JPH02187275A - Manufacture of joint for piping of different materials - Google Patents

Manufacture of joint for piping of different materials

Info

Publication number
JPH02187275A
JPH02187275A JP270789A JP270789A JPH02187275A JP H02187275 A JPH02187275 A JP H02187275A JP 270789 A JP270789 A JP 270789A JP 270789 A JP270789 A JP 270789A JP H02187275 A JPH02187275 A JP H02187275A
Authority
JP
Japan
Prior art keywords
piping
welding
steel pipes
joint
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP270789A
Other languages
Japanese (ja)
Inventor
Tsutomu Konuma
小沼 勉
Choichi Asano
浅野 長一
Takao Funamoto
舟本 孝雄
Hiroshi Tsujimura
辻村 浩
Yasukata Tamai
玉井 康方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP270789A priority Critical patent/JPH02187275A/en
Publication of JPH02187275A publication Critical patent/JPH02187275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To prevent the corrosion resistance of a welding joint from lowering and to reduce the residual stress by welding a part obtained by previous solid phase joining of a stainless steel pipe and a carbon pipe to a steel pipe of the material side of the respective same kind. CONSTITUTION:A stainless steel pipe 2 and a carbon steel pipe 1 or a low alloy steel pipe 1 are connected for piping. Then, the parts obtained by joining these steel pipes 1, 2 previously through solid phase joining are connected respectively to the steel pipes on the sides of the same kinds of material by welding. Steel pipes are joined by solid phase joining due to previous hot isostatic pressing to different materials and parts restraining generation of different phases due to the mutual diffusion of both different metals on the joining surface are welded respectively to the steel pipes on the sides of the same kinds of material. Solid phase welding is carried out by hot isostatic pressing joining under the interpolation of intermediate material 3 such as Fe, Ni, or Ni alloy having a thickness exceeding 50mum. Thus, a peeling defect can prevented from occurring in the rolling laminated structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子力発電機器における高温水用配管のステン
レス鋼管と炭素鋼管、もしくは、低合金鋼管との異材接
合配管の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a dissimilar-metal joining pipe of a stainless steel pipe and a carbon steel pipe or a low-alloy steel pipe for high-temperature water piping in nuclear power generation equipment.

〔従来の技術ゴ 従来の異材継手は、特開昭62−144883号公報に
記載のように、Ni箔又は高Ni合金箔をステンレス鋼
板と炭素鋼等の間に介在させて拡散、あるいは、熱間圧
延後、板厚方向に切抜いて管状に加工した異材部品を作
る。その部品をステンレス鋼配管と炭素鋼等配管の間に
介在させてそれぞれ同種材で溶接する。
[Conventional technology] As described in JP-A-62-144883, conventional dissimilar metal joints are made by interposing Ni foil or high Ni alloy foil between a stainless steel plate and carbon steel, etc. After rolling, a dissimilar material part is cut out in the thickness direction to form a tubular shape. The parts are interposed between stainless steel piping and carbon steel piping and welded with the same material.

なお、この種に関連するものとして、例えば、特開昭6
1−99590号公報に異材接合部を互に管軸方向に重
ね合わせて接合面積を大きくし接合強度を向上させる8
この方法として熱間等方加圧により接合するようになっ
ている。この方法は接合部が軸中心部より勾配をもち、
かつ、この部分が厚肉の二重管構造となっている。これ
は接合部が強度的に脆弱なことを補うのと、接合境界を
長くしてシール精度を向上させるものである。
In addition, as related to this type, for example, Japanese Patent Application Laid-open No. 6
No. 1-99590 discloses a technique for increasing the joint strength by overlapping dissimilar material joints in the tube axis direction to increase the joint area.
This method involves joining by hot isostatic pressing. In this method, the joint has a slope from the center of the shaft,
Moreover, this part has a thick-walled double-tube structure. This is to compensate for the weak strength of the joint and to lengthen the joint boundary to improve seal accuracy.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は板状に重ね合せた接合板を板厚方向に管
状に切り抜いて継手部品とするために板の断面の圧延組
織が高温水環境に曝される。この圧延組織は鋼中の不純
物等介在物が圧延によって伸ばされ層状に存在するので
継手部品として温水環境下での耐食性と強度の低下をき
たす。また、異材継手部品は配管系へ最終的に共金溶接
されるが、従来の板厚方向へ切り抜いた部品は板厚方向
に最大溶接応力が作用する継手となるので溶接熱影響部
の圧延層状組織に剥離割れの生じる危険性が大きく、こ
の割れ防止に対して考慮がされていない。また、異材接
合部は高温で接合されると接合境界の炭素鋼側に脱炭層
、ステンレス鋼側に侵炭層が生じ、クロム炭化物等1種
々の異相が生じて、この部分の耐食性と強度特性の低下
をきたす。
In the above-mentioned prior art, the rolled structure of the cross section of the plate is exposed to a high-temperature water environment in order to make a joint component by cutting out a joint plate stacked in a plate shape into a tubular shape in the plate thickness direction. In this rolled structure, inclusions such as impurities in the steel are elongated by rolling and exist in a layered structure, resulting in a decrease in corrosion resistance and strength in a hot water environment as a joint part. In addition, dissimilar metal joint parts are ultimately co-metallically welded to the piping system, but conventional parts cut out in the plate thickness direction are joints where the maximum welding stress acts in the plate thickness direction, so the rolled layer in the weld heat affected zone There is a great risk of peeling cracks occurring in the structure, and no consideration is given to preventing this cracking. In addition, when dissimilar metal joints are joined at high temperatures, a decarburized layer is formed on the carbon steel side of the joint boundary, a carburized layer is formed on the stainless steel side, and various foreign phases such as chromium carbide are generated, which impairs the corrosion resistance and strength properties of this part. cause a decline.

この対策として適当な中間材の使用により防止していた
が完全ではなかった。さらにこの境界は両金属の線膨張
係数の違いにより接合後残留応力が生じる。この残留応
力と接合部の異相とが重畳して、最悪の場合、高温水環
境下で応力腐食割れ(SCC)の発生が危惧される。こ
の残留応力は接合法、中間材の材質、形状によって異な
るが、これ等についても考慮されていない。また、原子
力発電所等の限定された空間内で使用する部品は極力小
型に作る必要があり、接合部が二重管となる継手は不適
切である。従来の異材接合技術はこの使用目的に対する
考慮がされておらず、適用範囲が限定されていた。
This problem was prevented by using an appropriate intermediate material, but it was not perfect. Furthermore, residual stress is generated at this boundary after joining due to the difference in linear expansion coefficient between the two metals. In the worst case, this residual stress and the different phase of the joint may cause stress corrosion cracking (SCC) to occur in a high-temperature water environment. This residual stress varies depending on the joining method, the material and shape of the intermediate material, but these factors are not taken into account. Furthermore, parts used in a limited space such as a nuclear power plant must be made as small as possible, and a joint with a double pipe joint is inappropriate. Conventional dissimilar material joining techniques have not taken this intended use into account, and have limited applicability.

本発明の目的は炭素鋼系配管とステンレス鋼系配管の異
材接合部の異相の生成防止と残留応力発生を低減して、
異材接合部のSCCを防止することにあり、さらに、原
子力設備等において冷水。
The purpose of the present invention is to prevent the formation of different phases and reduce the generation of residual stress at the joint of dissimilar materials between carbon steel piping and stainless steel piping.
The purpose is to prevent SCC at joints of dissimilar materials, and it is also used in cold water installations in nuclear facilities, etc.

温水、高温水等さまざまな温度でくり返し使用される配
管系の適切な異材継手配管部品を提供することを目的と
する。
The purpose of the present invention is to provide suitable dissimilar material joint piping parts for piping systems that are used repeatedly at various temperatures such as hot water and high-temperature water.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、形状の同一な炭素鋼系鋼管
とステンレス鋼系鋼管とを、それぞれ。
In order to achieve the above purpose, carbon steel pipes and stainless steel pipes of the same shape are used.

軸方向の端面を突合せて熱間等方加圧(HI P)によ
り接合するものである。この場合、炭素鋼管の炭素含有
量との関係でFe、Ni、またはNi合金等の中間材を
介在させて接合する。中間材を使用しない場合、炭素i
閏の炭素含有量は0.05%未満、あるいは、ステンレ
ス鋼の炭素含有量以下のときである。中間材を使用する
場合の中間材の炭素量も前述の値であることが必要であ
る。また、この中間材の厚さは、20/im以上で最大
厚さは炭素鋼管肉厚の30%以下が良い。また、接合時
の熱間等方加圧は加熱開始時は600℃以上の適当な温
度で行うが、冷却時は実質的に室温に冷却するまで加圧
を続ける。この方法により接合部に生じる異相を防止し
、接合部の残留応力を低減させて、高温水中での腐食や
SCC等を防止する。
The end faces in the axial direction are butted and joined by hot isostatic pressing (HIP). In this case, depending on the carbon content of the carbon steel pipe, an intermediate material such as Fe, Ni, or Ni alloy is interposed to join the pipes. If no intermediate material is used, carbon i
The carbon content of the bolt is less than 0.05% or less than the carbon content of stainless steel. When an intermediate material is used, the carbon content of the intermediate material must also be within the above-mentioned value. Further, the thickness of this intermediate material is preferably 20 mm or more, and the maximum thickness is preferably 30% or less of the carbon steel pipe wall thickness. Further, hot isostatic pressurization during bonding is performed at an appropriate temperature of 600° C. or higher at the start of heating, but during cooling, pressurization is continued until cooling to substantially room temperature. This method prevents foreign phases from occurring at the joint, reduces residual stress at the joint, and prevents corrosion, SCC, etc. in high-temperature water.

〔作用〕[Effect]

先ず、第1図に示すように炭素鋼管1とステンレス鋼管
2を突合せる。接合部3には必要に応じて中間材を介在
させる。等方加圧による拡散接合を行うための真空容器
4内に設定する。中間材はFe、Ni、Ni合金を用い
る。この中間材は接合する鋼管より不純物の少ないもの
が望ましい。
First, as shown in FIG. 1, a carbon steel pipe 1 and a stainless steel pipe 2 are butted together. An intermediate material is interposed in the joint portion 3 as necessary. It is set in a vacuum container 4 for performing diffusion bonding by isostatic pressure. The intermediate material uses Fe, Ni, and Ni alloy. It is desirable that this intermediate material has fewer impurities than the steel pipes to be joined.

特に、炭素量は厳しく規制し0.05%未満のものか、
必ずステンレス鋼管の炭素量より低いものである。中間
材は接合温度の上昇に伴う炭素鋼側からステンレス鋼側
への浸炭の防止と接合部の残留応力の発生の低減を目的
とする。
In particular, the amount of carbon must be strictly regulated and must be less than 0.05%.
The carbon content is always lower than that of stainless steel pipes. The purpose of the intermediate material is to prevent carburization from the carbon steel side to the stainless steel side as the joining temperature increases, and to reduce the generation of residual stress at the joint.

この中間材の厚さは接合温度と時間によって異なり接合
温度700℃、接合時間5分の場合で概ね30〜40μ
mの脱炭、浸炭巾となるので最小でも50μmは必要で
ある。
The thickness of this intermediate material varies depending on the bonding temperature and time, and is approximately 30 to 40μ when the bonding temperature is 700℃ and the bonding time is 5 minutes.
Since the decarburization and carburization width is 50 μm, a minimum width of 50 μm is required.

この中間材は低炭素材であるので低強度であるので発生
残留応力も小さいが、この中間材の厚さが厚いと継手強
度が低下する。従って、中間材強度が鋼管強度の80%
の場合、中間材厚さは鋼管肉厚の30%以下であり、も
し、同一強度の場合は本来制限はないが、経済的な面か
ら厚くする必要はない。
Since this intermediate material is a low carbon material, it has low strength and generates small residual stress, but if the thickness of this intermediate material is thick, the joint strength will decrease. Therefore, the intermediate material strength is 80% of the steel pipe strength.
In this case, the thickness of the intermediate material is 30% or less of the steel pipe wall thickness, and if the strength is the same, there is no restriction in principle, but it is not necessary to increase the thickness from an economical point of view.

接合条件は接合温度、接合時間9等方加圧力(以下加圧
力と略称)によってそれぞれ決定するが、概ね、接合温
度は700〜1050℃、接合時間(接合温度を保持す
る時間)は5分〜3時間、加圧力は3〜20kgf/a
#である。加圧は真空容器が加熱で軟化して実質的に強
度をもたない温度が良く、炭素鋼容器では650℃以上
が良いが限定されるものではない。この加圧は接合後、
室温に冷却するまで必ず保持する必要がある。高温で加
圧を除去すると残留応力は高くなる。
The bonding conditions are determined by the bonding temperature and bonding time9 isostatic pressure (hereinafter referred to as pressure), but in general, the bonding temperature is 700 to 1050°C, and the bonding time (time to maintain the bonding temperature) is 5 minutes to 5 minutes. 3 hours, pressurizing force is 3 to 20 kgf/a
It is #. Pressurization is preferably carried out at a temperature at which the vacuum container is softened by heating and has no substantial strength, and for carbon steel containers, a temperature of 650° C. or higher is preferable, but there is no limitation. This pressure is applied after joining.
It must be kept until cooled to room temperature. When the pressure is removed at high temperature, the residual stress increases.

接合が終了した後は真空容器を除去して、所定の継手部
品に加工する・ 第2図は継手部品を配管に溶接する要領を示す。
After the joining is completed, the vacuum container is removed and the specified joint parts are processed. Figure 2 shows the procedure for welding the joint parts to the piping.

異材継手部品はそれぞれ溶接部で共金溶接される。Dissimilar metal joint parts are welded together at the respective welds.

異材接合境界から溶接部までの距離Qは50μm以上、
あるいは、管の直径以上が必要である。これは共金溶接
した場合に接合部が高温となり、線膨張係数の違いによ
り応力が発生して剥離する危険を避けるためである7接
合部は500℃以上の高温にならないようにすべきであ
る。
The distance Q from the dissimilar metal joining boundary to the welded part is 50 μm or more,
Alternatively, a diameter greater than or equal to the tube diameter is required. This is to avoid the risk of peeling due to stress generated due to differences in linear expansion coefficients due to the high temperature of the joint when welding with the same metal. 7. Joints should not be heated to temperatures above 500°C. .

さらに、第1図で示す部品で管内面Ni、Ni合金管を
同時に接合する二重管部品とする継手が被接合材接合部
の腐食防止に効果がある。これは被接合材接合境界で非
破壊検査で検出できない表面の微少欠陥による腐食を防
ぐのに効果がある。
Furthermore, the joint shown in FIG. 1, which is a double-pipe part that simultaneously joins Ni inside the pipe and the Ni alloy pipe, is effective in preventing corrosion of the joined parts of the materials to be joined. This is effective in preventing corrosion caused by minute defects on the surface that cannot be detected by non-destructive inspection at the joining boundaries of the materials to be joined.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

〈実施例1〉 第3図は炭素鋼管端面に低炭素鋼溶接棒で被覆アーク溶
接で肉盛溶接をして、その接合面を平らに機械加工をし
てステンレスllI管5US304端面と合わせこれら
被接合材を真空容器内に設置して、この容器を熱間等方
加圧で接合する継手形式である。それぞれ、管外径は1
14am、肉厚は11++n+である。管の長さは12
0 +mである。炭素鋼管の炭素量は0.18%、溶着
金属のそれは0.048%、ステンレス鋼管のそれは0
.063%である。肉盛溶接は三層行なった0機械加工
後の肉盛層の厚さは約7閣である。炭素鋼からの炭素の
希釈は肉盛部接合面で実質的に無いようにした。熱間等
方加圧による接合条件は接合温度850℃、接合時間−
時間、加圧力4 kg f /aJで行った。
<Example 1> Figure 3 shows overlay welding on the end face of a carbon steel pipe by covered arc welding using a low carbon steel welding rod, and the joint surface is machined flat and aligned with the end face of a stainless steel II pipe 5US304. This is a joint type in which the bonding material is placed inside a vacuum container and the containers are joined by hot isostatic pressure. The outer diameter of each tube is 1
14am, and the wall thickness is 11++n+. The length of the tube is 12
0 + m. The carbon content of carbon steel pipe is 0.18%, that of weld metal is 0.048%, and that of stainless steel pipe is 0.
.. It is 063%. Three layers of overlay welding were performed, and the thickness of the overlay layer after zero machining was approximately 7 mm. Substantially no dilution of carbon from the carbon steel was made at the overlay joint surface. The bonding conditions by hot isostatic pressing are bonding temperature 850℃, bonding time -
The test was carried out at a pressure of 4 kgf/aJ.

接合後、接合境界の硬さ分布を測定した。境界部に局部
的な硬さの上昇はなく、脱炭、浸炭層は生じない。この
継手の引張試験による破断部は炭素鋼側で接合界面では
ない。また、この継手部の内面の最大残留応力は引張応
力の12kgf/mm”である。この最大応力を示す位
置は接合境界より約10 onのステンレス鋼管側であ
る。接合境界はむしろ圧縮残留応力を示す。
After bonding, the hardness distribution at the bond boundary was measured. There is no local increase in hardness at the boundary, and no decarburization or carburization layer occurs. The fractured part of this joint in the tensile test was on the carbon steel side and not at the joint interface. Also, the maximum residual stress on the inner surface of this joint is a tensile stress of 12 kgf/mm.The position where this maximum stress is exhibited is on the stainless steel pipe side about 10 degrees from the joint boundary.The joint boundary rather has a compressive residual stress. show.

〈実施例2〉 実施例1と同様な方法でステンレス鋼管5US304の
端面にNi合金を肉盛溶接した。このNi合金は0,0
3%C275%Ni、16%Cr。
<Example 2> In the same manner as in Example 1, Ni alloy was overlay-welded on the end face of a stainless steel pipe 5US304. This Ni alloy is 0,0
3%C275%Ni, 16%Cr.

8%Feを主成分とするものである。接合条件も実施例
1と同じである。接合部の脱炭浸炭は無く、最大残留応
力も実施例1とほぼ同様であった。
The main component is 8% Fe. The bonding conditions are also the same as in Example 1. There was no decarburization or carburization of the joint, and the maximum residual stress was almost the same as in Example 1.

〈実施例3〉 実施例1と同様な方法でステンレス鋼管5US304の
端面に工業用純Ni溶接材料でTIG溶接法で肉盛溶接
8を行った。このNi溶接材料は0.02%Cを含み、
1%以下のMn、Fe、Cu、A(lと不純物から成る
ものである。この接合条件も実施例1と同じである。結
果も同様である。
<Example 3> In the same manner as in Example 1, overlay welding 8 was performed on the end face of a stainless steel pipe 5US304 using an industrial pure Ni welding material using the TIG welding method. This Ni welding material contains 0.02% C,
It consists of 1% or less of Mn, Fe, Cu, A(l) and impurities. The bonding conditions are also the same as in Example 1. The results are also the same.

以上炭素鋼管あるいはステンレス鋼管の接合部に肉盛溶
接を行い熱間等方加圧により接合したが。
As described above, overlay welding is applied to the joints of carbon steel pipes or stainless steel pipes, and the joints are joined by hot isostatic pressing.

いずれも本発明の目的とする異相の生成防止と残留応力
の低減が同時に行なえた。実施例ではこの肉盛溶接は炭
素鋼側ないしはステンレス鋼側のみを実施したが、両者
を肉盛し、その肉盛部端面を接合しても良いことが判断
される。
In both cases, the purpose of the present invention, which is to prevent the formation of foreign phases and reduce residual stress, was simultaneously achieved. In the example, this overlay welding was performed only on the carbon steel side or the stainless steel side, but it is determined that it is also possible to overlay both sides and join the end faces of the overlay parts.

〈実施例4〉 第1図の形式の継手形式で中間材として厚さ2mの工業
用純Fe板を用いた。この炭素量は0.02%である。
<Example 4> An industrial pure Fe plate with a thickness of 2 m was used as an intermediate material in the joint type shown in FIG. This carbon content is 0.02%.

炭素鋼管、ステンレス鋼管の化学成分、及び、形状は実
施例1と同じである。接合条件は接合温度1100℃、
接合時間30分、加圧力12kgf/dである。接合後
、この断面の硬さ分布の測定結果でも境界に硬化部分は
無い。接合部の最大残留応力は境界より約20+u++
+のステンレス鋼側であった。図中、5は脱気パイプ。
The chemical composition and shape of the carbon steel pipe and stainless steel pipe are the same as in Example 1. The bonding conditions are a bonding temperature of 1100℃,
The bonding time was 30 minutes and the pressure was 12 kgf/d. After joining, there is no hardened portion at the boundary even in the measurement results of the hardness distribution of this cross section. The maximum residual stress at the joint is approximately 20+u++ from the boundary.
It was the + stainless steel side. In the figure, 5 is a deaeration pipe.

〈実施例5〉 実施例4と同様な方法で中間材を変えて行った中間材は
Ni合全合板主成分は炭素量0.04%。
<Example 5> The intermediate material was made by changing the intermediate material in the same manner as in Example 4, and the main component was Ni composite plywood with a carbon content of 0.04%.

75%Ni、16%Cr、8%Feである。接合後のこ
の断面の硬さ分布測定結果でも硬化部分は無い。最大残
留応力は境界より約4511I11のステンレス鋼側で
ある。
75% Ni, 16% Cr, 8% Fe. There is no hardened portion in the hardness distribution measurement results of this cross section after bonding. The maximum residual stress is approximately 4511I11 from the boundary on the stainless steel side.

〈実施例6〉 実施例5のNi合全合板変えて、工業用純Niを用いた
。炭素量は0.015%である。実施例5と同様の結果
である。
<Example 6> The Ni composite plywood of Example 5 was changed to industrial pure Ni. The carbon content is 0.015%. The results are similar to those in Example 5.

〈実施例7〉 実施例6までの異材継手部品を高温水腐食試験装置の試
験配管にそれぞれ共金溶接で接続して腐食試験をした。
<Example 7> The dissimilar metal joint parts up to Example 6 were connected to test piping of a high-temperature water corrosion test device by mutual metal welding, and a corrosion test was conducted.

この溶接は被覆アーク溶接で、先ず、ステンレス鋼側を
完全に溶接した後に炭素鋼側を溶接した。溶接後、異材
接合部を含め溶接部の染色探傷試験とX線透過検査を行
ったが、割れ。
This welding was covered arc welding, and first, the stainless steel side was completely welded, and then the carbon steel side was welded. After welding, we conducted a dye flaw detection test and an X-ray inspection of the welded area, including the joint of dissimilar materials, but cracks were found.

剥離欠陥は検出されない。この配管を8ppmの酸素を
含む純水を循環させて腐食試験を行った。循環水の温度
は最大180℃、また、最低温度は15°Cである。こ
の温度サイクルは48時間である。試験は六ケ月間続け
た。その後、異材継手部を試験装置から取りはずし、接
合部表面の腐食状況を検査したが、境界部、ステンレス
鋼側に異常な腐食はない。炭素鋼側表面に僅かに酸化膜
とピット状の腐食が認められたが、異常な腐食はない。
No peeling defects are detected. A corrosion test was conducted by circulating pure water containing 8 ppm of oxygen through this piping. The maximum temperature of the circulating water is 180°C, and the minimum temperature is 15°C. This temperature cycle is 48 hours. The trial lasted for six months. Thereafter, the dissimilar metal joint was removed from the test equipment and the corrosion status of the joint surface was inspected, but there was no abnormal corrosion on the boundary or stainless steel side. Although a slight oxide film and pit-like corrosion were observed on the carbon steel side surface, there was no abnormal corrosion.

断面検査でも接合境界の局部腐食はなく、原子力用配管
部品として完全に使用目的を達することが分った。すな
わち、本発明の異材配管は同等な腐食環境をもつ火力発
電所等にも適用することができる。
Cross-sectional inspection revealed no local corrosion at the joint boundary, and it was found that the product completely fulfilled its intended use as a nuclear power piping component. That is, the dissimilar material piping of the present invention can also be applied to thermal power plants and the like that have similar corrosive environments.

〈実施例8〉 実施例5と同じ月質、形状で、さらに、第4図に示すよ
うに肉厚3mのNi合金管9を設けて実施例4の接合条
件で接合した。接合後、真空容器4を削除する工程でN
i合金管9の肉厚を0.5画になる様に加工した。この
Ni合金管9の厚さは被接合材からの炭素の拡散を考慮
して50μm以上が必要である。最大厚さは、特に、制
限を設けないが、配管内径や溶接裏波形状等を考慮する
と11!m程度あれば十分である。この実施例ではNi
合金管を用いているが、Ni管でも良く、また、これら
と成分系が同様な粉末を充填させて形成させても同様な
効果が期待される。この異材配管部品を加工して第5図
に示すように溶接部6.7で配管に7ff接し、実施例
7と同様の腐食試験を行った。この結果、異常な腐食は
認められず高温水用異材継手部品として優れた特性を示
し使用目的に合うことが分った。
<Example 8> With the same quality and shape as in Example 5, a Ni alloy tube 9 with a wall thickness of 3 m was provided as shown in FIG. 4, and welding was performed under the joining conditions of Example 4. After bonding, N is applied in the process of removing the vacuum container 4.
The wall thickness of the i-alloy tube 9 was processed to be 0.5 strokes. The thickness of this Ni alloy tube 9 needs to be 50 μm or more in consideration of the diffusion of carbon from the materials to be joined. There is no particular limit to the maximum thickness, but considering the inner diameter of the pipe, the shape of the welding back, etc., it should be 11! It is sufficient if it is about m. In this example, Ni
Although alloy tubes are used, Ni tubes may also be used, and similar effects can be expected even if the tubes are filled with powder having the same composition as these tubes. This dissimilar material piping component was processed and brought into contact with the piping at 7ff at the welded portion 6.7, as shown in FIG. 5, and the same corrosion test as in Example 7 was conducted. As a result, no abnormal corrosion was observed, and it was found that the product exhibited excellent properties as a dissimilar metal joint component for high-temperature water, and was suitable for the intended use.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、異材継手部品の管内外面に圧延による
層状組織が腐食環境に曝されず、かつ、配管へ溶接して
も圧延層状組織に剥離欠陥が生じない。炭素鋼の炭素が
ステンレス鋼のクロムと結合して脆い異相を生じること
も無い、かつ、耐食性を低下させることもない。さらに
、接合部の残留応力を軽減することができる。
According to the present invention, the rolled layered structure on the inner and outer surfaces of the tube of the dissimilar metal joint component is not exposed to a corrosive environment, and no peeling defects occur in the rolled layered structure even when welded to the pipe. The carbon of the carbon steel does not combine with the chromium of the stainless steel to form a brittle foreign phase, and the corrosion resistance does not deteriorate. Furthermore, residual stress at the joint can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の異材継手部品を接合する原
形図の側面と中央断面図、第2図は本発明の異材継手部
品を配管系に溶接する概略の部分断面図、第3図は実施
例の溶接肉盛の状況を示す異材継手部品の部分断面図、
第4図は管内面にNi管等を接合する管の部分断面図、
第5図は管内面にNi管を接合した二重管を用いて溶接
した配管溶接構造の部分断面図である。 1・・・炭素鋼管、2・・・ステンレス鋼管、3・・・
中間材。
Fig. 1 is a side and center sectional view of an original drawing of joining dissimilar metal joint parts according to an embodiment of the present invention, Fig. 2 is a schematic partial sectional view of welding dissimilar metal joint parts of the present invention to a piping system, and Fig. 3 The figure is a partial cross-sectional view of a dissimilar metal joint part showing the state of weld overlay in an example.
Figure 4 is a partial cross-sectional view of a tube in which a Ni tube, etc. is joined to the inner surface of the tube.
FIG. 5 is a partial sectional view of a pipe welded structure in which a double pipe is welded with a Ni pipe joined to the inner surface of the pipe. 1... Carbon steel pipe, 2... Stainless steel pipe, 3...
Intermediate material.

Claims (1)

【特許請求の範囲】 1、ステンレス鋼管と炭素鋼管もしくは低合金鋼管を接
続する配管において、 これら鋼管を予め固相接合で接合した部品をそれぞれの
同種材側の鋼管へ溶接で接続することを特徴とする異材
配管継手構造。 2、ステンレス鋼管と炭素鋼系鋼管を接続する配管にお
いて、 これら鋼管を予め熱間等方加圧による固相接合で異材接
合し、かつ、接合界面の異材両金属の相互拡散による異
相の生成を抑制した部品を、それぞれ同種材側の鋼管に
溶接で接続することを特徴とする異材配管構造。 3、特許請求項第1項または第2項において、Fe,N
iまたはNi合金等の厚さ50μm以上の板もしくは溶
接肉盛による中間材を一種以上介在させて熱間等方圧接
合によつて固相接合することを特徴とする高温水用異材
配管部品。 4、特許請求項第3項の異材配管部品の管軸方向の異材
片側の長さは接合界面からそれぞれの管の外径以上で少
なくとも50mmとし、合計長さは中間材厚さに管の外
径の二倍を加えたものかあるいは100mmを加えた値
であることを特徴とする異材配管部品。 5、特許請求項第1項ないし第4項の異材配管部品の管
内全面に肉厚50μm以上のNi,Ni合金管を配管の
溶接で溶融されない範囲に熱間等方加圧により接合する
ことを特徴とする異材配管継手部品。 6、特許請求項第5項を使用して炭素鋼としてステンレ
ス鋼の配管を溶接することを特徴とする異材配管構造。
[Claims] 1. In piping that connects stainless steel pipes and carbon steel pipes or low alloy steel pipes, the pipe is characterized in that parts of these steel pipes joined in advance by solid phase welding are connected to respective steel pipes made of the same material by welding. Dissimilar material piping joint structure. 2. In piping that connects stainless steel pipes and carbon steel pipes, these steel pipes are joined in advance by solid phase welding using hot isostatic pressure, and the generation of different phases due to mutual diffusion of the dissimilar metals at the joint interface is avoided. A dissimilar material piping structure characterized by connecting the suppressed parts to steel pipes made of the same material by welding. 3. In claim 1 or 2, Fe, N
1. A dissimilar material piping component for high-temperature water, characterized in that it is solid phase joined by hot isostatic pressure welding with one or more intervening intermediate materials such as Ni or Ni alloy plates having a thickness of 50 μm or more or weld overlays. 4. The length of one side of the dissimilar material in the pipe axis direction of the dissimilar material piping component of patent claim 3 shall be at least 50 mm from the joint interface to the outer diameter of each pipe, and the total length shall be the thickness of the intermediate material and the outer diameter of the pipe. Dissimilar material piping parts characterized in that the diameter is twice the diameter or 100 mm is added. 5. Ni and Ni alloy pipes with a wall thickness of 50 μm or more are joined to the entire inside of the pipe parts of dissimilar material piping parts according to claims 1 to 4 by hot isostatic pressure in an area that will not be melted during welding of the pipes. Dissimilar material piping joint parts with special features. 6. A piping structure made of different materials, characterized in that piping made of stainless steel is welded to carbon steel using the method described in claim 5.
JP270789A 1989-01-11 1989-01-11 Manufacture of joint for piping of different materials Pending JPH02187275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP270789A JPH02187275A (en) 1989-01-11 1989-01-11 Manufacture of joint for piping of different materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP270789A JPH02187275A (en) 1989-01-11 1989-01-11 Manufacture of joint for piping of different materials

Publications (1)

Publication Number Publication Date
JPH02187275A true JPH02187275A (en) 1990-07-23

Family

ID=11536766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP270789A Pending JPH02187275A (en) 1989-01-11 1989-01-11 Manufacture of joint for piping of different materials

Country Status (1)

Country Link
JP (1) JPH02187275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100549508B1 (en) * 1999-04-02 2006-02-03 다이요 닛산 가부시키가이샤 Stainless Steel Pipe and Joining Method Thereof
JP2015017881A (en) * 2013-07-10 2015-01-29 三菱重工業株式会社 Radioactive substance storage container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100549508B1 (en) * 1999-04-02 2006-02-03 다이요 닛산 가부시키가이샤 Stainless Steel Pipe and Joining Method Thereof
JP2015017881A (en) * 2013-07-10 2015-01-29 三菱重工業株式会社 Radioactive substance storage container

Similar Documents

Publication Publication Date Title
EP0418606B1 (en) Diffusion bonding method for corrosion-resistant materials
JPS6160751B2 (en)
JP3168927B2 (en) Method for manufacturing duplex stainless steel joint
US20080067214A1 (en) Dissimilar metal transition for superheater or reheater tubes
JPH0724577A (en) Butt welding method for clad tubes
Ghorbel et al. Experimental analysis of temperature field and distortions in multi-pass welding of stainless cladded steel
JPH02187275A (en) Manufacture of joint for piping of different materials
Sun et al. Laser beam welding of austenitic/ferritic dissimilar steel joints using nickel based filler wire
US11298774B2 (en) Method to eliminate dissimilar metal welds
JPS597484A (en) Butt welding method of high purity ferritic stainless clad steel
JPH058057A (en) Manufacture of double metal tube
JPH0386367A (en) Method for joining clad steel pipe
JP3626593B2 (en) Liquid phase diffusion bonding method in oxidizing atmosphere
Shirzadi et al. Novel method for diffusion bonding superalloys and aluminium alloys (USA patent 6,669,534 b2, european patent pending)
Vakili Tahami et al. Effect of welding parameters on dissimilar pulsed laser joint between nickel-based alloy Hastelloy X and austenitic stainless steel AISI 304L
JPH03207575A (en) Circumferential welding method for double pipes
Barabash et al. Beryllium-metals joints for application in the plasma-facing components
Lessmann et al. Complex Rotor Fabrication by Hot Isostatic Pressure Welding
Ekvall et al. T-111 ALLOY CRACKING PROBLEMS DURING PROCESSING AND FABRICATION.
JPS5950430B2 (en) Clad pipe manufacturing method
JPS597483A (en) One side welding method of high purity ferritic stainless clad steel
Kakimoto Joint material of aluminium and stainless steel for welding
ICHIHARA et al. Manufacture of alloy steel tube by high frequency electric resistance welding
Lehrheuer High-Temperature Solid-State Welding
Dunaev et al. Aspects of the Production Technology of Largesized Clad Plates and Large Diameter Pipes Made From Them