JPH02187713A - Silica glass filament - Google Patents

Silica glass filament

Info

Publication number
JPH02187713A
JPH02187713A JP1007396A JP739689A JPH02187713A JP H02187713 A JPH02187713 A JP H02187713A JP 1007396 A JP1007396 A JP 1007396A JP 739689 A JP739689 A JP 739689A JP H02187713 A JPH02187713 A JP H02187713A
Authority
JP
Japan
Prior art keywords
polyimide
silica glass
filament
coating layer
siloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1007396A
Other languages
Japanese (ja)
Inventor
Ryoichi Ito
伊東 亮一
Yoshinori Kurosawa
芳宣 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1007396A priority Critical patent/JPH02187713A/en
Publication of JPH02187713A publication Critical patent/JPH02187713A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To improve the adhesive property of a coating layer to a silica glass filament and to make it possible to use the filament over a long period of time even in a high temp. atmosphere in which heating and cooling are repeated by forming a cured coating layer of polyimide contg. bonded siloxane having a three-dimensional structure on the periphery of the filament. CONSTITUTION:A cured coating layer of polyimide contg. chemically bonded siloxane having a three-dimensional structure is formed on the periphery of a silica glass filament. The polyimide is obtd. by chemically bonding Si-O bond parts to polyimide and has a three-dimensional network structure. Unlike org. polyimide the polyimide contg. the chemically bonded siloxane has considerably improved matchability with SiO2 forming the silica glass, the adhesive property of the coating layer is remarkably improved and the coefft. of thermal expansion is made close to that of the silica glass because of heat curing to further improve the adhesive property. The coated filament is stably used over a long period of time in a high temp. atmosphere.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ファイバ、イメージガイド、ライトガイド
、キャピラリチューブなどに使用され、とくに高温雰囲
気での使用に際して有用なシリカガラス線条体に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a silica glass filament that is used for optical fibers, image guides, light guides, capillary tubes, etc., and is particularly useful when used in high-temperature atmospheres. It is.

[従来の技術] シリカガラス線条体は、通常の光学ガラスと比較して優
れた透光性を有しており、光ファイバ、イメージガイド
、ライトガイドなどの光伝送体として広く実用化されて
いることは周知の通りである。このシリカガラス線条体
は、I!!造過程で吸着活性となる不純物が低減できる
ところから、ガスクロマトグラフのキャピラリカラム用
としても従来のステンレス鋼や硬質ガラスに代えて使用
されている。
[Prior Art] Silica glass filaments have superior translucency compared to ordinary optical glasses, and are widely used as optical transmission bodies such as optical fibers, image guides, and light guides. It is well known that there are. This silica glass striatum is I! ! It is also used in gas chromatograph capillary columns instead of conventional stainless steel and hard glass because it can reduce impurities that become adsorbent during the manufacturing process.

これらの線条体の外表面には製造の際に微小な傷か生じ
易く、このような傷か存在すると取扱中にノツチ効果と
なって線条体を損傷させる可能性がある。そこで、線条
体製造時にシリコーンや紫外線硬化樹脂等よりなる被覆
を行ない、前記損傷の発生を防止して取扱性を大中に改
善しているのが通常である。
Minute scratches are likely to occur on the outer surface of these filaments during manufacturing, and the presence of such scratches may cause a notch effect during handling, which may damage the filament. Therefore, when manufacturing the filament, a coating made of silicone, ultraviolet curing resin, etc. is usually applied to prevent the above-mentioned damage and greatly improve handling properties.

[発明が解決しようとする課題] 上記した光ファイバやイメージガイドなどは高温炉周り
の遠隔監視など高温雰囲気で使用されることが多く、ま
たガスク17マトグラフのキャピラリチューブは自体が
高温で使用されるものであり、このような高温使用とな
る場合には上記被覆材料に自ら制約が生じ、必ずしも十
分な被覆が行なわれているとはいえないのが実情である
[Problems to be solved by the invention] The above-mentioned optical fibers and image guides are often used in high-temperature atmospheres such as remote monitoring around high-temperature furnaces, and the capillary tube of the Gask 17 matograph itself is used at high temperatures. However, when used at such high temperatures, the coating material has its own limitations, and the actual situation is that it cannot necessarily be said that sufficient coating is achieved.

すなわち、上記高温雰囲気での使用に耐える材料として
ポリイミドがあり、300℃程度の耐熱性を有している
か、このポリイミドはシリカガラスとの接着性に乏しく
、カラスに比べて著しく大きい熱膨張係数を有するため
、加熱−冷却を繰り返す用途においてはポリイミドとカ
ラス間で剥離する傾向がみられ、その結果被覆層による
保護効果か大巾に低下して線条体を曲けることにより損
傷を生じさせる懸念が非常に大きくなる。
In other words, polyimide is a material that can withstand use in the above-mentioned high-temperature atmosphere and has a heat resistance of about 300°C, or polyimide has poor adhesion to silica glass and has a significantly larger coefficient of thermal expansion than glass. Therefore, in applications where heating and cooling are repeated, there is a tendency for polyimide and glass to separate, resulting in a significant decrease in the protective effect of the coating layer, which may cause damage by bending the filament. becomes very large.

カラスとの接@性を改善するなめに、塗料溶液にシラン
カップリング剤を添加することも試みられたか、混合中
に反応かおこってゲル化してしまう現象か認められ満足
できるものではなかった。
Attempts have also been made to add a silane coupling agent to the paint solution in order to improve contact with crows, but this was not satisfactory as it was observed that a reaction occurred during mixing resulting in gelation.

逆に線条体表面にシランカップリング剤を塗布した後に
ポリイミドを被覆する方法も試みられたか、ポリイミド
を被覆するまでの時間的、スペース的制約があり、これ
も満足できるものとはいえなかった。
Conversely, methods have been attempted in which a silane coupling agent is applied to the surface of the striatum and then coated with polyimide, but this method was also not satisfactory due to time and space constraints before coating with polyimide. .

シリカカラスと同程度の熱膨張係数を有するポリイミド
も開発されてはいるか、分子鎖が剛直な構造を有するた
めシリカガラス線条体のように曲げられる用途には不適
当である。
Although polyimide having a coefficient of thermal expansion comparable to that of silica glass has been developed, its molecular chain has a rigid structure and is therefore unsuitable for applications where it is bent like a silica glass filament.

本発明は、−ト記したような従来技術の1#1題点を解
消し、カラスとの接着性に優れ、加熱−冷却を繰り返す
用途においても剥離するおそれかなく長期間の使用か可
能なポリイミド被覆シリカカラス線条体を提供しようと
するものである。
The present invention solves the 1 #1 problem of the conventional technology as described in (-), has excellent adhesion to glass, and can be used for a long period of time without fear of peeling even in applications where heating and cooling are repeated. It is an object of the present invention to provide a polyimide-coated silica glass strip.

[課題を解決するための手段1 本発明は、シリカガラス線条体の外周に三次元構造のシ
ロキ→カンを化学的結合させてなるポリイミドよりなる
嫂化被覆!−を形成したことを特徴とするものであるへ ここにいうシリカガラス線条体とはシリカカラスもしく
はドーパンl〜を添加したシリカカラスを充実タイプあ
るいはチューブ状の線条としたものである。
[Means for Solving the Problems 1] The present invention provides a conversion coating made of polyimide, which is formed by chemically bonding a three-dimensional structure of siloxane to the outer periphery of a silica glass filament! The silica glass filament referred to herein is a solid type or tube-shaped filament formed from silica glass or silica glass to which dopant 1~ is added.

三次元シロキザンI造を化学的に結合したポリイミドと
は、ポリイミドの部分と5i−0結合の部分か化学結合
した!lA造からなるものであり、例として次のような
構造があげ゛られる。
Polyimide with chemically bonded three-dimensional siloxane I structure is chemically bonded to the polyimide portion and the 5i-0 bond portion! It is made of 1A structure, and the following structure is given as an example.

ここに、R1,R2は下記にそれぞれ示すようなものを
あげることができるが、ポリイミドVI4脂の範ちゅう
にはいるものであれば化学構造は上式%式% R2= (PMD、A) 本発明に係るポリイミドは、上式に示すようにシロキサ
ン部は完全に81−0結合のみからなり、三次元の網目
構造をとっている。このように無機成分のみからなるシ
ロキサンはガラス状であることからこれを被覆層とした
場合ポリイミド単独より硬く、熱膨張も小さくなる。
Here, R1 and R2 can be listed as shown below, but if they fall within the category of polyimide VI4 resin, the chemical structure is the above formula % R2 = (PMD, A) In the polyimide according to the invention, as shown in the above formula, the siloxane portion consists entirely of 81-0 bonds and has a three-dimensional network structure. As described above, since siloxane consisting only of inorganic components is glassy, when it is used as a coating layer, it is harder than polyimide alone and has a smaller thermal expansion.

本発明においては、ガラス表面に直接被覆することを意
図しているが、事前に厚さ1μm以下の薄層にコーティ
ング、例えばS l a Na * C*表面処理剤等
をガラス表面に被覆して6差支えはない。
In the present invention, it is intended that the glass surface be directly coated, but the glass surface may be coated with a thin layer of 1 μm or less in thickness, for example, a S 1 a Na * C * surface treatment agent, etc. 6 There is no difference.

また、本発明に係る被覆は単独で用いても十分効果をも
たらすが、さらにその外周に従来技術として知られてい
るポリイミドや他のプラスチック、例えはフッ素樹脂、
ポリエーテルスルポン、ポリエーテルエーテルケトン等
を被覆してもよいものである。
Although the coating according to the present invention is sufficiently effective when used alone, it is also possible to coat the outer periphery with polyimide or other plastics known in the prior art, such as fluororesin.
It may be coated with polyether sulfone, polyether ether ketone, etc.

1作用] 本発明に係るポリイミド被覆は、有機質だけで構成され
ていた従来のポリイミドと異なり、Si −0結合によ
る三次元の網目構造を有しているため、シリカガラスを
構成するS i 02との整合性が大rlJに改善され
接着性が格段に向上する上、加熱硬化されることでその
熱膨張係数がカラスに近付き、高温雰囲気や加熱−冷却
雰囲気での接着安定性が長期間にわたり持続される。
1 Effect] The polyimide coating according to the present invention is different from conventional polyimide that is composed only of organic substances, and has a three-dimensional network structure formed by Si-0 bonds. The consistency of the adhesive has been improved to a large rlJ, greatly improving adhesion, and when it is heated and cured, its coefficient of thermal expansion approaches that of glass, resulting in long-term adhesive stability in high-temperature atmospheres and heating-cooling atmospheres. be done.

[実施例1 以下に、本発明について実施例を参照し説明する。[Example 1 The present invention will be described below with reference to Examples.

実施例1 酸化ゲルマニウムをドープしたシリカガラスコアとシリ
カガラスクラッドからなるシングルモード光ファイバ母
材を線引炉によって外径1)5μmの光ファイバに延伸
し、次の構造式を有するシロキサン変性ポリイミド溶液
(N−メチルピロリドン希釈、粘度1.0OOCIIS
)を貯えたコーティングダイスを通過させた。ll引速
度は50m/(Iin、コーティング厚さは20μmで
あった。
Example 1 A single-mode optical fiber base material consisting of a silica glass core doped with germanium oxide and a silica glass cladding was drawn into an optical fiber with an outer diameter of 1) 5 μm using a drawing furnace, and a siloxane-modified polyimide solution having the following structural formula was drawn. (N-methylpyrrolidone dilution, viscosity 1.0OOCIIS
) was passed through a coating die containing a The drawing speed was 50 m/(Iin, and the coating thickness was 20 μm.

コーティングしたファイバを直ちに加熱炉(350℃)
に通過させて変性ポリイミドを硬化させてからボビンに
巻取った。このようにして得られた被覆光ファイバの引
張強さは平均6 kgであり、通常の被覆光ファイバの
値と比べて遜色なかったうまな、−60〜+150℃の
範囲で波長1.3μmの光の伝送損失を測定した結果、
0.2dB、/km以内の変動率であった。
Immediately place the coated fiber in a heating furnace (350℃)
The modified polyimide was cured by passing it through a tube and then wound onto a bobbin. The tensile strength of the coated optical fiber obtained in this way was 6 kg on average, which was comparable to that of ordinary coated optical fiber. As a result of measuring the optical transmission loss,
The fluctuation rate was within 0.2 dB/km.

実施例2 合成シリカガラス管を光ファイバ線引炉によって延伸し
、外径320μm、内径250μmのキャピラリチュー
ブをFM造し、直ちに実施例1と同一組成のシロキサン
変性ポリイミド溶液を厚さ20μmとなるように被覆し
た。#A引速瓜は20m/minであったうこれを直ち
に加熱炉(300℃)に通過させて硬化させボビンに巻
取った。
Example 2 A synthetic silica glass tube was drawn in an optical fiber drawing furnace to produce a capillary tube with an outer diameter of 320 μm and an inner diameter of 250 μm, and immediately a siloxane-modified polyimide solution having the same composition as in Example 1 was added to a thickness of 20 μm. coated with. #A melon was drawn at a speed of 20 m/min, and was immediately passed through a heating furnace (300° C.) to harden and wound onto a bobbin.

本キャピラリチューブ50mを外径150+m+のアル
ミ製リールに巻いたものを400℃の恒温槽中でN2雰
囲気において15h加熱しても何ら拶傷もなく塗膜の剥
離も全く認められなかったつなお、本チューブの内面を
シリル化剤、固定剤によって=?−テインクしたキャピ
ラリカラムをガスクロマトグラフに装置した場合、何ら
支障なく十分な分離機能を有することが確認された。
This capillary tube (50m) wound around an aluminum reel with an outer diameter of 150+m+ was heated in a constant temperature bath at 400℃ for 15 hours in a N2 atmosphere without any scratches or peeling of the coating. By silylating agent and fixing agent =? - When the inked capillary column was installed in a gas chromatograph, it was confirmed that it had sufficient separation function without any problems.

実施例3 実施例2の合成シリカガラス管に次の構造式を有するシ
ロキサン変性ポリイミド溶液(N−メチルピロリドン希
釈、粘度2,0OOcps )を用いた以外は実施例2
と同じキャピラリチューブを製造した。
Example 3 Example 2 except that a siloxane-modified polyimide solution having the following structural formula (N-methylpyrrolidone dilution, viscosity 2,000 cps) was used in the synthetic silica glass tube of Example 2.
The same capillary tube was manufactured.

た以外は実施例2と同じキャピラリチューブを製造しな
The same capillary tube as in Example 2 was manufactured except for the following.

これを用いて実施例2と同様の試験を実施した結果、実
施例2と同様な結果が得られた。
As a result of carrying out the same test as in Example 2 using this, the same results as in Example 2 were obtained.

これを用いて実施例2と同様の試験をした結果、実施例
2と同様な結果が得られた。
As a result of conducting the same test as in Example 2 using this, the same results as in Example 2 were obtained.

実施例4 実施例2の合成シリカガラス管に次の構造式を有するシ
ロキサン変性ポリイミド溶1(N−メチルピロリドン希
釈、粘度1.500cps )を用い実施例5 イメージガイド素線30.000本を充填したシリカカ
ラス管を線引炉で外径2開に線引きした後、直ちに実施
例1に用いたシロキサン変性ポリイミド溶液を膜厚20
μmになるように被覆した。
Example 4 The synthetic silica glass tube of Example 2 was filled with 30,000 image guide wires of Example 5 using siloxane-modified polyimide solution 1 (diluted with N-methylpyrrolidone, viscosity 1.500 cps) having the following structural formula. After drawing the silica glass tube in a drawing furnace to an outer diameter of 2 mm, immediately apply the siloxane-modified polyimide solution used in Example 1 to a film thickness of 20 mm.
It was coated to a thickness of μm.

本イメージカイト(長さ1mlを外径150rmのマン
ドレルに巻付けた結果、試料数10のうち破損したもの
は皆無であった。
As a result of winding this image kite (length 1 ml) around a mandrel with an outer diameter of 150 rm, none of the 10 samples were broken.

実施例6 実施例2においてシロキサン変性ポリイミドを被覆した
後、直ちに下記比較例に用いたポリイミドを厚さ20μ
mになるように被覆して加熱硬化させて2重被覆層とし
ボビンに巻取った。
Example 6 Immediately after coating the siloxane-modified polyimide in Example 2, the polyimide used in the following comparative example was coated with a thickness of 20 μm.
The film was coated to a thickness of m and cured by heating to form a double coating layer, which was then wound onto a bobbin.

本キャピラリチューブについて実施例2と同様の試験を
行なった結果、実施例2と同様な結果が得られた。
The same test as in Example 2 was conducted on this capillary tube, and the same results as in Example 2 were obtained.

比較例 実施例2のシロキサン変性ポリイミドの代りに下記に示
す構造式の通常のポリイミド溶液(N−メチルピロリド
ン希釈、粘度2,0OOcps )を被覆したことを除
くと、他の条件は実施例2と全く同様にして試料を作成
した。
Comparative Example The other conditions were as in Example 2, except that instead of the siloxane-modified polyimide in Example 2, a conventional polyimide solution having the structural formula shown below (diluted with N-methylpyrrolidone, viscosity 2,000 cps) was coated. Samples were prepared in exactly the same manner.

本キャピラリチューブ50mを外径150闇のアルミ製
リールに巻いたものを400°Cの恒温槽中でN2雰囲
気において151〕加熱した結果、塗膜か部分的に剥離
しており2ケ所で破断していることかN認された。
As a result of heating 50 m of this capillary tube wound around an aluminum reel with an outer diameter of 150 mm in a N2 atmosphere in a constant temperature bath at 400°C, the coating partially peeled off and broke in two places. It was approved as N.

以上の実施例かられかるように、本発明に係る線条体は
、被覆材料として、ポリイミドと三次元のシロキサン構
造を化学結合させることによってシリカカラスとの接着
性か改善されるとともにポリイミド羊独より硬質となる
ため傷がつきにくく機械的強度が向上する。従って、従
来の有機基を側鎖にもつオルカッシロキサン変性ポリイ
ミドは本発明に係るポリイミドとは異なるものであり、
それによって上述したような優れた作用効果を期待する
ことはできない。
As can be seen from the above examples, the filament according to the present invention has improved adhesion to silica glass by chemically bonding polyimide and a three-dimensional siloxane structure as a coating material, and is unique to polyimide. Since it is harder, it is less likely to be scratched and its mechanical strength is improved. Therefore, the conventional orcasiloxane-modified polyimide having an organic group in its side chain is different from the polyimide according to the present invention.
As a result, the excellent effects described above cannot be expected.

[発明の効果] 以にの通り、本発明に係るシリカガラス線条体によれば
、高温雰囲気や加熱−冷却の繰り返される雰囲気におい
て、被覆層の接着性が強固に維持され長期的に安定して
使用できるものであり、そ の応用範囲を拡大し得る意義は大きなものがある。
[Effects of the Invention] As described above, the silica glass filament according to the present invention maintains strong adhesion of the coating layer and is stable over a long period of time in a high-temperature atmosphere or an atmosphere where heating and cooling are repeated. It can be used for many purposes, and it has great significance in expanding its range of applications.

Claims (1)

【特許請求の範囲】[Claims] (1)線状のシリカガラスの外周に三次元構造のシロキ
サンを化学的結合させてなるポリイミドよりなる硬化被
覆層を形成してなるシリカガラス線条体。
(1) A silica glass filament formed by forming a cured coating layer made of polyimide, which is formed by chemically bonding siloxane having a three-dimensional structure, on the outer periphery of a filamentous silica glass.
JP1007396A 1989-01-13 1989-01-13 Silica glass filament Pending JPH02187713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007396A JPH02187713A (en) 1989-01-13 1989-01-13 Silica glass filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007396A JPH02187713A (en) 1989-01-13 1989-01-13 Silica glass filament

Publications (1)

Publication Number Publication Date
JPH02187713A true JPH02187713A (en) 1990-07-23

Family

ID=11664743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007396A Pending JPH02187713A (en) 1989-01-13 1989-01-13 Silica glass filament

Country Status (1)

Country Link
JP (1) JPH02187713A (en)

Similar Documents

Publication Publication Date Title
JP5725673B2 (en) Double coated optical fiber and method for forming the same
JPH0431365B2 (en)
JP2975642B2 (en) Hermetic coated fiber and manufacturing method thereof
JPH02187713A (en) Silica glass filament
WO2021128213A1 (en) Optical fiber and forming method therefor
US4099834A (en) Low loss glass suitable for optical fiber
JP2825097B2 (en) Optical fiber manufacturing method
GB2207254A (en) Glass-clad optical fibre couplers
CN111170653A (en) High-temperature-resistant glass-glazed optical fiber and preparation method thereof
JP3286018B2 (en) Carbon coated optical fiber
CN111103651A (en) Optical fiber and method of forming the same
JPH0225853B2 (en)
JP2581285B2 (en) Manufacturing method of heat resistant optical fiber
JPS6228101B2 (en)
JPH07234322A (en) Method for drawing plastic optical fiber
JPS6046952A (en) Treatment of covered optical fiber
JPH02285308A (en) Coated optical fiber
JPH0251856B2 (en)
JPS6010212A (en) Optical fiber and manufacture thereof
JPH08304673A (en) Single mode type optical fiber, its coated fiber, cord and coated optical fiber with connector and cord
JP2551068Y2 (en) Heat resistant optical fiber and heat resistant optical fiber with metal pipe
JPH04338127A (en) Production of quartz optical fiber
JPS61168548A (en) Parent material for quartz optical fiber
JPS6247608A (en) Optical transmission fiber using plastic clad
JPH04198862A (en) Capillary column for gas chromatograph