JPH02187612A - Curve comparing and checking device - Google Patents

Curve comparing and checking device

Info

Publication number
JPH02187612A
JPH02187612A JP815289A JP815289A JPH02187612A JP H02187612 A JPH02187612 A JP H02187612A JP 815289 A JP815289 A JP 815289A JP 815289 A JP815289 A JP 815289A JP H02187612 A JPH02187612 A JP H02187612A
Authority
JP
Japan
Prior art keywords
subject
reflected light
curved portion
peaks
imaging system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP815289A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Nakano
中野 勝吉
Akira Matsushita
昭 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SYST KENKYUSHO KK
Original Assignee
NIPPON SYST KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SYST KENKYUSHO KK filed Critical NIPPON SYST KENKYUSHO KK
Priority to JP815289A priority Critical patent/JPH02187612A/en
Publication of JPH02187612A publication Critical patent/JPH02187612A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately detect whether a specular curve of a body to be checked is good or not by online without contacting by irradiating this specular curve with plural light sources and condensing the reflected light to observe intervals of peaks of the reflected light. CONSTITUTION:Bodies 1, 2, and (n) to be checked having the same shape are laminated and an successively moved downward from the top. Parts (a) to (f) relatively close to one another of their curves are irradiated with at least two light sources 3 and 4 like tubular bulbs having linear filaments. Each reflected light is photoelectrically converted by an optical system like a lens 5 and a one-dimensional sensor 6 and is observed as the distribution waveform of an electric signal which indicates the light intensity distribution having two peaks La and Lb. Peak intervals d1 to dn are measured and are compared with standard values of normal bodies to be checked to detect the difference in curvature and molding defects of curves by online without contacting.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属、プラスチック、陶磁器あるいは木製品
などの素面や塗装面における比較的鏡面性を有する湾曲
部の形状を、簡単な手段で比較判別する検査装置を提供
しようとするものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method for comparing and determining the shape of a relatively specular curved portion of a bare surface or a painted surface of metal, plastic, ceramics, or wooden products by a simple means. The aim is to provide an inspection device that can

殊に検査専用の別ステージを設けなくても、生産ライン
上において非接触かつ高速で適確に検出しようとする分
野に利用して好適なものである。
In particular, it is suitable for use in fields where non-contact, high-speed, and accurate detection is desired on a production line without providing a separate stage exclusively for inspection.

[従来の技術] 従来、成型品やプレス製品などの湾曲部の形状の差異を
正確かつ迅速に比較判別することのできる信頼のおける
簡単な検査装置が無く、一般には肉眼に頼る検査が多か
った。
[Conventional technology] Until now, there was no reliable and simple inspection device that could accurately and quickly compare and determine differences in the shape of curved parts of molded products, pressed products, etc., and inspections generally relied on the naked eye. .

従って、生産スピードが非常に速くなった昨今において
は検査員の眼の疲労に関し大きな社会問題にまで発展し
ているのが実状である。
Therefore, as production speeds have become extremely fast these days, eye fatigue for inspectors has actually developed into a major social problem.

依って、パターン認識に関する最近の情報技術を利用し
ようとする各種の試みがあるが、その処理に膨大な時間
を要したり美大な装置費を必要とするなど、実用的な解
決手段としてはほど遠いものが多かった。
Therefore, various attempts have been made to utilize recent information technology related to pattern recognition, but such processing requires a huge amount of time and equipment costs, making it difficult to use as a practical solution. Many were far from it.

[発明の概要および作用コ 本発明の湾曲部比較検査装置は、被検体における鏡面性
を有する湾曲部の比較的近接した位置のそれぞれを照射
する複数の光源と、その反射光を集光処理する光学系お
よび電子撮像系を有する光電観測装置を備え、前記被検
体の各近接位置からの前記反射光のピークの間隔を観測
することによって、各被検体ごとの湾曲部の形状の差異
を比較判別するように構成したことを特徴とするもので
ある。
[Summary and operation of the invention] The curved part comparative inspection device of the present invention includes a plurality of light sources that irradiate relatively close positions of a curved part having specularity in a subject, and condenses the reflected light. A photoelectric observation device having an optical system and an electronic imaging system is provided, and by observing the interval between the peaks of the reflected light from each close position of the subject, the difference in shape of the curved portion of each subject is compared and determined. The invention is characterized in that it is configured to do so.

すなわち、鏡面性を有する被検体の湾曲部例えば縁端部
に対し、その幾つかの近接した地点を複数の光源で照射
すると、それらの地点から光源と同数の反射光が得られ
る。この反射光を1次元または2次元センサによって撮
像することにより。
That is, when a plurality of light sources are used to irradiate several points close to a curved portion of a subject having specularity, such as an edge, the same number of reflected lights as the light sources are obtained from those points. By imaging this reflected light with a one-dimensional or two-dimensional sensor.

被検体の湾曲部の形状とか、光学系の倍率やセンサの走
査時間などの撮像要素に依存する時間間隔で、凸状のピ
ークをもった波形が得られる。
A waveform with convex peaks is obtained at time intervals that depend on imaging factors such as the shape of the curved part of the object, the magnification of the optical system, and the scanning time of the sensor.

しかるに撮像要素を固定した場合、そのピークの間隔は
被検体の湾曲部の歪や欠落によって変化する。従ってそ
のピークの間隔を測定し比較することによって、被検体
の形状の差異を判別することができる。
However, when the imaging element is fixed, the interval between the peaks changes depending on the distortion or omission of the curved portion of the subject. Therefore, by measuring and comparing the intervals between the peaks, it is possible to determine the difference in shape of the object.

この場合、前記各被検体ごとの観測に際して前記電子撮
像系との相対的距離の差異により生じる光学的歪やピン
ぼけを、電子撮像系に2次元エリアセンサを用いて補正
された画像信号が抽出できるように構成することも可能
である。
In this case, it is possible to extract an image signal in which optical distortion and defocus caused by differences in relative distance to the electronic imaging system are corrected using a two-dimensional area sensor in the electronic imaging system when observing each subject. It is also possible to configure it as follows.

そして前記被検体と複数の光源または前記光電装置の何
れかを相対的に移動させながら前記反射光のピークの間
隔を観測することにより、広範囲にわたる湾曲部の形状
の差異を比較判別するように構成したり、さらに前記被
検体の周囲を前記複数の光源と光電装置とが相対的に回
転するように構成して前記被検体の全周に対する比較検
査が実施できるようにしたことを特徴とするものである
The configuration is configured to compare and determine differences in the shape of the curved portion over a wide range by observing the interval between the peaks of the reflected light while relatively moving the subject and any of the plurality of light sources or the photoelectric device. Further, the plurality of light sources and the photoelectric device are configured to rotate relative to each other around the subject, so that a comparative inspection can be performed over the entire circumference of the subject. It is.

さらに、前記光電装置の構成要素の歪や光路の違いなど
により生じる電子撮像系の光軸の延長線上附近にある被
検体と、それより離れた被検体からの反射光よるピーク
の時間々隔のずれを補正するのに、予め撮像センサの領
域を幾つかに分割し。
Furthermore, the time interval between the peaks due to the reflected light from the object near the extension of the optical axis of the electronic imaging system and the object further away, caused by distortion of the components of the photoelectric device and differences in the optical path, etc. To correct the shift, the area of the image sensor is divided into several parts in advance.

その各々に電子撮像系の光軸の延長線上附近にある被検
体の反射光を基準とした係数を割り振っておき、その領
域に入力した反射光のピーク間隔とその係数を演算して
行えるように構成したものである。
A coefficient based on the reflected light of the object near the extension of the optical axis of the electronic imaging system is assigned to each of them, and the peak interval of the reflected light input to that area and its coefficient are calculated. It is composed of

[実施例1] 第1図により本発明にかかる装置の実施例1を説明する
。  幾つかの同一形状の被検体1,2およびnが積層
されて堆積状態をなし、これらが順次上から下方に向か
って移動されるようになっている。そしてこれらの各被
検体における湾曲部の比較的近接した地点のそれぞれに
対し、線状フィラメントを持つ管球または高周波電源に
よって点灯される管状蛍光燈の如き少なくとも2個の光
源3および4によって照射する。
[Example 1] Example 1 of the apparatus according to the present invention will be described with reference to FIG. Several objects 1, 2, and n having the same shape are stacked in a stacked state, and these objects are sequentially moved from top to bottom. Then, relatively close points of the curved portion of each of these objects are irradiated with at least two light sources 3 and 4, such as a tube having a linear filament or a tube fluorescent lamp lit by a high frequency power source. .

例えば、各被検体における湾曲部の比較的近接した地点
aとbあるいはc、  dそしてe、  f等から反射
される各々2条の反射光LaとLbあるいはLc−Lf
等は、第2図に示す如く各々2つのピークを有する光強
度分布Bをもっている。横軸のtは時間を表す。
For example, two lines of reflected light La and Lb or Lc-Lf are reflected from points a and b, c, d, e, f, etc., which are relatively close to each other on the curved part of each subject.
etc. have a light intensity distribution B each having two peaks as shown in FIG. t on the horizontal axis represents time.

故にこれらの各反射光を、レンズ5などの光学系および
1次元センサ6のような電子撮像系を有する光電観測装
置によって光電変換を行なえば。
Therefore, each of these reflected lights is subjected to photoelectric conversion using a photoelectric observation device having an optical system such as a lens 5 and an electronic imaging system such as a one-dimensional sensor 6.

2つのピークを有するLaとLbの光強度分布を表す電
気信号の分布波形として観測することができる。  そ
して2つのピークの間隔d1〜doは、1次元センサの
走査速度や光源を含めた光学系の構成および倍率、ある
いはそれらの構成要素と被検体との距離などによって左
右されるが、これらのものは一般に実用精度内に設定す
ることが可能である。
It can be observed as a distribution waveform of an electrical signal representing a light intensity distribution of La and Lb having two peaks. The interval d1 to do between the two peaks depends on the scanning speed of the one-dimensional sensor, the configuration and magnification of the optical system including the light source, or the distance between these components and the subject. can generally be set within practical accuracy.

またピーク間隔d1〜dnは、光学系と正対している被
検体2からの反射光LcとLdによるものと。
Moreover, the peak intervals d1 to dn are based on the reflected lights Lc and Ld from the subject 2 directly facing the optical system.

中心から離れた位置の被検体1またはnからの反射光L
aとLbまたはLeとLfによるものとは、レンズ5な
どの光学要素の歪や光路の違いなどによって多少異なっ
たものとなるのが普通である。
Reflected light L from object 1 or n located away from the center
Normally, the results obtained by a and Lb or Le and Lf differ somewhat due to distortions in optical elements such as the lens 5, differences in optical paths, and the like.

しかしながらこれらは被検体1〜nと光学系各部までの
距離や、光学系の各要素の特性に依存する固有のもので
あるから、演算によって補正が可能である。
However, since these are unique depending on the distance between the subjects 1 to n and each part of the optical system and the characteristics of each element of the optical system, they can be corrected by calculation.

例えば予め1次元センサの領域を幾つかに分割し、その
各々に反射光LcとLdを基準にした係数を割り振って
おく。そしてその領域に入力された反射光による信号の
ピーク間隔とその係数を演算させることによって、ピー
ク間隔d1〜d、を補正するようにすればよい。
For example, the area of the one-dimensional sensor is divided into several parts in advance, and a coefficient based on the reflected lights Lc and Ld is assigned to each part. Then, the peak intervals d1 to d may be corrected by calculating the peak interval of the signal due to the reflected light input to that area and its coefficient.

従ってピーク間隔d1ないしdnをそれぞれ測定し、正
常な被検体の湾曲部による標準値と比較するか、各被検
体の各々の値を相対的に比較することによって、湾曲部
の曲率の違いや成型不良あるいは工程中に生じた欠けや
潰れなどの不具合の有無を比較判別することができる。
Therefore, by measuring the peak intervals d1 to dn and comparing them with standard values based on the curved part of a normal subject, or by relatively comparing each value of each subject, it is possible to determine the difference in the curvature of the curved part and the shape of the curved part. It is possible to compare and determine the presence or absence of defects or defects such as chipping or crushing that occurred during the process.

また前記撮像要素を固定した状態で、被検体と光源との
間隔を近接させれば各1対のピークの間隔d1〜dnが
それぞれ広がるので、隣接する被検体による観測結果と
の比較が困難になる。これとは反対に、被検体と光源と
を離間させた場合にはピーク間隔d1〜dnがそれぞれ
狭まるため検出精度が必然的に低下する。
Furthermore, if the distance between the object and the light source is brought closer with the imaging element fixed, the distances d1 to dn between each pair of peaks will increase, making it difficult to compare the observation results with adjacent objects. Become. On the contrary, when the subject and the light source are separated, each of the peak intervals d1 to dn becomes narrower, so that the detection accuracy inevitably decreases.

従って本発明の装置の構成に際しては、撮像要素の最適
化と共に被検体の大きさおよび曲率等に応じた最適位置
に光源を配置するように設計することが重要である。
Therefore, when configuring the apparatus of the present invention, it is important to optimize the imaging elements and to design the light source to be placed at an optimal position depending on the size, curvature, etc. of the subject.

以上に述べた手段では、被検体に対して成る一方向から
の検査しか行なうことができないが、多数の電子撮像系
を用いて多方向から撮像するとか。
With the means described above, it is possible to perform an examination of a subject from only one direction, but images can be taken from multiple directions using multiple electronic imaging systems.

あるいは被検体または光電観測装置の何れかを相対的に
回転させるなどの方法によって、被検体全周の情報を得
ることができる。
Alternatively, information about the entire circumference of the object can be obtained by relatively rotating either the object or the photoelectric observation device.

この場合の光源としては号−クルラインのような環状の
ものを使用すれば光源を回転せずに観測できる効用があ
る。
In this case, using a ring-shaped light source such as the No. 1-Kuru line would be effective in allowing observation without rotating the light source.

[実施例2] 第3図は、多数の堆積された被検体7が上から下方に向
かい順次連続的に移動する工程において。
[Example 2] FIG. 3 shows a process in which a large number of deposited specimens 7 are sequentially and continuously moved from top to bottom.

各被検体の形状の良否を全周から監視できるように光[
3,3’ と4および4′ならびに電子撮像系を含む光
電観測装置7,8を一緒に回転させるように構成した実
施例である。
The light [
3, 3', 4 and 4', and photoelectric observation devices 7, 8 including electronic imaging systems are configured to rotate together.

レンズおよび1次元センサなどから構成される2組の光
電観測装置7と8を環状結合体9と組合せ、その大プー
リ10をベルト11を介して小プーリ12に直結したモ
ータ13によって駆動し回転する。
Two sets of photoelectric observation devices 7 and 8 consisting of lenses, one-dimensional sensors, etc. are combined with an annular combination body 9, and the large pulley 10 is driven and rotated by a motor 13 directly connected to a small pulley 12 via a belt 11. .

他方、積層された多数の被検体を収納し順序よく姿勢制
御しながら移動させるための円筒状のガイド14は、光
電観測経路に該当する部分をガラスなどの透明材料を適
用し、撮像が容易に行なえるような構成にする。
On the other hand, the cylindrical guide 14 for storing a large number of stacked objects and moving them while controlling their posture in an orderly manner is made of a transparent material such as glass in the portion corresponding to the photoelectric observation path, so that imaging can be easily performed. Configure it so that

しかるに透明材料を用いた場合に不測の反射などによる
誤差を生じることがある。このような対策の1つとして
は2例えば金属の円筒にスリットを設けておき当該スリ
ットたが常に撮像経路を向くように回転させる構造にし
ておく方法がある。
However, when a transparent material is used, errors may occur due to unexpected reflections. One such measure is to provide a slit in a metal cylinder, for example, and to rotate the slit so that it always faces the imaging path.

また、ガイド14の下部と回転部とは軸受機構O− 15によって結合されており、この部分に装着したスリ
ップリング16あるいは電磁誘導方式や光電方式を利用
した非接触型信号伝送装置を経由して、それ自体回転し
ている1次元センサの信号を外部の固定側に伝達する。
In addition, the lower part of the guide 14 and the rotating part are connected by a bearing mechanism O-15, and the transmission is carried out via a slip ring 16 attached to this part or a non-contact signal transmission device using an electromagnetic induction method or a photoelectric method. , transmits the signal of the one-dimensional sensor, which is itself rotating, to an external fixed side.

従って、モータ13によって電子撮像系を回転させるこ
とにより、被検体7の全周に亘る電気信号を特定のタイ
ミングで得ることが可能である。
Therefore, by rotating the electronic imaging system with the motor 13, it is possible to obtain electrical signals over the entire circumference of the subject 7 at a specific timing.

本実施例においては光源を2個としたが2個数を多くす
ることによって被検体からの反射光も多くなり、より細
かい部分の状況を検知することができる。
In this embodiment, two light sources are used, but by increasing the number of light sources to two, the amount of light reflected from the object increases, making it possible to detect conditions in more detailed parts.

以上の説明から判るように、このシステムは被検体が1
個宛でも連続的な堆積状態の場合でも適用できる。また
1層毎または複数層毎に隙間などのあるランダムな積層
状態の場合にでも使用することができる。
As can be seen from the above explanation, this system
It can be applied to both individual and continuous deposits. It can also be used in a random laminated state with gaps between each layer or multiple layers.

また光源は管状のもの以外に、LEDのような点状のも
のも使用できるが、光学系のアライメントの設定が多少
難しくなる。
In addition to the tubular light source, a point-shaped light source such as an LED can also be used, but it becomes somewhat difficult to set the alignment of the optical system.

さらに光源を固定部分に設置して9回転部分に対し非接
触式の光伝送装置と光ファイバなどにより伝送すること
もできる。
Furthermore, it is also possible to install a light source on a fixed part and transmit the light to the nine rotating parts using a non-contact optical transmission device and an optical fiber.

なお、上記の実施例では撮像系に1次元センサを使用し
たが、これは2次元センサを用いてY方向の1本または
複数本のエレメントのデータのみを使用しても同じよう
な効果が得られる。ざらにX方向のエレメントを併用す
ることによって被検体の傾きなどの情報を得ることが出
来ることはいうまでもない。
Although a one-dimensional sensor was used in the imaging system in the above embodiment, the same effect can be obtained by using a two-dimensional sensor and using only data from one or more elements in the Y direction. It will be done. It goes without saying that information such as the inclination of the subject can be obtained by using elements in the rough X direction.

また、被検体の全周にわたる検査を必要とせず。Additionally, there is no need to inspect the entire circumference of the subject.

例えばX方向の特定の範囲のみを検査対象とするような
場合には、撮像系を回転させる必要がない。
For example, when only a specific range in the X direction is to be inspected, there is no need to rotate the imaging system.

このような時には2次元センサを用い、撮像系の光学的
中心からX方向に離れるに従って発生する倍率の違いや
、歪、ピンぼけ等を光学的あるいは電子的に補正するこ
とによって、センサのY方向のビット数だけ1次元セン
サを使用した時と同様の効果を得ることができる。
In such cases, a two-dimensional sensor is used, and by optically or electronically correcting the difference in magnification, distortion, defocus, etc. that occur as the distance from the optical center of the imaging system increases in the X direction, the sensor's Y direction can be improved. The same effect as when using a one-dimensional sensor with the same number of bits can be obtained.

=11− [発明の効果コ 従来、被検体の湾曲部からの光反射作用を利用して形状
の比較判別を行おうとするこの種の検査装置は無く、殆
ど肉眼に頼っていたのが実状である。殊に最近は生産ス
ピードが非常に早いので検査員の眼の疲労が甚だしく2
問題になっていた。
=11- [Effects of the Invention] Conventionally, there has been no inspection device of this type that attempts to compare and distinguish shapes by utilizing the light reflection effect from the curved portion of the object, and the reality is that the inspection system has mostly relied on the naked eye. be. Especially in recent years, production speeds have been so fast that inspectors' eyes have become extremely fatigued2.
It was becoming a problem.

本発明による検査装置は通常の画像処理方式などにより
代行するのは非常に困難であり、可能性があるとしても
生産ラインとは別途に検査専用のステージを作る必要が
ある。故に非常に複雑かつ高価なものにならざるを得な
かった。
It is very difficult to substitute the inspection apparatus according to the present invention using a normal image processing method, and even if it were possible, it would be necessary to create a stage dedicated to inspection separately from the production line. Therefore, it had to be extremely complicated and expensive.

本文に詳記したように本発明に係る装置は小型で簡単な
構成によって、より正確な検査装置を安価に構築し提供
できる。
As described in detail in the main text, the device according to the present invention has a small and simple configuration, so that a more accurate inspection device can be constructed and provided at low cost.

縁端部の湾曲断面が半円形状その他の単純形と見倣せる
被検体においては、量産工程の生産ライン上において非
接触かつ高速でその良否を適確に検出し判別できるとい
う効果がある。
For test objects whose curved cross-sections at the edges can be assumed to be semicircular or other simple shapes, there is an effect that the quality can be accurately detected and determined in a non-contact and high-speed manner on the production line of the mass production process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1の概要図、第2図は反射光の
強度分布を示す図そして第3図は光源と光電観測装置と
を回転させる実施例2の概要図である。 符号1,2.およびnは被検体。 3.4は光源、     5はレンズ。 6は1次元センサ、7,8は光電観測装;69は環状結
合体、     10は人プーリ。 11はベルト、     12は小プーリ。 13はモータ、     14はガイド。 15は軸受機構    16はスリップリング。
FIG. 1 is a schematic diagram of a first embodiment of the present invention, FIG. 2 is a diagram showing the intensity distribution of reflected light, and FIG. 3 is a schematic diagram of a second embodiment in which a light source and a photoelectric observation device are rotated. Code 1, 2. and n is the subject. 3.4 is the light source, 5 is the lens. 6 is a one-dimensional sensor; 7 and 8 are photoelectric observation devices; 69 is a ring-like combination; 10 is a human pulley. 11 is a belt, 12 is a small pulley. 13 is a motor, 14 is a guide. 15 is a bearing mechanism and 16 is a slip ring.

Claims (5)

【特許請求の範囲】[Claims] (1)被検体における鏡面性を有する湾曲部の比較的近
接した位置のそれぞれを照射する複数の光源と、その反
射光を集光処理する光学系および電子撮像系を有する光
電観測装置を備え、前記被検体の各近接位置からの前記
反射光のピークの間隔を観測することによって、各被検
体ごとの湾曲部の形状の差異を比較判別するように構成
したことを特徴とする湾曲部比較検査装置
(1) Equipped with a photoelectric observation device having a plurality of light sources that illuminate relatively close positions of a curved portion having specularity in the subject, an optical system that collects the reflected light, and an electronic imaging system, A curved part comparison test, characterized in that the curved part comparison test is configured to compare and determine the difference in shape of the curved part for each subject by observing the interval between the peaks of the reflected light from each close position of the subject. Device
(2)前記各被検体ごとの観測に際して前記電子撮像系
との相対的距離の差異により生じる光学的歪やピンぼけ
を、電子撮像系に2次元センサを用いることにより補正
された画像信号として抽出できるように構成したことを
特徴とする請求項(1)記載の湾曲部比較検査装置
(2) Optical distortion and defocus caused by differences in relative distance to the electronic imaging system during observation of each subject can be extracted as corrected image signals by using a two-dimensional sensor in the electronic imaging system. A curved portion comparative inspection device according to claim (1), characterized in that it is configured as follows.
(3)前記被検体と複数の光源または前記光電観測装置
の何れかを相対的に移動させながら前記反射光のピーク
の間隔を観測することにより、広範囲にわたる湾曲部の
形状の差異を比較判別するように構成したことを特徴と
する請求項(1)記載の湾曲部比較検査装置
(3) By observing the interval between the peaks of the reflected light while moving the object and either of the plurality of light sources or the photoelectric observation device relatively, the differences in shape of the curved portion over a wide range are compared and determined. A curved portion comparative inspection device according to claim (1), characterized in that it is configured as follows.
(4)前記被検体の周囲を前記複数の光源と光電観測装
置とが相対的に回転するように構成し、前記被検体の全
周に対する比較検査を行えるようにしたことを特徴とす
る請求項(2)記載の湾曲部比較検査装置
(4) Claim characterized in that the plurality of light sources and the photoelectric observation device are configured to rotate relative to each other around the subject, so that a comparative inspection can be performed over the entire circumference of the subject. (2) Curved portion comparative inspection device described in
(5)前記光電観測装置の構成要素の歪や光路の違いな
どにより生じる電子撮像系の光軸の延長線上附近にある
被検体と、それより離れた被検体からの反射光によるピ
ークの間隔のずれを補正する場合、予め撮像センサの領
域を幾つかに分割し、その各々に電子撮像系の光軸の延
長線上附近にある被検体の反射光を基準とした係数を割
り振っておき、その領域に入力した反射光のピークの間
隔とその係数とを演算により補正できるように構成した
ことを特徴とする請求項(1)記載の湾曲部比較検査装
(5) The interval between peaks due to reflected light from a subject near the extension of the optical axis of the electronic imaging system and a subject further away, which is caused by distortion of the components of the photoelectric observation device or differences in the optical path. When correcting the deviation, divide the area of the image sensor into several areas in advance, assign each area a coefficient based on the reflected light from the object near the extension of the optical axis of the electronic imaging system, and adjust the area accordingly. The curved portion comparative inspection device according to claim 1, wherein the curved portion comparison inspection device is configured to be able to correct the interval between peaks of the reflected light inputted to the curve and its coefficient by calculation.
JP815289A 1989-01-17 1989-01-17 Curve comparing and checking device Pending JPH02187612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP815289A JPH02187612A (en) 1989-01-17 1989-01-17 Curve comparing and checking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP815289A JPH02187612A (en) 1989-01-17 1989-01-17 Curve comparing and checking device

Publications (1)

Publication Number Publication Date
JPH02187612A true JPH02187612A (en) 1990-07-23

Family

ID=11685347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP815289A Pending JPH02187612A (en) 1989-01-17 1989-01-17 Curve comparing and checking device

Country Status (1)

Country Link
JP (1) JPH02187612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483109A (en) * 1990-07-26 1992-03-17 Toyo Seikan Kaisha Ltd Method for inspecting failure of can lid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343091A (en) * 1986-06-25 1988-02-24 ジョ−ゼット・シュ−クル−,ネ・ブル−ト Airtight, particularly, vapor dense tube of comparatively flexible multilayer
JPH01129112A (en) * 1987-11-16 1989-05-22 Ueno Hiroshi Inspecting method and apparatus of shape

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343091A (en) * 1986-06-25 1988-02-24 ジョ−ゼット・シュ−クル−,ネ・ブル−ト Airtight, particularly, vapor dense tube of comparatively flexible multilayer
JPH01129112A (en) * 1987-11-16 1989-05-22 Ueno Hiroshi Inspecting method and apparatus of shape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483109A (en) * 1990-07-26 1992-03-17 Toyo Seikan Kaisha Ltd Method for inspecting failure of can lid

Similar Documents

Publication Publication Date Title
EP2972250B1 (en) Container inspection
US5125741A (en) Method and apparatus for inspecting surface conditions
US5737074A (en) Surface inspection method and apparatus
US9551671B2 (en) Method and device for detecting, in particular, refracting defects
US5894345A (en) Optical method of detecting defect and apparatus used therein
US9804099B2 (en) Method and device for the detection in particular of refracting defects
US4610542A (en) System for detecting selective refractive defects in transparent articles
KR101158134B1 (en) Optical inspection for container lean
US4606634A (en) System for detecting selective refractive defects in transparent articles
WO1999051971A1 (en) Method and apparatus for the automatic inspection of optically transmissive planar objects
EP0965836B1 (en) Inspection of container mouth using infrared energy emitted by the container bottom
JP2003139523A (en) Surface defect detecting method and surface defect detecting device
WO1998041851A1 (en) Integral field lens illumination for video inspection
US9188545B2 (en) Container inspection apparatus and method
US6734978B2 (en) Profile measuring method and measurement apparatus using interference of light
JP6290225B2 (en) Equipment for measuring wall thickness of containers
US9518937B2 (en) Optical method for inspecting transparent or translucent articles intended to allocate a reference optical adjustment to the vision system
JP2014240766A (en) Surface inspection method and device
JP2002323454A (en) Method and apparatus for inspecting defects in specimen
JPH02187612A (en) Curve comparing and checking device
JP2005134294A (en) Method and apparatus for inspecting shape of cylindrical part
JP2004333177A (en) Method and apparatus for discriminating object to be inspected
JP2014186030A (en) Defect inspection device
JPH08159878A (en) Illuminating and light receiving apparatus
JPH08285790A (en) Defect detection method for glass fiber sheet