JPH02187413A - Molding composition of diacetylene compound - Google Patents

Molding composition of diacetylene compound

Info

Publication number
JPH02187413A
JPH02187413A JP597289A JP597289A JPH02187413A JP H02187413 A JPH02187413 A JP H02187413A JP 597289 A JP597289 A JP 597289A JP 597289 A JP597289 A JP 597289A JP H02187413 A JPH02187413 A JP H02187413A
Authority
JP
Japan
Prior art keywords
bond
group
diacetylene
thermal conductivity
diacetylene compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP597289A
Other languages
Japanese (ja)
Inventor
Kensaku Tokushige
徳重 健作
Katsuyuki Nakamura
克之 中村
Jinichiro Kato
仁一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP597289A priority Critical patent/JPH02187413A/en
Publication of JPH02187413A publication Critical patent/JPH02187413A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition useful in the field of precision machine and electronics, providing molded articles having excellent rigidity, hardness, coefficient of linear expansion, thermal conductivity, etc., comprising a specific diacetylene compound and a specific filler. CONSTITUTION:The aimed composition comprising a diacetylene compound containing a double bond wherein one or more constituent units of a diacetylene group-containing hydrocarbon group shown by formula I or formula II (R is H or monofunctional molecular weight group; R<1>-R<3> are bifunctional organic group; ether bond, ester bond, amino bond, imino bond or urethane bond may be cited as bonding group) are linked through one or more bonding groups to constituent units of C-C double bond-containing hydrocarbon group and a filler (e.g. glass fiber, carbon fiber, stainless steel fiber or SiC whisker) having <=0.2mm length of minimum direction and >=1w/m.k thermal conductivity.

Description

【発明の詳細な説明】 (発明の利用技術分!l!F) 本発明は、精密機械やエレクトロニクス分野で利用でき
る剛性、硬度、線膨張率、熱伝導率等に優れた成形物を
与えるジアセチレン化合物成形用組成物に関するもので
ある。
Detailed Description of the Invention (Technical Application of the Invention!l!F) The present invention provides a molded product with excellent rigidity, hardness, coefficient of linear expansion, thermal conductivity, etc. that can be used in precision machinery and electronics fields. The present invention relates to an acetylene compound molding composition.

(従来技術) 近年、同和重合によるトポケミカル反応を用いた単結晶
ポリマーの合成は、注目されており、この手法を用いて
、種々の高弾性率を有する高結晶性高分子の開発が試み
られている。(例えば、[有機非線形光学材料」、シー
エムシー(I985)、マクロモレキュルケミストリー
 第134巻、第219頁(I970)、ジャーナルオ
ブボリマー サイエンス第89巻、第133頁(I97
1)、ジャーナルオブボリマー°サイエンスボリマーフ
イジクスエディション 第12巻、第1511頁(I9
74)。)そして熱硬化性樹脂の分野において、耐熱性
の向上を意図してアセチレン基、ノルボルネン環、マレ
イミドとシアナートの組み合せ等の架橋基をもつ各種素
材が開発されている。
(Prior art) In recent years, the synthesis of single-crystalline polymers using topochemical reactions through dopant polymerization has attracted attention, and attempts have been made to develop various highly crystalline polymers with high elastic modulus using this method. There is. (For example, "Organic Nonlinear Optical Materials", CMC (I985), Macromolecular Chemistry Vol. 134, p. 219 (I970), Journal of Bolymer Science Vol. 89, p. 133 (I97
1), Journal of Bolimar° Science Bolimar Physics Edition, Volume 12, Page 1511 (I9
74). ) In the field of thermosetting resins, various materials with crosslinking groups such as acetylene groups, norbornene rings, and combinations of maleimide and cyanate have been developed with the intention of improving heat resistance.

しかし、これらの新規な架橋基は、反応温度が高く、ま
た成形時間がかかる等の欠点がある。
However, these new crosslinking groups have drawbacks such as high reaction temperature and long molding time.

従って、架橋反応を十分に行なわせ、良好な成形体を得
るためには過酷な成形条件が要求される。本発明者らは
、反応性の高い官能基としてジアセチレン基に着目し、
架橋基としての特性を検討してきた。その結果、1つの
分子内にジアセチレン基と二重結合が含有された素材が
、硬化反応性に優れた素材であることを見い出した。し
かし、この素材を成形する際に加熱条件によっては架橋
と分解が同時に起こる事があり、単独での成形は、室温
よりゆっくり加熱する必要があるなど、成形性の面で非
常に不安定であった。そこで、ある一定収下の大きさ及
びある一定収上の熱伝導率を持った充填剤を混ぜる事に
より、成形時、充填剤が反応熱の放熱作用を示し、ジア
セチレン化合物単独であれば分解してしまう物、及び分
解してしまう条件でも分解せずに成形しうる可能性を見
い出し、更に鋭意検討の結果、本発明に到達した。
Therefore, severe molding conditions are required in order to sufficiently carry out the crosslinking reaction and obtain a good molded product. The present inventors focused on diacetylene groups as highly reactive functional groups,
We have investigated its properties as a crosslinking group. As a result, they found that a material containing a diacetylene group and a double bond in one molecule has excellent curing reactivity. However, when molding this material, crosslinking and decomposition may occur at the same time depending on the heating conditions, and molding alone is extremely unstable in terms of moldability, as it requires heating slowly below room temperature. Ta. Therefore, by mixing a filler with a certain yield size and a certain heat conductivity, the filler exhibits a heat dissipation effect for the reaction heat during molding, and if the diacetylene compound alone is used, it will decompose. We discovered the possibility of molding products without decomposing even under conditions that would cause them to decompose, and as a result of further intensive study, we arrived at the present invention.

(発明が解決しようとする課題) 本発明の目的は、成形時に分解することなく安定に成形
でき、亀裂等の構造欠陥が生じ難い、且つ剛性、線膨張
率、熱伝導率等に優れた成形物を与えうるジアセチレン
化合物成形用組成物を提供することである。
(Problems to be Solved by the Invention) The purpose of the present invention is to provide a molding method that can be stably molded without decomposition during molding, is less prone to structural defects such as cracks, and has excellent rigidity, coefficient of linear expansion, thermal conductivity, etc. The object of the present invention is to provide a diacetylene compound molding composition that can provide a molding composition.

(課題を解決するための手段) すなわち本発明は、−数式(+)又は(II)で表わさ
れるジアセチレン基含有炭化水素基の1種又は2種以上
の構成単位と、炭素−炭素二重結合を有する炭化水素基
の1種又は2種以上の構成単位とが、1種又は2種以上
の連結基を介して連結されてなる二重結合を有するジア
セチレン化合物と、最小方向の長さが0.2 mm以下
で且つ熱伝導率が1W/m・K以」二の充填物からなる
ジアセチレン化合物成形用組成物R−c=c−c=c−
R’−・・・・・・(I)−R”−C=C−C=C−R
ff−・・・・・・(II)(ここで、Rは水素原子又
は1価の有機基、R1゜R2,R3は2価の有機基、連
結基としてはエーテル結合、エステル結合、アミノ結合
、イミノ結合、ウレタン結合を表わす。)を提供するも
のである。
(Means for Solving the Problems) That is, the present invention provides one or more constituent units of a diacetylene group-containing hydrocarbon group represented by formula (+) or (II), and a carbon-carbon double A diacetylene compound having a double bond in which one or more structural units of a hydrocarbon group having a bond are connected via one or more connecting groups, and a length in the minimum direction. diacetylene compound molding composition R-c=c-c=c-
R'-・・・・・・(I)-R''-C=C-C=C-R
ff-...(II) (Here, R is a hydrogen atom or a monovalent organic group, R1゜R2, R3 are divalent organic groups, and the linking group is an ether bond, ester bond, or amino bond. , imino bond, and urethane bond).

本発明において、−数式(I)のRは、水素原子又は1
価の有機基であり、例として、CH3−1C2H3−1
C,H。
In the present invention, R in formula (I) is a hydrogen atom or 1
is a valent organic group, for example, CH3-1C2H3-1
C,H.

ならば また、R中の水素原子又は炭化水素基が他の結合に置換
されていてもよく、その結合手としてはエーテル結合、
エステル結合、アミド結合、イミド結合、アミノ結合、
イミノ結合、ウレタン結合等が挙げられる。その際のR
を例示するらのRの水素原子のいくつかが、ニトロ基、
水酸基、シアノ基、カルボキシル基、アミン基、ハロゲ
ン原子等で置換されていてもよい。
Then, the hydrogen atom or hydrocarbon group in R may be substituted with another bond, and the bond may be an ether bond,
Ester bond, amide bond, imide bond, amino bond,
Examples include imino bonds and urethane bonds. R at that time
Some of the hydrogen atoms of R in et al. are nitro groups,
It may be substituted with a hydroxyl group, a cyano group, a carboxyl group, an amine group, a halogen atom, or the like.

本発明において、R1,RZ、R3は、同種又は異種の
2価の有機基であり、その例としては、CH7 −CZ+t、− −C3H。
In the present invention, R1, RZ, and R3 are the same or different divalent organic groups, examples of which are CH7 -CZ+t, - -C3H.

CI!− C− CH,− げられ、またこれらのRI、R2,R3中の水素原子の
いくつかが、ハロゲン原子、ニトロ基、水酸基、シアノ
基、カルボキシル基、アミノ基、アミド基、エステル基
、カルボニル基、エーテル結合等で、置換されていても
よい。
CI! - C- CH, - and some of the hydrogen atoms in these RI, R2, R3 are halogen atoms, nitro groups, hydroxyl groups, cyano groups, carboxyl groups, amino groups, amide groups, ester groups, carbonyl It may be substituted with a group, an ether bond, etc.

また、当該有機基は、エーテル結合、スルホニル結合、
エステル結合、カルボニル結合等で結ばれてなる有機基
でも良く、この具体例を挙げるならば、 Hz− L− 基、脂肪族基、 及び脂環式基の複合した基が挙 これらの、Rl、 R2,R3 のうち好ましいのは、 合成のしやすさと耐熱性の良さから、 −CI+2− 等の炭素−炭素二重結合と芳香族基で構成さ本発明にお
ける炭素−炭素二重結合を有する炭化水素基は、一般に
炭素数1〜2oの1価、又は2価以上の炭化水素基であ
り、その例としては、112C= Cal  CH= 
C1 11□C= C1l −C11□= IIC−C1l  Cl1=CII      Clh
  IIC=llCClh等の炭素−炭素二重結合と水
素原子又は、脂肪族基の組合せで構成された基、 が環構造中に含まれる基等が挙げられる。
In addition, the organic group may include an ether bond, a sulfonyl bond,
It may be an organic group connected by an ester bond, a carbonyl bond, etc., and specific examples include a complex group of an Hz-L- group, an aliphatic group, and an alicyclic group. Among R2 and R3, preferred is a carbonized carbon having a carbon-carbon double bond in the present invention, which is composed of a carbon-carbon double bond and an aromatic group such as -CI+2-, from the viewpoint of ease of synthesis and good heat resistance. The hydrogen group is generally a monovalent, divalent or more hydrocarbon group having 1 to 2 carbon atoms, and examples thereof include 112C= Cal CH=
C1 11□C= C1l -C11□= IIC-C1l Cl1=CII Clh
Examples include a group comprised of a combination of a carbon-carbon double bond and a hydrogen atom or an aliphatic group, such as IIC=llCClh, in which the ring structure contains the following.

これら炭化水素基の水素原子のうちいくつかが、ニトロ
基、水酸基、シアノ基、カルボキシル基、アミン基、ハ
ロゲン原子等で置換されていてもよい。
Some of the hydrogen atoms of these hydrocarbon groups may be substituted with a nitro group, a hydroxyl group, a cyano group, a carboxyl group, an amine group, a halogen atom, or the like.

これらの炭素−炭素二重結合を有する炭化水素基の中で
好ましいものは、硬化反応性から+1.C=CH−H,
C=−C−II□C= Cal  C1l z−CH3 −IIC=CH−−CIl□=IC= C1l  C1
l z−本発明のジアセチレン化合物は、ジアセチレン
基含有炭化水素基と炭素−炭素二重結合を有する炭化水
素基とを連結する連結基が構成単位として含まれる。そ
の連結基としては、エーテル結合(−0−) 、エステ
ル結合 構成している酸素原子が硫黄原子で置換されていても良
い。これら連結基のいずれを用いてもよく、又、1種類
だけでなく2種類以上を組合せてもよい。更に、これら
の連結基以外に、アミド結合 スルホニル結合(−SO□−)、カルボニル結合本発明
のジアセチレン化合物は、前記したようにジアセチレン
基含有炭化水素基と炭素−炭素二重結合を有する炭化水
素基が、上記連結基によって一分子中に結合されてなる
化合物であるが、−分子中に存在するジアセチレン基含
有炭化水素の数に制限はなく、1つだけ含む低分子化合
物であっても、繰り返し単位として2つ以上含むオリゴ
マー更にポリマーであってもよく、又、繰り返し単位と
して含まれる場合、ジアセチレン基含有炭化水素基は、
同種であっても、異種であってもよい。
Among these hydrocarbon groups having a carbon-carbon double bond, those having a +1. C=CH-H,
C=-C-II□C= Cal C1l z-CH3 -IIC=CH--CIl□=IC= C1l C1
lz-The diacetylene compound of the present invention contains a connecting group that connects a diacetylene group-containing hydrocarbon group and a hydrocarbon group having a carbon-carbon double bond as a structural unit. As the linking group, the oxygen atom constituting the ether bond (-0-) or ester bond may be substituted with a sulfur atom. Any of these linking groups may be used, and not only one type but also two or more types may be combined. Furthermore, in addition to these linking groups, the diacetylene compound of the present invention has an amide bond, a sulfonyl bond (-SO□-), a carbonyl bond, a diacetylene group-containing hydrocarbon group, and a carbon-carbon double bond as described above. It is a compound in which hydrocarbon groups are bonded into one molecule by the above-mentioned linking group, but - there is no limit to the number of diacetylene group-containing hydrocarbons present in the molecule, and it is a low-molecular compound containing only one diacetylene group-containing hydrocarbon. However, it may also be an oligomer or polymer containing two or more repeating units, and when it is included as a repeating unit, the diacetylene group-containing hydrocarbon group is
They may be of the same species or different species.

本発明のジアセチレン化合物は、ジアセチレン基含有炭
化水素基及び炭素−炭素二重結合を有する炭化水素基の
他に、構成要件以外の炭化水素基が連結基によって連結
された有機基を構成単位として部分的に含んでいてもよ
い。
In the diacetylene compound of the present invention, in addition to a diacetylene group-containing hydrocarbon group and a hydrocarbon group having a carbon-carbon double bond, the constituent unit is an organic group in which a hydrocarbon group other than the constituent elements is connected by a linking group. may be partially included.

構成要件以外の炭化水素基を例示するならば、CH:l
     CHz  、(e−Hz)−(mは2以上の
結合を有する炭化水素基の存在する比率については特に
制限はないが、好ましい範囲は硬化反応性が顕著である
モル比が0.2〜5である。
Examples of hydrocarbon groups other than constituent elements include CH:l
There is no particular restriction on the ratio of hydrocarbon groups having two or more bonds (CHz, (e-Hz)-(m), but the preferred range is a molar ratio of 0.2 to 5 at which curing reactivity is significant. It is.

更に、その比が0.5〜2のとき最も顕微な効果がみら
れ、特に好ましい。
Furthermore, when the ratio is 0.5 to 2, the most minute effect is seen, which is particularly preferable.

本発明のジアセチレン化合物を例示するならば、次のよ
うなものが挙げられる。
Examples of the diacetylene compounds of the present invention include the following.

等であり、更に、これらの炭化水素基のい(つかが、ニ
トロ基、シアノ基、水酸基、カルボキシル基、アミノ基
、ハロゲン原子等で置換されていてもよい。これらの構
成要件以外の炭化水素基を導入することは、硬化反応性
と成形性をバランスする上で、効果を有する場合がある
etc., and furthermore, some of these hydrocarbon groups may be substituted with a nitro group, a cyano group, a hydroxyl group, a carboxyl group, an amino group, a halogen atom, etc. Hydrocarbons other than these constituent requirements Introducing a group may have an effect in balancing curing reactivity and moldability.

本発明のジアセチレン化合物において、ジアセチレン基
含有炭化水素基と炭素−炭素二重C1l 2− HC=
 C1l  C1l ]−+IC= C1l□ tic = CH(CI* ) !Ic −C1l z −〇CIC=CII  COClI2  CECCミI
I          II 二C−CI(□ 0→− ]111 −C−11C=CHC0−CH2CEC−CEC−CI
l□二〇−Ci C−CI+□ C−HC=CH2 更に、 以下の操り返し単位を持つオリゴマー ポリマー等が挙げられる。
In the diacetylene compound of the present invention, a diacetylene group-containing hydrocarbon group and a carbon-carbon double C1l 2- HC=
C1l C1l ]-+IC= C1l□tic=CH(CI*)! Ic -C1l z -〇CIC=CII COClI2 CECCmiI
I II 2C-CI(□ 0→- ]111 -C-11C=CHC0-CH2CEC-CEC-CI
1□20-Ci C-CI+□ C-HC=CH2 Furthermore, oligomer polymers having the following repeating units are exemplified.

−f CH2−CIl = CH CHz  OC82C=C C=C− C11□ C−CIl□−C−0−C)+2−C,=CC11□−
〇+ CI+□−〇+ ミc−cut−o−c÷ −o−c +− 本発明による充填物とは、最小方向の長さが0.2胴以
下で且つ熱伝導率が1W/m・K以上の物である。
-f CH2-CIl = CH CHz OC82C=C C=C- C11□ C-CIl□-C-0-C)+2-C,=CC11□-
〇+ CI+□-〇+ mi c-cut-o-c÷ -o-c +- The filling according to the present invention is defined as having a length in the minimum direction of 0.2 cylinders or less and a thermal conductivity of 1 W/m.・K or higher.

たとえばガラス繊維、炭素繊維、ステンレス繊維、Si
Cウィスカー、チタン酸カリウムウィスカー、ガラス繊
維などの有機や無機の短繊維、長繊維、またこれらのシ
ート状、紙状、織物状、綿状等、あるいは、シリカ、ア
ルミナ、M化マグネシウム、酸化チタン、タルク、クレ
ー、銅粉、銀粉、金粉、Affi粉、炭素粉、ガラス粉
、アラミド粉、ダイヤモンド粉、チタン酸バリウム、ボ
ロンカーバイド、ボロンナイトライド、窒化珪素(Si
3N4)、マイカ、炭酸カルシウム、ガラスピーズ、硫
酸アルミニウム、硫酸バリウム、硫酸カルシウム、二硫
化モリブデン、ガラスフレーク、雲母等の有機や無機の
粉末、粒状物、薄片状物や棒状、管状、シート状、板状
に成形された物等である。特に250°C以上の高温で
固体状態を保持し得る耐熱材の使用は効果的である。又
、充填物の大きさが大きいと、ジアセチレン化合物との
均一性が悪(なり、又、接触面積も小さくなる事より成
形時における反応熱の放熱性の面で問題があり、最小方
向の長さが0.2舗以下の物が好ましいことがわかった
For example, glass fiber, carbon fiber, stainless fiber, Si
C whiskers, potassium titanate whiskers, organic and inorganic short fibers and long fibers such as glass fibers, sheet-like, paper-like, woven, cotton-like, etc., or silica, alumina, magnesium oxide, titanium oxide , talc, clay, copper powder, silver powder, gold powder, Affi powder, carbon powder, glass powder, aramid powder, diamond powder, barium titanate, boron carbide, boron nitride, silicon nitride (Si
3N4), mica, calcium carbonate, glass peas, aluminum sulfate, barium sulfate, calcium sulfate, molybdenum disulfide, glass flakes, mica, and other organic and inorganic powders, granules, flakes, rods, tubes, sheets, It is an object formed into a plate shape. In particular, it is effective to use a heat-resistant material that can maintain a solid state at a high temperature of 250° C. or higher. In addition, if the size of the filler is large, the uniformity with the diacetylene compound will be poor (and the contact area will also be small, which will cause problems in terms of heat dissipation of reaction heat during molding. It was found that a length of 0.2 length or less is preferable.

一方、充填物自体の熱伝導率も成形時における反応熱の
放熱性の面より、1W/m・K以上が好ましい。これら
の要件が満たされないと、条件によっては成形時に分解
する事もあり、成形時の安全性の面で好ましくない。
On the other hand, the thermal conductivity of the filler itself is preferably 1 W/m·K or more in terms of heat dissipation of reaction heat during molding. If these requirements are not met, depending on the conditions, it may decompose during molding, which is not desirable in terms of safety during molding.

本発明による組成物は、ジアセチレン化合物の比率が多
いと分解がおさえられず、又、充填物の比率が多いと一
体化しにくい事より、ジアセチレン化合物の100部に
対して充填物が5部〜400部、好ましくは10部〜3
00部混合されたものである。又、必要に応じて熱硬化
性樹脂、熱可塑性樹脂、熱安定剤、光安定剤、流れ調節
剤、可塑剤、着色剤、硬化促進・抑制剤等を混ぜて使う
事もできる。
In the composition of the present invention, if the ratio of the diacetylene compound is high, decomposition cannot be suppressed, and if the ratio of the filler is high, it is difficult to integrate, so the composition contains 5 parts of the filler per 100 parts of the diacetylene compound. ~400 parts, preferably 10 parts to 3
00 parts were mixed. Additionally, thermosetting resins, thermoplastic resins, heat stabilizers, light stabilizers, flow control agents, plasticizers, colorants, curing accelerators/inhibitors, etc. can be mixed and used as required.

本発明の組成物を作製するにあたっては溶液状態で含浸
させる方法、分散液状態で含浸させる方法、メルトさせ
た状態で含浸させる方法、あるいは粉体同志で混ぜ合わ
せる方法等により、粉状、管状、シート状、繊維状、板
状、棒状の組成物を作製する。その後、190”0〜4
50°Cの温度で数秒〜数時間の条件で硬化成形させる
。その際、減圧あるいは加圧の条件であっても良い。
The composition of the present invention can be prepared in the form of a powder, a tube, A composition in the form of a sheet, fiber, plate, or rod is produced. Then 190”0~4
It is cured and molded at a temperature of 50°C for several seconds to several hours. At that time, the conditions may be reduced pressure or increased pressure.

場合によっては成形した後、200〜400°Cの温度
でアフターキュアする事もある。使用できる溶媒として
tよ、たとえばエーテル、アセトン、メチルエチルケト
ン、トルエン、テトラヒドロフラン、ジオキサン、酢酸
エチル、ジメチルホルムアミド、ジメチルアセトアミド
、ジメチルスルホキシド、N−メヂルビロリドン、ヘキ
サフルオロイソプロパツール等である。
In some cases, after molding, after-curing is performed at a temperature of 200 to 400°C. Examples of solvents that can be used include ether, acetone, methyl ethyl ketone, toluene, tetrahydrofuran, dioxane, ethyl acetate, dimethyl formamide, dimethyl acetamide, dimethyl sulfoxide, N-methylpyrrolidone, hexafluoroisopropanol, and the like.

用途としては強化成形加工品だけではなく、組成物を他
の有機絶縁材料、たとえばイミド、アミド、アミドイミ
ド、エステル系等の有機ポリマーのフィルムやマイカ箔
、集成マイカ箔、金属箔などと貼合わせ接着して使用す
る事もできる。又、これらの組成物を多層に重ね合わせ
て圧着し積層物とする事もできる。この際銅箔も同時に
圧着して銅張り積層板としてプリント配線用の基板とし
ても用いる事ができる。
Applications include not only reinforced molded products, but also adhesive bonding of the composition to other organic insulating materials, such as imide, amide, amide-imide, ester-based organic polymer films, mica foil, laminated mica foil, metal foil, etc. It can also be used as Furthermore, these compositions can be stacked in multiple layers and pressed together to form a laminate. At this time, a copper foil is also crimped at the same time, so that a copper-clad laminate can be used as a substrate for printed wiring.

(発明の効果) 本発明のジアセチレン化合物成形用組成物は特定の充填
物の添加により分解することな(安定に成形でき、且つ
、硬化成形時の亀裂等の構造欠陥が生じ難い。又、急激
な加熱も可能であり、生産性も大巾に向上する。得られ
る成形体の物性は、既存の樹脂成形体では得られない良
好な物性であり、特に剛性、硬度、線膨張率、熱伝導率
において極めて良好である。
(Effects of the Invention) The diacetylene compound molding composition of the present invention does not decompose (can be stably molded) by adding a specific filler, and structural defects such as cracks are less likely to occur during curing and molding. Rapid heating is also possible, and productivity is greatly improved.The physical properties of the molded product obtained are good, which cannot be obtained with existing resin molded products, especially in terms of rigidity, hardness, coefficient of linear expansion, and thermal properties. Very good conductivity.

本発明のジアセチレン化合物成形用組成物は、これらの
高度な物性を生かし精密機械部品やエレクトロニクス分
野に利用できる。
The diacetylene compound molding composition of the present invention can be used in precision mechanical parts and electronics fields by taking advantage of these advanced physical properties.

(実 施 例) 次に本発明を実施例により具体的に説明するが、本発明
はこれらに限定されるものではない。
(Examples) Next, the present invention will be specifically explained using Examples, but the present invention is not limited thereto.

(実施例1) テトラヒドロフラン?容?夜をPAN系カーボンファイ
バー(ファイバー径7〜8μm、熱伝導率7W/m−K
)のクロス4 cm X 10cmに含浸させ、10枚
かさねて風乾させた後、200°Cにて200kg/c
Jの圧力で60分間の成形を行なった。
(Example 1) Tetrahydrofuran? Yong? PAN-based carbon fiber (fiber diameter 7-8μm, thermal conductivity 7W/m-K)
) was impregnated with 4 cm x 10 cm cloth, stacked with 10 sheets, air-dried, and then heated to 200 kg/c at 200°C.
Molding was carried out for 60 minutes at a pressure of J.

その際、得られた成形体の樹脂含量は23%であった。At that time, the resin content of the molded article obtained was 23%.

成形中には分解する事なく成形でき、得られた成形体の
物性は、曲げ弾性率が8GPaと良好であり、硬度、線
膨張率、熱伝導率も良好であった。
The molded product could be molded without decomposition during molding, and the physical properties of the obtained molded product were good, with a flexural modulus of 8 GPa, and good hardness, coefficient of linear expansion, and thermal conductivity.

(実施例2) −f−OC−C)1=CIl−COO−CH,−C:C
−C11=C−−CHz−0−i  の40%へキサフ
ルオロイソプロパツール?容ン夜に、ガラスチョツプド
ストランド(旭ファイバーグラス製、03MA429 
、ファイバー径13μm、熱伝導率1.1 W/m ・
K)を漫fllし、その後ロータリーエバポレーク−で
ヘキサフルオロイソプロパツールを除去し、樹脂量が3
5%の混合物を得た。
(Example 2) -f-OC-C)1=CIl-COO-CH, -C:C
-C11=C--CHz-0-i 40% hexafluoroisopropanol? Glass chopped strand (Asahi fiberglass, 03MA429)
, fiber diameter 13 μm, thermal conductivity 1.1 W/m ・
K) and then remove the hexafluoroisopropanol with a rotary evaporator until the resin amount is 3.
A 5% mixture was obtained.

その混合物を室温で150kg/ctMで予備成形した
後、200°Cで2.000kg / eIIIの静水
圧下で120分間の成形を行なったところ、分解する事
なく成形でき、その物性は、曲げ弾性率が15.6G 
P aであり、硬度、線膨張率、熱伝導率も良好であっ
た。
The mixture was preformed at room temperature at 150 kg/ctM and then molded at 200°C under a hydrostatic pressure of 2.000 kg/eIII for 120 minutes.The mixture could be molded without decomposition, and its physical properties were as follows: Rate is 15.6G
Pa, and the hardness, coefficient of linear expansion, and thermal conductivity were also good.

(比較例1) (−QC−CIl = CIl −Co O−C11□
−(:=C−(:=  CCHz  O)マを単独で、
室温下150kg/cdtで予備成形後、200°Cで
2,000 kg/cfflの静水圧下で成形したとこ
ろ、約30分で分解した。
(Comparative Example 1) (-QC-CIl = CIl -Co O-C11□
-(:=C-(:= CCHz O) alone,
After preforming at room temperature at 150 kg/cdt, it was molded at 200°C under hydrostatic pressure at 2,000 kg/cffl, and it decomposed in about 30 minutes.

(実施例3〕 タン酸カリウム繊維(天場化学製、Tl5MO2繊維径
0.2〜0.5 a m、熱伝導率5.3W/m−K)
50部とを小型ミルにて混合した物を、室温で150k
g/c礒で予備成形した後、180°Cで2,000k
g / cIllの静水圧下で120分間の成形を行な
った。
(Example 3) Potassium tannate fiber (manufactured by Tenba Kagaku, Tl5MO2 fiber diameter 0.2-0.5 am, thermal conductivity 5.3 W/m-K)
50 parts in a small mill at room temperature to 150k
2,000k at 180°C after preforming with g/c
Molding was carried out for 120 minutes under a hydrostatic pressure of g/cIll.

その結果、分解する事なく成形でき、得られた成形体の
物性は、曲げ弾性率が13.2G P aと良好であり
、硬度、線膨張率、熱伝導率も良好であった。
As a result, the molded product could be molded without decomposition, and the physical properties of the molded product obtained were good, with a flexural modulus of 13.2 GPa, and good hardness, coefficient of linear expansion, and thermal conductivity.

〔実施例4] シリカ(片山化学製、試薬特級、平均粒径0.01μm
、熱伝導率1.5 W/ m−K ) 20部を減圧下
、+ QCCH=CHCOOC1h  CECCミミC
CHzO+80部のへキサフルオロイソプロパツール溶
液に一気に入れ混合した。この混合物を金型に入れ、2
00kg/ c+fl、 200°Cの条件で5時間の
成形を行なったところ、分解する事なく成形でき、その
物性は、曲げ弾性率が7.2GPaと良好であり、硬度
、線膨張率、熱伝導率も良好であった。
[Example 4] Silica (manufactured by Katayama Chemical, special reagent grade, average particle size 0.01 μm
, thermal conductivity 1.5 W/m-K) 20 parts under reduced pressure, + QCCH=CHCOOC1h CECC MimiC
The mixture was added all at once to a hexafluoroisopropanol solution containing 80 parts of CHzO and mixed. Put this mixture into the mold, 2
When molded for 5 hours at 00kg/c+fl and 200°C, it was molded without decomposition, and its physical properties were good with a flexural modulus of 7.2GPa, hardness, coefficient of linear expansion, and thermal conductivity. The rate was also good.

(比較例2) −(l−QC−CIl = CIl −Co O−CH
2−(:= C−CEC−Cl+2−0−);   8
0部と硬化したエポキシ樹脂(旭化成工業製、AER3
31、粉砕して200メツシユをバスさせたもので75
μm以下、熱伝導率0.2W/m−K)20部をヘキサ
フルオロイソプロパツール中で混ぜた後、ヘキサフルオ
ロイソプロパツールをドライアップした。この混合物を
金型に入れ、200kg/CI(、200’Cの条件で
5時間の成形を行なったところ、分解し、成形できなか
った。
(Comparative Example 2) -(l-QC-CIl=CIl-CoO-CH
2-(:=C-CEC-Cl+2-0-); 8
0 parts and cured epoxy resin (manufactured by Asahi Kasei Kogyo, AER3
31, crushed and bathed with 200 mesh is 75
After mixing 20 parts of hexafluoroisopropanol (less than .mu.m, thermal conductivity 0.2 W/m-K) in hexafluoroisopropanol, the hexafluoroisopropanol was dried up. When this mixture was put into a mold and molded for 5 hours at 200 kg/CI (200'C), it decomposed and could not be molded.

(実施例5) HC= CH−COOCHz  C”i CCミc−c
utしたアルミナ(日本アエロジル類、アルミニウムオ
キサイドC1平均粒径0.02μm、熱伝導率20W/
 m、 −K ) 40部に一気に加え、混合後、アセ
トンをロータリーエバポレーターで除去した。
(Example 5) HC= CH-COOCHz C”i CCmi c-c
ut alumina (Japan Aerosil, aluminum oxide C1 average particle size 0.02μm, thermal conductivity 20W/
m, -K) was added all at once to 40 parts, and after mixing, acetone was removed using a rotary evaporator.

その混合物を金型に入れ、プレスにて250°C120
0kg/crflで120分間成形したところ、分解す
る事なく成形でき、その物性は、曲げ弾性率が9、 O
G P aと良好であり、硬度、線膨張率、熱伝導率も
良好であった。
Put the mixture into a mold and press at 250°C120
When molded for 120 minutes at 0 kg/crfl, the molding was possible without decomposition, and its physical properties were that the flexural modulus was 9, O
It had a good G Pa, and its hardness, coefficient of linear expansion, and thermal conductivity were also good.

(実施例6) −(l−QC−C)l = C1(−COO−CIl□
−c=c−c= C−Cl1□−oh70部と、Eガラ
ス粉砕物(平均粒径0.15mm、熱伝導率1.1 W
/m −K) 30部とを小型ミルで混合した後、室温
下、150kg/aaの条件で予備成形後、200°C
52,000kg/c+11で60分間の成形を行なっ
た。成形中には分解する事なく成形でき、得られた成形
体の物性は、曲げ弾性率が10.3GPaと良好であり
、硬度、線膨張率、熱伝導率も良好であった。
(Example 6) -(l-QC-C)l = C1(-COO-CIl□
-c=c-c= C-Cl1□-oh 70 parts and E glass pulverized material (average particle size 0.15 mm, thermal conductivity 1.1 W
/m-K) in a small mill, preformed at room temperature at 150 kg/aa, and then heated at 200°C.
Molding was carried out for 60 minutes at 52,000 kg/c+11. The molded product could be molded without decomposition during molding, and the physical properties of the obtained molded product were good, with a flexural modulus of 10.3 GPa, and good hardness, coefficient of linear expansion, and thermal conductivity.

(比較例3) 実施例6のEガラス粉砕物(平均粒径0.15mm)の
かわりにEガラス粉砕物(平均粒径0.5 mm、熱伝
導率1.1 W/m−K)を使った以外は実施例6をく
り返した。その結果、分解が起こり成形体が得られなか
った。
(Comparative Example 3) Instead of the E-glass pulverized product (average particle size 0.15 mm) of Example 6, E-glass pulverized product (average particle size 0.5 mm, thermal conductivity 1.1 W/m-K) was used. Example 6 was repeated except that: As a result, decomposition occurred and a molded article could not be obtained.

Claims (1)

【特許請求の範囲】 一般式( I )又は(II)で表わされるジアセチレン基
含有炭化水素基の1種又は2種以上の構成単位と、炭素
−炭素二重結合を有する炭化水素基の1種又は2種以上
の構成単位とが、1種又は2種以上の連結基を介して連
結されてなる二重結合を有するジアセチレン化合物と、
最小方向の長さが0.2mm以下で且つ熱伝導率が1W
/m・K以上の充填物からなるジアセチレン化合物成形
用組成物 R−C≡C−C≡C−R^1……( I ) −R^2−C≡C−C≡C−R^3−……(II) (ここで、Rは水素原子又は1価の有機基、R^1R^
2、R^3は2価の有機基、連結基としてはエーテル結
合、エステル結合、アミノ結合、イミノ結合、ウレタン
結合を表わす。)
[Scope of Claims] One or more constituent units of a diacetylene group-containing hydrocarbon group represented by general formula (I) or (II) and one hydrocarbon group having a carbon-carbon double bond. A diacetylene compound having a double bond in which the species or two or more structural units are connected via one or more linking groups;
The length in the minimum direction is 0.2 mm or less and the thermal conductivity is 1W.
/m・K or more diacetylene compound molding composition R-C≡C-C≡C-R^1...(I) -R^2-C≡C-C≡C-R^ 3-...(II) (Here, R is a hydrogen atom or a monovalent organic group, R^1R^
2, R^3 represents a divalent organic group, and the linking group represents an ether bond, ester bond, amino bond, imino bond, or urethane bond. )
JP597289A 1989-01-17 1989-01-17 Molding composition of diacetylene compound Pending JPH02187413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP597289A JPH02187413A (en) 1989-01-17 1989-01-17 Molding composition of diacetylene compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP597289A JPH02187413A (en) 1989-01-17 1989-01-17 Molding composition of diacetylene compound

Publications (1)

Publication Number Publication Date
JPH02187413A true JPH02187413A (en) 1990-07-23

Family

ID=11625770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP597289A Pending JPH02187413A (en) 1989-01-17 1989-01-17 Molding composition of diacetylene compound

Country Status (1)

Country Link
JP (1) JPH02187413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869537B1 (en) * 1999-05-25 2005-03-22 Chubu Chelest Co., Ltd. Metal chelate-forming fiber, process for producing the same, method of trapping metal ion with the fiber, and metal chelate fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869537B1 (en) * 1999-05-25 2005-03-22 Chubu Chelest Co., Ltd. Metal chelate-forming fiber, process for producing the same, method of trapping metal ion with the fiber, and metal chelate fiber

Similar Documents

Publication Publication Date Title
JPS60243113A (en) Epoxy resin composition having improved toughness
JPS62181335A (en) Thermosetting composition
Huang et al. Studied on mechanical, thermal and dielectric properties of BPh/PEN-OH copolymer
JPWO2017188448A1 (en) Composition for cured resin and cured product thereof
WO2019083004A1 (en) Composition for cured resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
CN111278882B (en) Composition for curing resin, cured product of the composition, method for producing the composition and the cured product, and semiconductor device
CA2967889A1 (en) Resin composition
JPH02187413A (en) Molding composition of diacetylene compound
US11098157B2 (en) Polyester resin composition
WO2019124558A1 (en) Thermosetting resin composition
JPH02145614A (en) Thermosetting resin composition
JPH0618835B2 (en) Curable resin composition
Zheng et al. Structure and properties of novel epoxy resins containing naphthalene units and aliphatic chains
RU2105017C1 (en) Composition for preparing prepreg
JPH02229849A (en) Molding composition of diacetylene compound
JPH02117913A (en) Epoxy resin composition
JP2736442B2 (en) Epoxy resin composition for carbon fiber composite material
Tanaka et al. Dynamic mechanical properties of multi-functional epoxy resin cured with diamine and filled with pitch-based carbon short fibers treated with coupling agents
JP2910957B2 (en) Unsaturated imide resin composition
US5089599A (en) Thermosetting resin composition comprising bis-imide and bis-oxazoline
JPH05148346A (en) Thermosetting epoxy resin composition
Hergenrother et al. Polyquinoxaline Matrix Resins And Composites
JPH02286704A (en) Polymer composition and composite material containing it
JPH0420520A (en) Fumaric acid-diacetylene cooligomer molding composition
Pascal et al. Heat resistant semi-IPNs