JPH02187329A - Thermoplastic resin laminated sheet - Google Patents

Thermoplastic resin laminated sheet

Info

Publication number
JPH02187329A
JPH02187329A JP709389A JP709389A JPH02187329A JP H02187329 A JPH02187329 A JP H02187329A JP 709389 A JP709389 A JP 709389A JP 709389 A JP709389 A JP 709389A JP H02187329 A JPH02187329 A JP H02187329A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
layer
resin
base material
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP709389A
Other languages
Japanese (ja)
Inventor
Kohei Tsumura
津村 航平
Mitsuhiro Inoue
光弘 井上
Katsuhiro Onose
勝博 小野瀬
Hiroshi Hasegawa
寛士 長谷川
Harumi Negishi
春巳 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP709389A priority Critical patent/JPH02187329A/en
Publication of JPH02187329A publication Critical patent/JPH02187329A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/034Organic insulating material consisting of one material containing halogen
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To halve the edgewise thermal expansion coefficient and consequently to improve the dimensional stability by a method wherein a thermoplastic resin- impregnated base material layer is formed on the surface of a thermoplastic resin layer formed on the surface of a ceramic layer, which is formed on one side of a metal foil, so as to be formed into an integral body. CONSTITUTION:The thermoplastic resin laminated sheet concerned consists of copper foils 1, which form the outer surfaces of the sheet, ceramic layers 2, which are produced onto the inner surface of each of the copper foils, FEP resin layers 4, which are produced onto the inner surface of each of the ceramic layers, and a PTFE resin- impregnated glass cloth base material layer 3, which is produced onto the inner surfaces of the FEP resin layers so as to be made into an integral body. As the copper foil 1, electrolytic copper foil, the thickness of which is 35mum and the surface in contact with the ceramic layer of which is roughened, is employed. The ceramic layer 2 is produced by spraying mullite on the copper foil and has a thickness of 0.1mm. The FEP resin layer 4 is the FEP film having a thickness of 0.1mm and being favorably impregnated in and bonded to the unevenness of the surface of the ceramic layer. The thickness of the FEP resin layer is turned into 85mum after the integration due to fluidization.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属箔と熱可塑性樹脂含浸基材層の間にセラ
ミック層を有する熱可塑性樹脂積層板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a thermoplastic resin laminate having a ceramic layer between a metal foil and a thermoplastic resin-impregnated substrate layer.

〔従来の技術〕[Conventional technology]

プリント配線板としてこれまでは紙、ガラス繊維、ケプ
ラー繊維などの繊維基材にフェノール樹脂、エポキシ樹
脂、ポリイミド樹脂などの熱硬化性樹脂を含浸し、表面
に銅箔などの金属箔を張った積層板が広く用いられてき
た。
Until now, printed wiring boards have been made of laminated layers made by impregnating a fiber base material such as paper, glass fiber, or Kepler fiber with thermosetting resin such as phenol resin, epoxy resin, or polyimide resin, and then covering the surface with metal foil such as copper foil. Boards have been widely used.

ところが、最近では、これまでの熱硬化性樹脂主体の積
層板に代わって熱可塑性樹脂を繊維基材に含浸させた積
層板が注目されてきた。これら熱可塑性樹脂を用いた積
層板は次のような特長を有するためである。
However, recently, instead of the conventional laminates mainly composed of thermosetting resins, laminates in which a fiber base material is impregnated with a thermoplastic resin have been attracting attention. This is because laminates using these thermoplastic resins have the following features.

すなわち、テフロン樹脂をはじめとする熱可塑性樹脂は
誘電率、誘電正接がフェノール樹脂、エポキシ樹脂、ポ
リイミド樹脂などの熱硬化性樹脂に比べて小さい点であ
る。プリント配線板においてその回路の信号伝送速度及
び伝送損失は基板の誘電率及び誘電正接に大きく影響さ
れる。基板の誘電率が小さいほどその信号の伝送速度は
大きく、また誘電正接が小さいほど伝送損失は小さくな
る。したがって、コンピュータなど信号伝送の高度化、
高効率化が要求される用途では基板には低誘電率、低誘
電正接であることが要求される。このようなことから低
誘電率、低誘電正接の熱可塑性樹脂基板は注目をあびて
いる。
That is, thermoplastic resins such as Teflon resin have a smaller dielectric constant and dielectric loss tangent than thermosetting resins such as phenol resin, epoxy resin, and polyimide resin. In a printed wiring board, the signal transmission speed and transmission loss of the circuit are greatly influenced by the dielectric constant and dielectric loss tangent of the board. The smaller the dielectric constant of the substrate, the higher the signal transmission speed, and the smaller the dielectric loss tangent, the smaller the transmission loss. Therefore, the advancement of signal transmission such as computers,
In applications where high efficiency is required, the substrate is required to have a low dielectric constant and a low dielectric loss tangent. For these reasons, thermoplastic resin substrates with low dielectric constants and low dielectric loss tangents are attracting attention.

ところが、このような特長を有する熱可塑性樹脂積層板
にも次に述べる問題点がある。
However, even thermoplastic resin laminates having such features have the following problems.

それは、熱膨張係数が大きい点である。テフロン樹脂を
はじめとするガラス布基材熱可塑性樹脂積層板の面方向
の熱膨張係数は20〜25X 10−’ /℃とエポキ
シ樹脂、ポリイミド樹脂などのガラス布基材熱硬化性樹
脂積層板の10〜15X10”/”Cに比べて大きい。
The reason is that it has a large coefficient of thermal expansion. The coefficient of thermal expansion in the plane direction of glass cloth-based thermoplastic resin laminates such as Teflon resin is 20 to 25X 10-'/℃, and that of glass cloth-based thermosetting resin laminates such as epoxy resin and polyimide resin. It is larger than 10~15X10"/"C.

これは、基板上に接続する部品との接続信頼性の低下を
もたらす。基板上に接続するシリコンチップ(熱膨張係
数3.5 X 10−’ /’C) 、アルミナチップ
(熱膨張係数6〜7 X 10−’ /’C)との熱膨
張係数差が大きいと使用時の熱変化により部品と基板と
の接続部にクラックあるいは剥離等の欠陥が発生しやす
い。
This results in a decrease in connection reliability with components connected on the board. Used when there is a large difference in thermal expansion coefficient between the silicon chip (thermal expansion coefficient 3.5 x 10-'/'C) and alumina chip (thermal expansion coefficient 6-7 x 10-'/'C) connected to the substrate. Defects such as cracks or peeling are likely to occur at the connection between the component and the board due to thermal changes over time.

そこで、これを改良するため金属箔の片面にセラミック
を溶射したセラミック層を形成し、それに熱可塑性樹脂
プリプレグを設はプレスで一体化したセラミックコート
熱可塑性樹脂積層板が提案された。この方法により寸法
安定性は向上できるようになった。
To improve this, a ceramic-coated thermoplastic resin laminate was proposed, in which a ceramic layer is formed by thermal spraying on one side of a metal foil, and a thermoplastic resin prepreg is attached to the ceramic layer, which is then integrated using a press. This method made it possible to improve dimensional stability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、セラミック層と熱可塑性樹脂含浸基材層であ
る熱可塑性プリプレグ層を直接プレス成形で一体化する
方法では、セラミック層と熱可塑性樹脂基材層の密着性
が不十分であるという問題が生じた。
However, with the method of directly integrating the ceramic layer and the thermoplastic prepreg layer, which is a thermoplastic resin-impregnated base material layer, by press molding, a problem arises in that the adhesion between the ceramic layer and the thermoplastic resin base material layer is insufficient. Ta.

熱可塑性樹脂は、熱硬化性樹脂に比べ加熱時に軟化しや
すい性質があり、融点以上で溶融する。しかしその時の
樹脂の粘度は、一般に硬化する直前の液状の熱硬化性樹
脂の粘度に比べ100倍以上大きく非常に流動性が悪い
。そこで、熱可塑性樹脂含浸基材層とセラミック層を直
接重ね、基材に含浸している樹脂のみでセラミック層と
一体化しても強い密着力がでない。
Thermoplastic resins tend to soften more easily when heated than thermosetting resins, and melt at temperatures above their melting point. However, the viscosity of the resin at that time is generally more than 100 times greater than the viscosity of the liquid thermosetting resin immediately before curing, and has very poor fluidity. Therefore, even if the thermoplastic resin-impregnated base material layer and the ceramic layer are directly stacked and integrated with the ceramic layer using only the resin impregnated into the base material, strong adhesion cannot be achieved.

また、密着力を上げるため加圧力と加熱温度を大′きく
しすぎると基材の繊維が乱れたり樹脂が劣化したりし積
層板の特性上好ましくない。
Furthermore, if the pressing force and heating temperature are increased too much in order to increase adhesion, the fibers of the base material will be disturbed and the resin will deteriorate, which is unfavorable in terms of the properties of the laminate.

しかも、積層板には半田耐熱等、耐熱性が要求されるた
め、融点は200℃以上の方が良い。
Moreover, since the laminate is required to have heat resistance such as solder heat resistance, it is better for the melting point to be 200° C. or higher.

しかし、融点が200℃以上の耐熱性の優れた熱可塑性
樹脂は溶融時の粘度が高く、流動性が悪いため、セラミ
ック層と熱可塑性わ(脂含浸基材層を直接一体化し十分
な密着力を得るのはさらに困難となる。
However, thermoplastic resins with excellent heat resistance and a melting point of 200°C or higher have high viscosity when melted and have poor fluidity. is even more difficult to obtain.

そこで、本発明はセラミック層と熱可塑性樹脂含浸基材
層を十分な密着性を有して一体化した、寸法安定性の優
れた熱可塑性樹脂積層板を提案することを目的としたも
のである。
Therefore, the object of the present invention is to propose a thermoplastic resin laminate with excellent dimensional stability, in which a ceramic layer and a thermoplastic resin-impregnated base material layer are integrated with sufficient adhesion. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明による熱可塑性樹脂積層板は、金属箔の片面にセ
ラミック層を形成し、該セラミック層の表面に熱可塑性
樹脂層を形成し、該熱可塑性樹脂層の表面に熱可塑性樹
脂含浸基材層を形成して一体化されているという技術的
手段が講じられている。
The thermoplastic resin laminate according to the present invention has a ceramic layer formed on one side of a metal foil, a thermoplastic resin layer formed on the surface of the ceramic layer, and a thermoplastic resin impregnated base material layer on the surface of the thermoplastic resin layer. Technical measures have been taken to form and integrate the

すなわち、セラミック層と熱可塑性樹脂含浸基材層の間
に熱可塑性樹脂層を有し、密着性を向上させている点が
特徴である。セラミック層と熱可塑性樹脂含浸基材層は
無機物と有機物という異質な材料であり適した接着剤は
みあたらない。たとえば、硬化直前の液状熱硬化性樹脂
のように粘度が低(密着性の高い材料はセラミック層の
空間部分には良(浸透していくが熱可塑性との密着性が
悪い。そこで熱可塑性樹脂含浸基材filの樹脂と同系
列の熱可塑性樹脂層をセラミック層と基材層の間に設け
ることが非常に効果的手段である。この熱可塑性樹脂層
の樹脂がセラミック層の空間部に浸透し密着性を向上さ
せ、また基材層の樹脂との密着性は当然優れているため
、セラミック層と基材層間の密着性を向上させることが
できる。さらに樹脂層の厚さを変えることにより積層板
の誘電特性等の特性を設計的に自由に変えることが可能
となる。
That is, it is characterized in that it has a thermoplastic resin layer between the ceramic layer and the thermoplastic resin-impregnated base layer to improve adhesion. The ceramic layer and the thermoplastic resin-impregnated base material layer are made of different materials, including inorganic and organic materials, and no suitable adhesive has been found. For example, a material with low viscosity (high adhesion), such as a liquid thermosetting resin just before curing, will penetrate into the spaces in the ceramic layer, but it will not adhere well to the thermoplastic. A very effective means is to provide a thermoplastic resin layer of the same series as the resin of the impregnated base material fil between the ceramic layer and the base material layer.The resin of this thermoplastic resin layer penetrates into the spaces in the ceramic layer. Furthermore, since the adhesion with the resin of the base material layer is naturally excellent, it is possible to improve the adhesion between the ceramic layer and the base material layer.Furthermore, by changing the thickness of the resin layer. It becomes possible to freely change the properties such as the dielectric properties of the laminate in terms of design.

次に本発明について詳細に説明する。Next, the present invention will be explained in detail.

金属箔としては、銅、アルミニウム、鉄、ステンレス、
ニッケル、銀、インバー合金、42合金などの金属ある
いは合金の箔が用いられるが、中でも銅箔は最も一般的
にプリント基板の回路部として用いられており、しかも
安価であるため最も好適である。
Metal foils include copper, aluminum, iron, stainless steel,
Foils of metals or alloys such as nickel, silver, invar alloy, and 42 alloy are used, but copper foil is most commonly used as the circuit part of printed circuit boards, and is the most suitable because it is inexpensive.

金属箔に形成するセラミック層は、焼結したセラミック
板を金属箔に接着したものでもよい。
The ceramic layer formed on the metal foil may be a sintered ceramic plate bonded to the metal foil.

しかし、溶射により形成されたセラミック層は金属箔と
の密着性が良く、また中部に5〜2096VOLの気孔
を有しているため熱可塑性樹脂との密着性も向上するた
めさらに良い。
However, the ceramic layer formed by thermal spraying has good adhesion to the metal foil, and is even better because it has 5 to 2096 VOL pores in the middle, which improves the adhesion to the thermoplastic resin.

溶射するセラミックの種類は、アルミナ、シリカ、ジル
コニア、マグネシア、カルシア、スピネル、ムライト、
チタン酸バリウムなどが用いられる。
The types of ceramics to be sprayed include alumina, silica, zirconia, magnesia, calcia, spinel, mullite,
Barium titanate or the like is used.

熱可塑性樹脂としては、電子材料として半田耐熱等が要
求されるため融点が高い方が良く、特に200℃以上で
ある樹脂が適している。これは、熱可塑性樹脂層及び基
材層に用いる樹脂に共通していえることである。樹脂の
種類としては、誘電率、誘電正接が低く融点が270°
C以上あるフッ素樹脂が特に好ましい。しかし、その他
ポリサルホン樹脂、ポリエーテルサンホン樹脂、ポリエ
ーテルイミド樹脂、ポリエーテルエーテル樹脂、ホリフ
エニレンザルファイド樹脂等、融点200℃以上の樹脂
を用いることができる。
Since the thermoplastic resin is required to have soldering heat resistance as an electronic material, it is better to have a high melting point, and a resin having a temperature of 200° C. or higher is particularly suitable. This is common to resins used for the thermoplastic resin layer and the base material layer. The type of resin has a low dielectric constant and dielectric loss tangent, and a melting point of 270°.
Particularly preferred are fluororesins having C or more. However, other resins having a melting point of 200° C. or higher can be used, such as polysulfone resin, polyether sanphone resin, polyetherimide resin, polyether ether resin, and polyphenylene sulfide resin.

また、熱可塑性樹脂h/Jに使用する樹脂は基材層と同
じ樹脂又は同種の樹脂が密着性の点から望ましい。しか
し、密着性を満足できれば異なってもかまわない。
Further, the resin used for the thermoplastic resin h/J is preferably the same resin as the base material layer or the same type of resin from the viewpoint of adhesiveness. However, they may be different as long as the adhesion can be satisfied.

例えば基材層に含浸させる樹脂として融点327°Cの
PTFg樹脂(テトラフロロエチレン樹脂)を用い、熱
可塑性樹脂層に融点270℃のFF1P樹脂(フッ化エ
チレンプロピレン樹脂)を用いることができる。このよ
うに同系のフッ素樹脂を使用し熱可塑性樹脂層の樹脂の
融点を基材層の樹脂の融点より下げると密着性がさらに
向上する。
For example, PTFg resin (tetrafluoroethylene resin) having a melting point of 327° C. can be used as the resin to be impregnated into the base material layer, and FF1P resin (fluorinated ethylene propylene resin) having a melting point of 270° C. can be used for the thermoplastic resin layer. In this way, when the same type of fluororesin is used and the melting point of the resin in the thermoplastic resin layer is lower than the melting point of the resin in the base material layer, the adhesion is further improved.

熱可塑性樹脂層は均一な密着力を出すためシート状であ
ることが望ましい。そして、熱可塑性樹脂層の厚さは、
0.01mm以下であると密着力を平均−向上させるに
は適さず、0.01 mm以上が好ましく、厚すぎても
密着力が下がるため1 +nm以下が適している。
The thermoplastic resin layer is desirably sheet-like in order to provide uniform adhesion. And the thickness of the thermoplastic resin layer is
A thickness of 0.01 mm or less is not suitable for improving the average adhesion, a thickness of 0.01 mm or more is preferable, and a thickness of 1 + nm or less is suitable because too thick a layer lowers the adhesion.

次に熱可塑性樹脂含浸基材層に用いる基材ととしでは、
一般に繊維基材が用いられるが、電気特性、機械的特性
などの点からガラス繊維が適している。しかし、その他
ケブラー繊維、クォーツ繊維、アルミナ繊維などを用い
ることができる。
Next, the base material used for the thermoplastic resin impregnated base material layer is as follows:
Although fiber base materials are generally used, glass fibers are suitable from the viewpoint of electrical properties, mechanical properties, etc. However, other materials such as Kevlar fiber, quartz fiber, and alumina fiber can also be used.

〔実施例〕〔Example〕

本発明の実施例を第1図を用いて説明する。 An embodiment of the present invention will be described with reference to FIG.

第1図は外表面の銅箔1と、その内表面に形成されたセ
ラミック層2とその内表面に形成されたF″BP樹脂層
4とその内表面にガラス布基材にPTFE樹脂を含浸さ
せた層3から構成され一体化された銅張積層板である。
Figure 1 shows a copper foil 1 on the outer surface, a ceramic layer 2 formed on its inner surface, an F″BP resin layer 4 formed on its inner surface, and a glass cloth base material impregnated with PTFE resin on its inner surface. This is an integrated copper-clad laminate made up of three layers.

銅箔1は、厚さ35μmの電解鋼箔であり、セラミック
層と接している面が粗化されている。
The copper foil 1 is an electrolytic steel foil with a thickness of 35 μm, and the surface in contact with the ceramic layer is roughened.

セラミック層2は、銅箔上にムライト(人■、03;7
8%、S Lot : 22 %)が溶射され形成され
た層であり0゜1 +nmの厚さである。p g p 
j54脂層3は、0.1n血のFEPフィルムであり、
セラミック層の表面の凹凸に良く含浸し密着している。
Ceramic layer 2 is made of mullite (human, 03; 7) on copper foil.
8%, S Lot: 22%) is a layer formed by thermal spraying and has a thickness of 0°1 + nm. p g p
j54 fat layer 3 is a 0.1n blood FEP film,
It is well impregnated and adheres to the irregularities on the surface of the ceramic layer.

一体化された後は流動したため厚さが85μmになって
いる。ガラス布基材にP T P w樹脂を含浸させた
層は、厚さ0.85mmであり、ガラス布基材の繊維間
に十分PTPE樹脂が含浸されている。これは厚さ0.
13 mm、樹脂含有率65重量%のPTFB樹脂含浸
ガラス布が7枚積層されたものである。
After being integrated, the thickness was 85 μm due to fluidity. The layer in which the glass cloth base material is impregnated with PTPw resin has a thickness of 0.85 mm, and the PTPE resin is sufficiently impregnated between the fibers of the glass cloth base material. This thickness is 0.
Seven sheets of PTFB resin-impregnated glass cloth having a thickness of 13 mm and a resin content of 65% by weight were laminated.

積層板の密着性を確認するためホットオイルによる熱衝
撃試験(室温の水と260℃シリコーンオイルに交互に
浸i&)60サイクル後、剥離、クラック等の発生を調
べたが異常は認められず良好であった。この積層板の面
方向の熱膨張係数は12X10−’/℃でありムライト
溶射層のないもの(熱膨張係数22X 10−’/’C
)の約1/2まで低減することができた。また誘電率は
2.6、誘電正接は0.0002であった。
To confirm the adhesion of the laminate, after 60 cycles of thermal shock testing with hot oil (alternate immersion in room temperature water and 260°C silicone oil), we examined the occurrence of peeling, cracks, etc., but no abnormalities were observed. Met. The coefficient of thermal expansion in the plane direction of this laminate is 12X10-'/'C, and the one without the mullite sprayed layer (coefficient of thermal expansion 22X10-'/'C
) was able to be reduced to about 1/2. Further, the dielectric constant was 2.6 and the dielectric loss tangent was 0.0002.

比較のため実施例においてpEpフィルムをとりのぞき
、その他は全〈実施例と同一である。
For comparison, the pEp film was removed from the example, and all other aspects were the same as in the example.

積層板を第2図に示す。積層板の密着性を確認するため
ホットオイルによる熱衝撃試験60サイクル後、剥離、
クラック等の発生を調べた結果、ムライト層とガラス布
フッ素樹脂層間にわずかな層間剥離が確められた。その
他は実施例とほぼ同等の特性を示した。
The laminate is shown in FIG. After 60 cycles of thermal shock test with hot oil to confirm the adhesion of the laminate, peeling,
As a result of examining the occurrence of cracks, etc., it was confirmed that there was slight delamination between the mullite layer and the glass cloth fluororesin layer. In other respects, the properties were almost the same as those of the example.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、従来のセラミックコート熱可塑
性樹脂積層板に比ベセラミック層と熱可塑性樹脂層との
密着性が向上し、しかもセラミック層を用いない熱可塑
性樹脂積層板に比べ面方向の熱膨張係数が約1/2とな
り寸法安定性が向上した。また誘電率、誘電正接が小さ
く電気特性に優れた積層板が得られた。
According to the method of the present invention, the adhesion between the ceramic layer and the thermoplastic resin layer is improved compared to the conventional ceramic coated thermoplastic resin laminate, and moreover, the adhesion in the surface direction is improved compared to the thermoplastic resin laminate that does not use a ceramic layer. The thermal expansion coefficient was reduced to about 1/2, resulting in improved dimensional stability. Furthermore, a laminate with low dielectric constant and dielectric loss tangent and excellent electrical properties was obtained.

【図面の簡単な説明】 第1図は、本発明の実施例の構成を示す積層構成図、第
2図は比較例の構成を示す積層構成図である。 符号の説明 1・・・銅箔        2・・・ムライト溶射層
3・・・FTFB樹脂含浸ガラス布基材層4・・・pg
p樹脂層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a laminated configuration diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a laminated configuration diagram showing the configuration of a comparative example. Explanation of symbols 1...Copper foil 2...Mullite sprayed layer 3...FTFB resin-impregnated glass cloth base layer 4...pg
p resin layer

Claims (1)

【特許請求の範囲】 1、金属箔の片面にセラミック層を形成し、該セラミッ
ク層の表面に熱可塑性樹脂層を形成し、該熱可塑性樹脂
層の表面に熱可塑性樹脂含浸基材層を形成して、一体化
されていることを特徴とする熱可塑性樹脂積層板。 2、金属箔が、銅箔である請求項1記載の熱可塑性樹脂
積層板。 3、セラミック層が、溶射された層である請求項1記載
の熱可塑性樹脂積層板。 4、熱可塑性樹脂が、融点200℃以上の樹脂である請
求項1記載の熱可塑性樹脂積層板。 5、熱可塑性樹脂が、フッ素樹脂である請求項1記載の
熱可塑性樹脂積層板。 6、熱可塑性樹脂層が、シート状樹脂層である請求項1
記載の熱可塑性樹脂積層板。 7、熱可塑性樹脂層の厚さが、0.01mm以上で1m
m以下である請求項1記載の熱可塑性樹脂積層板。 8、熱可塑性樹脂含浸基材層の基材が、ガラス繊維であ
る請求項1記載の熱可塑性樹脂積層板。 9、熱可塑性樹脂層の融点が、熱可塑性樹脂含浸基材層
の融点より低い請求項1記載の熱可塑性樹脂積層板。
[Claims] 1. A ceramic layer is formed on one side of a metal foil, a thermoplastic resin layer is formed on the surface of the ceramic layer, and a thermoplastic resin-impregnated base material layer is formed on the surface of the thermoplastic resin layer. A thermoplastic resin laminate characterized by being integrated with. 2. The thermoplastic resin laminate according to claim 1, wherein the metal foil is copper foil. 3. The thermoplastic resin laminate according to claim 1, wherein the ceramic layer is a thermally sprayed layer. 4. The thermoplastic resin laminate according to claim 1, wherein the thermoplastic resin has a melting point of 200°C or higher. 5. The thermoplastic resin laminate according to claim 1, wherein the thermoplastic resin is a fluororesin. 6. Claim 1, wherein the thermoplastic resin layer is a sheet-like resin layer.
The thermoplastic resin laminate described above. 7. The thickness of the thermoplastic resin layer is 0.01 mm or more and 1 m
The thermoplastic resin laminate according to claim 1, wherein the thermoplastic resin laminate has a thickness of less than m. 8. The thermoplastic resin laminate according to claim 1, wherein the base material of the thermoplastic resin-impregnated base layer is glass fiber. 9. The thermoplastic resin laminate according to claim 1, wherein the thermoplastic resin layer has a melting point lower than the melting point of the thermoplastic resin-impregnated base material layer.
JP709389A 1989-01-13 1989-01-13 Thermoplastic resin laminated sheet Pending JPH02187329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP709389A JPH02187329A (en) 1989-01-13 1989-01-13 Thermoplastic resin laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP709389A JPH02187329A (en) 1989-01-13 1989-01-13 Thermoplastic resin laminated sheet

Publications (1)

Publication Number Publication Date
JPH02187329A true JPH02187329A (en) 1990-07-23

Family

ID=11656465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP709389A Pending JPH02187329A (en) 1989-01-13 1989-01-13 Thermoplastic resin laminated sheet

Country Status (1)

Country Link
JP (1) JPH02187329A (en)

Similar Documents

Publication Publication Date Title
US4713284A (en) Ceramic coated laminate and process for producing the same
JPH0574457B2 (en)
TWI225823B (en) Resin/copper/metal laminate and method of producing same
JP5486020B2 (en) Circuit board and manufacturing method thereof
JP2005105165A (en) Thermoplastic liquid crystalline polymer film laminatable at low temperature
JP3984387B2 (en) Coating method using polymer film and method for producing metal foil laminate
JP2001015933A (en) Thermally fusible insulating sheet
JPH02187329A (en) Thermoplastic resin laminated sheet
CN106273883B (en) A kind of graphite laminar structure and preparation method thereof
JP3023492B2 (en) Manufacturing method of composite printed wiring board
JPH084195B2 (en) Multilayer printed wiring board
JPH03231840A (en) Thermoplastic resin laminated sheet
JPH02293132A (en) Thermoplastic resin laminated sheet
JPH0720686B2 (en) Method for manufacturing ceramic-coated thermoplastic resin laminate
JPH01194491A (en) Manufacture of copper-pressed metallic base substrate
JPH02181997A (en) Multilayer printed circuit board
JP2508737B2 (en) Metal composite laminate
JPS63160829A (en) Manufacture of ceramic-coated laminated board
JPH04105392A (en) Flexible printed circuit board and manufacture thereof
JP4480337B2 (en) Circuit board manufacturing method
JPH0584214B2 (en)
JPS62187028A (en) Manufacture of ceramic-coated laminated board
JP2021104624A (en) Laminate plate
JPS63145021A (en) Multilayer wiring substrate
JPH02253941A (en) Preparation of ceramic coated laminated sheet