnetic flux density changes rapidly, generating eddy currents inside the fluid. In FIG. 1, a bent portion is provided in the flow path pipe 1 at this excitation coil portion, and the generator side flow path 7. By adding a circumferential twist to both the pump-side flow channels, the distance passing through the excitation coil section along the center of the flow channel is increased, and the ratio of change in the apparent magnetic flux density to the fluid inside the flow channel is increased. is made smaller. Although not shown in Figure 1.

外側磁極3の上・下端部でも同様の曲折部を設けること
により、上下端部の見かけ上の磁束密度の変化の割合を
小さくすることができる。以上、環状型電磁フローカプ
ラを例として本発明について説明したが、矩形流路で構
成される電磁フローカプラについても、流路に曲折部を
設けることにより、同様の効果が得られる。
By providing similar bent portions at the upper and lower ends of the outer magnetic pole 3, it is possible to reduce the rate of change in the apparent magnetic flux density at the upper and lower ends. Although the present invention has been described above using an annular electromagnetic flow coupler as an example, similar effects can be obtained with an electromagnetic flow coupler configured with a rectangular flow path by providing a bent portion in the flow path.

なお、図中9は発電機側流体の流れ、10はポンプ側流
体の流れである。
In addition, in the figure, 9 is the flow of fluid on the generator side, and 10 is the flow of fluid on the pump side.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電磁フローカプラの流れ方向に長くす
ること無く、磁束密度の減衰の勾配を小さくでき、渦電
流の発生を抑制することによって電磁フローカプラの効
率を向上させることができる。
According to the present invention, the gradient of magnetic flux density attenuation can be reduced without increasing the length of the electromagnetic flow coupler in the flow direction, and the efficiency of the electromagnetic flow coupler can be improved by suppressing the generation of eddy currents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の斜視図、第2図は磁束密
度分布図、第3図は本発明の詳細な説明図である。 1・・・流路管、2・・・励磁コイル、3・・・外部磁
極、4・・・内部磁極、5・・・流路外壁、6・・・流
路内壁、7・・・発電機側流路、8・・・ポンプ側流路
、9・・・発電機側流体の流れ、10・・・ポンプ側流
体の流れ。 第 図 内I?rl! 7ト向J h&束乞A
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a magnetic flux density distribution diagram, and FIG. 3 is a detailed explanatory diagram of the present invention. DESCRIPTION OF SYMBOLS 1... Channel tube, 2... Excitation coil, 3... External magnetic pole, 4... Internal magnetic pole, 5... Channel outer wall, 6... Channel inner wall, 7... Power generation Machine side flow path, 8... Pump side flow path, 9... Generator side fluid flow, 10... Pump side fluid flow. Figure I? rl! 7 Tomu J h & Beggar A

Claims (1)

【特許請求の範囲】 1、導電性流体を駆動させる、電気的に接続された複数
の流路と、前記流路に直交する方向に磁界を発生させる
励磁装置とからなる電磁フローカプラにおいて、 前記流路に曲折部を設けたことを特徴とする電磁フロー
カプラ。 2、特許請求項第1項において、 前記曲折部が励磁装置端部であることを特徴とする電磁
フローカプラ。 3、特許請求項第1項において、 前記流路が同軸円筒で形成される環状であることを特徴
とする電磁フローカプラ。 4、特許請求項第3項において、 前記流路の一部が螺旋状となつていることを特徴とする
電磁フローカプラ。
[Scope of Claims] 1. An electromagnetic flow coupler comprising a plurality of electrically connected flow channels that drive a conductive fluid and an excitation device that generates a magnetic field in a direction perpendicular to the flow channels, comprising: An electromagnetic flow coupler characterized by having a bend in the flow path. 2. The electromagnetic flow coupler according to claim 1, wherein the bent portion is an end portion of an excitation device. 3. The electromagnetic flow coupler according to claim 1, wherein the flow path is annular and formed by a coaxial cylinder. 4. The electromagnetic flow coupler according to claim 3, wherein a part of the flow path has a spiral shape.
JP494289A 1989-01-13 1989-01-13 Electromagnetic flow coupler Pending JPH02188158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP494289A JPH02188158A (en) 1989-01-13 1989-01-13 Electromagnetic flow coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP494289A JPH02188158A (en) 1989-01-13 1989-01-13 Electromagnetic flow coupler

Publications (1)

Publication Number Publication Date
JPH02188158A true JPH02188158A (en) 1990-07-24

Family

ID=11597628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP494289A Pending JPH02188158A (en) 1989-01-13 1989-01-13 Electromagnetic flow coupler

Country Status (1)

Country Link
JP (1) JPH02188158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022091536A (en) * 2020-12-09 2022-06-21 ヤマハ発動機株式会社 Electromagnetic pump for lifting conductive liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022091536A (en) * 2020-12-09 2022-06-21 ヤマハ発動機株式会社 Electromagnetic pump for lifting conductive liquid

Similar Documents

Publication Publication Date Title
US8643240B2 (en) Superconducting rotating electrical machine and stator for use with superconducting rotating electrical machine
JP4513756B2 (en) Electromagnetic wave generator
JP2008210972A (en) Transformer for high-frequency induction heating
JP2644089B2 (en) Ferromagnetic wire electromagnetic actuator
US20230291295A1 (en) Magnetohydrodynamic pump for molten salts and method of operating
JPH02188158A (en) Electromagnetic flow coupler
CN107660323B (en) Polyphase transverse flux machine
JP3882977B2 (en) Voice coil linear motor
RU2533056C1 (en) Cylindrical linear induction pump
US2905089A (en) Dynamo-electric machines
US3280350A (en) Magnetohydrodynamic generator
JPH06284685A (en) Electromagnetic pump
JP2007141981A (en) Matching transformer
JPH04236162A (en) Induction type electromagnetic pump
RU2088028C1 (en) Electric motor (options)
SU815848A1 (en) Linear induction motor
JPH04312334A (en) Structure of radial type rotor for synchronous motor
BR102022023720A2 (en) INDUCTOR AND METHOD OF DELIVERING INDUCTOR
SU698105A1 (en) Cylindrical linear induction pump
JP5802587B2 (en) Inductive electromagnetic pump for conductive liquid
JPH05299264A (en) Transformer
JP3787976B2 (en) Magnetizing method and magnetizing means for magnet type stator
FI20215998A1 (en) A winding system
JPS62217853A (en) Electromagnetic pump
JPS63213465A (en) Electromagnetic flow coupler