JPH0218690B2 - - Google Patents

Info

Publication number
JPH0218690B2
JPH0218690B2 JP6745883A JP6745883A JPH0218690B2 JP H0218690 B2 JPH0218690 B2 JP H0218690B2 JP 6745883 A JP6745883 A JP 6745883A JP 6745883 A JP6745883 A JP 6745883A JP H0218690 B2 JPH0218690 B2 JP H0218690B2
Authority
JP
Japan
Prior art keywords
fluororesin
powder
thin layer
base material
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6745883A
Other languages
Japanese (ja)
Other versions
JPS59191735A (en
Inventor
Yasuo Kendo
Kazuyoshi Uemori
Toshio Araki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP6745883A priority Critical patent/JPS59191735A/en
Publication of JPS59191735A publication Critical patent/JPS59191735A/en
Publication of JPH0218690B2 publication Critical patent/JPH0218690B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は接着剤で接着することが可能であつ
て、且つその接着強度が著しく高いフツ素樹脂製
接着性構造物を製造する方法に関するものであ
る。 フツ素樹脂は優れた耐熱性、耐薬品性、耐候性
を有し、且つ抵抗擦、非粘着等のユニークな性質
も具備しており、化学、電気、機械等の産業分野
に使用されている。しかし、その反面、フツ素樹
脂は優れた特性が災いして加工を著しく困難なも
のにしている。特に、フツ素樹脂の非接着性はゴ
ム、金属、プラスチツク等他の材料との貼合せに
大きな障害となつて、その用途展開の制限を余儀
なくされている。 従来、フツ素樹脂に接着性を付与するための幾
つかの方法が提案されており、例えばフツ素樹脂
基材の表面をナトリウム・アンモニア錯塩或いは
ナトリウム・ナフタリン錯化合物によつてエツチ
ングする化学的処理法を挙げることができる。し
かしながら、この方法は危険な薬剤を使用しなけ
ればならないばかりでなく、処理面の着色やエツ
チング処理により付与された接着活性が比較的短
期間で失なわれてしまうという問題がある。 また、フツ素樹脂基材の表面にフツ素樹脂粉末
と金属酸化物粉末のような充填剤粉末とを含む分
散液を塗布した後加熱することにより、フツ素樹
脂粉末と充填剤との混合物層を前記基材表面に形
成せしめ、混合物層に含有せしめられている充填
剤の投錨機能によつてフツ素樹脂基材を他の材料
に接着せしめる方法も知られている。この方法に
よれば、化学的処理法のような薬剤使用の危険性
はないが、混合物層中の充填剤粉末表面がフツ素
樹脂被膜で覆われ易く、フツ素樹脂基材を他の材
料と接着せしめる際に投錨力を充分発揮しないこ
とがある。 本発明者達は前記後者の方法の改良のため鋭意
検討の結果、フツ素樹脂基材の表面に形成せしめ
たフツ素樹脂粉末と充填剤粉末から成る混合薄層
に対し、所定範囲の雰囲気圧条件下においてスパ
ツタエツチング処理を施すことにより、該薄層の
投錨機能が増し、この薄層を介して基材を他の材
料と接着せしめると、その接着強度が向上するこ
とを見出し、本発明を完成するに至つたものであ
る。 即ち、本発明に係るフツ素樹脂製接着性構造物
の製造法は、平均粒径0.05〜50μのフツ素樹脂粉
末と平均粒径10μ以下の充填剤粉末との容量比が
95/5〜50/50の分散液をフツ素樹脂基材の表面
に塗布し、次いでフツ素樹脂の融点以上に加熱す
ることにより、前記基材の表面にフツ素樹脂粉末
と充填剤粉末との混合薄層を融着形成せしめ、そ
の後該混合薄層を雰囲気圧0.0005〜0.5Torrの条
件下でスパツタエツチング処理することを特徴と
するものである。 本発明において、フツ素樹脂基材或いは該基材
表面に形成される混合薄層の構成成分としてのフ
ツ素樹脂は特に限定されることなく各種のフツ素
樹脂を使用し得るが、ポリテトラフルオロエチレ
ン(PTFE)、テトラフルオロエチレン−ヘキサ
フルオロプロピレンコポリマー(FEP)、テトラ
フルオロエチレン−パーフルオロ(アルキルビニ
ルエーテル)コポリマー(PFA)、エチレン−テ
トラフルオロエチレンコポリマー(ETFE)、ポ
リクロロトリフルオロエチレン(PCTFE)、エ
チレン−クロロトリフルオロエチレンコポリマー
(ECTFE)、ポリフツ化ビニリデン(PVDF)、ポ
リフツ化ビニル(PVF)等への本発明の適用は、
これらの樹脂が工業的に使用され、また接着強度
の向上が望まれている点から価値が高い。また、
本発明においてはフツ素樹脂基材の構成成分と混
合薄層の構成成分は同種のフツ素樹脂とするの
が、基材と混合薄層の熱融着強度の点で好適であ
る。 本発明に使用される分散液は平均粒径0.05〜
50μのフツ素樹脂粉末と平均粒径10μ以下の充填
剤粉末の2者を分散質として含み、両者の容量比
は95/5〜50/50好ましくは90/10〜60/40であ
る。 充填剤としては分散媒に溶解せず且つ耐熱性を
有する金属酸化物或いはケイ素化合物が使用で
き、金属酸化物の具体例としては酸化アルミニウ
ム、酸化亜鉛、酸化チタン、酸化クロム、酸化
鉄、酸化コバルト等をケイ素化合物の具体例とし
ては微粒子状酸化ケイ素、ケイ酸アルミニウム、
ケイ酸カルシウム、硅藻土、カオリン等を各々挙
げることができる。この充填剤は平均粒径10μ以
下の粉末状で用いられる。充填剤の平均粒径が
10μ以上であるとフツ素樹脂粉末と共に分散媒せ
しめ分散液とした際に充填剤粉末の沈降が早くて
分離を生じ易く、フツ素樹脂基材表面に均一組成
の分散液を塗布するのが困難になるので好ましく
ない。 また、フツ素樹脂粉末としては分散性およびフ
ツ素樹脂基材表面に形成される混合薄層の厚さを
不必要に厚くしないため、平均粒径0.05〜50μの
ものが用いられる。 上記フツ素樹脂粉末と充填剤粉末は容量比95/
5〜50/50の範囲で配合される。充填剤粉末が5
容量%以下では基材上に形成される混合薄層に対
し、後述のスパツタエツチング処理を施しても、
これを他の材料と接着せしめた際の接着強度の向
上効果が殆んど認められず、50容量%以上では混
合薄層形成のためのバインダーとして用いられる
フツ素樹脂粉末が少なくなり過ぎて基材と充填剤
粉末との接着強度が低下し、基材表面に形成され
た混合薄層からの充填剤粉末の脱落現象を生ずる
ので、いずれも好ましくない。 分散媒としては無毒、不然性の水、トリクロロ
トリフルオロエタン等が好適であるが、テトラク
ロルエタン、トリクロルエチレン、メチルクロロ
ホルム等を用いることもできる。また、分散液の
安定性向上のため、界面活性剤を添加することが
できる。分散液における分散質と分散媒の割合は
分散液の安定性やフツ素樹脂基材表面に塗布する
際の作業性等の観点から、容量比で3/97〜50/
50の範囲に設定するのが好適である。 フツ素樹脂粉末および充填剤粉末を分散質とす
る分散液は、フツ素樹脂粉末と充填剤粉末を各々
別個に分散媒に分散せしめ、その後両者を混合す
る方法或いは一方の粉末を含む分散液中に他方の
粉末を添加混合する方法等により得ることができ
る。更にフツ素系モノマーを乳化重合せしめて得
られる重合液に充填剤粉末を分散させて用いるこ
ともできる。 本発明においては、先ずフツ素樹脂基材の所定
表面にフツ素樹脂粉末および充填剤粉末を分散質
として含有する上記分散液が塗布される。基材表
面への分散液の塗布は流しかけ、浸漬、ロールコ
ーテイング、グラビアコーテイング、吹き付け等
によつて行なうことができる。 かようにしてフツ素樹脂基材の表面に分散液を
塗布した後、基材をフツ素樹脂の融点以上の温度
に加熱し、フツ素樹脂粉末と充填剤粉末から成る
混合薄層を基材表面に融着形成せしめる。好まし
い加熱温度はフツ素樹脂の種類によつて異なる
が、例えばPTFEの場合には350〜390℃、FEP或
いはPFAの場合には310〜380℃、ETFEの場合
には290〜340℃である。なお、基材を構成するフ
ツ素樹脂と分散液中のフツ素樹脂粉末の種類が異
なる場合には、少なくとも一方好ましくは両方の
フツ素樹脂の融点以上に加熱する。この混合薄層
の厚さは該薄層中の充填剤粉末の粒径や含有量等
に応じて設定されるが、通常は約0.5〜70μ好まし
くは約1〜10μである。 また、本発明においては上記加熱時に分散媒蒸
発による混合薄層中へのボイド生成の防止のた
め、該加熱に先立ち、予じめ分散媒の蒸発温度で
予備加熱を行ない、分散媒の一部を除去すること
もできる。 本発明においては、かようにしてフツ素樹脂基
材表面に形成された混合薄層に対し、スパツタエ
ツチング処理が施される。混合薄層に対するスパ
ツタエツチング処理は雰囲気圧0.0005〜0.5Torr
の条件下で行なう。雰囲気圧が0.0005Torr以下
ではスパツタエツチングを行なう放電が持続的に
なされず、また0.5Torr以上ではエツチング速度
が著しく低下すると共に放電自体が不安定となる
からである。 更に他のスパツタエツチング処理条件として
は、通常周波数は数百KHz〜数十MHz、実用上工
業用割当周波数の13.56MHz、放電電力は0.1〜
10Watt/cm2である。処理時間は放電電力が小と
なるほど長くする必要があるため、実用的には放
電電力を大として処理時間を少なくするのがよい
(表面の処理度合はほぼ放電電力と処理時間の積
として表わされる)。 本発明においては、短時間で混合薄層に充分な
スパツタエツチング処理を行なうため、放電電力
(Watt/cm2)と処理時間(sec)との積が、約0.1
〜200Watt・sc/cm2好ましくは約1〜100watt・
sec/cm2になるように放電電力および処理時間を
設定するのがよい。 雰囲気ガスとしては、種々の気体が使用可能で
あるが、実用上はアルゴン等の不活性ガス、空
気、水蒸気、炭酸ガス等が用いられる。 次にスパツタエツチング処理装置の一例を図面
により説明する。1は減圧容器2内の気体を排気
するための真空ポンプ(図示せず)に接続する排
気管、3は雰囲気ガスを減圧容器2内に導入する
ためのバルブ、4はフツ素樹脂基材5の表面に形
成された混合薄層6をスパツタエツチングするた
めの電極であつて、電気的に減圧容器2と絶縁さ
れ、気密シールされたリード線で外部のマツチン
グボツクス7(インピータンス整合器)に接続さ
れ、さらに高周波電源8に導びかれている。 9は電極4のシールド用電極で、高周波電源8
のアース側と導通している。10は対向電極で同
じく高周波電源8のアース側に接続されている。 なお、減圧容器2は雰囲気圧と一定に保つ役目
をし、これに金属製減圧容器を用いた場合には高
周波電源8のアース側に接続される。 マツチングボツクス7はキヤパシタンスとイン
ダクタンスからなる回路器で、インピーダンス整
合を行なうものである。 次に、スパツタエツチング処理原理の概略を説
明すると、今、対向電極10に対し電極4側の電
位が負のときに放電の結果生じたプラスイオンが
加速されて混合薄層6の表面に衝突し、スパツタ
エツチングが行なわれる。このとき混合薄層6の
表面には、衝突したプラスイオンのもつていたプ
ラス電荷が蓄積して表面電位が上昇するので、こ
の表面と対向電極10との間の電位差は小とな
り、放電を維持し難くなる。しかし高周波電圧の
次の半サイクルにおいては、対向電極10に対し
て電極4側の電位が正となるので、放電空間から
電子が混合薄層6の表面面に入り、電子のもつて
いるマイナス電荷により表面に蓄積していたプラ
スイオンを中和する。この結果、高周波電圧の更
に次の半サイクルにおいて対向電極10に対して
電極4側の電位が負となつたときの両者間の電位
差が大きくて放電が行なわれ、生じたプラスイオ
ンが加速されて混合薄層6の表面に衝突して、ス
パツタエツチングを行うことを可能ならしめる。
以上のことが、高周波電圧の各サイクルごとにく
りかえし行なわれ、混合薄層6の表面がスパツタ
エツチング処理される。 混合薄層表面は前述したような装置でスパツタ
エツチング処理することにより、他の材料との接
着強度が向上する。これは充填剤粉末を覆つてい
るフツ素樹脂皮膜がスパツタエツチング処理によ
り除去され、混合薄層表面において充填剤粉末が
露出し、この露出した充填剤粉末が他の材料との
接着に際し、優れた投錨機能を発揮するのが主因
であると推論される。 本発明は上記のように構成されており、フツ素
樹脂基材表面に形成される混合薄層に対し、スパ
ツタエツチング処理を施すので、他の材料と強固
に接着し得る構造物を提供できる。また、従来の
化学的処理法の場合のように処理面の着色を招く
ことがないばかりでなく、処理効果の経時的低下
も殆んど生じない等の特徴がある。 以下、実施例により本発明を更に詳細に説明す
る。 実施例 1 平均粒径0.03μの微粒子状酸化チタン(関東化
学社製、商品名チタニウムオキサイドGR)をノ
ニオン界面活性剤8重量%水溶液に均一に分散せ
しめる。 一方、これとは別に平均粒径0.2μのPTFE粉末
の水性分散液(三井フロロケミカル社製、商品名
テフロン30−J)を用意する。 これら両者を混合し、PTFE粉末と酸化チタン
粉末の容量比が60/40で、且つこれら分散質と分
散媒である水との容量比が10/90である分散液と
する。 次に、厚さ0.2mmのPTFEシートの一方の面を
マスキングして上記分散液中に浸漬して引き上
げ、80℃の温度で10分間予備加熱し、水の一部を
除去し、マスクを取り除き、更に380℃の温度で
5分間加熱し、PTFEシートの片面に厚さ3μの混
合薄層を形成せしめる。 その後、PTFEシートを図面に示すスパツタエ
ツチング処理装置にセツトし、アルゴンガスを導
入しながら雰囲気圧を5×10-3Torrに保ち、
13.56MHzの高周波電圧を印加し、放電々力を
1Watt/cm2に調整して混合薄層表面を15秒間スパ
ツタエツチング処理した(放電処理量は
15Watt・sec/cm2となる)後、電源を切り、常圧
に戻してシート状のPTFE接着性構造物(試料
1)を得た。 上記のPTFE接着性構造物と厚さ2mmのアルミ
板をエポキシ接着剤(コニシ社製、商品名ボンド
Eセツトクリア)を用い、温度80℃の条件で60分
間加熱せしめて接着し、その接着力を測定し、得
られた結果を下記第1表に示す。接着力は温度25
℃、引張速度300mm/minの条件で180゜ピ−リン
グ法により測定した。 比較のため、フツ素樹脂粉末と酸化チタン粉末
との容量比を98/2とする以外は全て試料1の場
合と同様にして得られるPTFE接着性構造物(試
料2)および前記PTFEシートの片面に混合薄層
を形成せしめずスパツタエツチング処理のみを施
したシート(試料3)のデータを同時に示す。 なお、フツ素樹脂粉末と酸化チタン粉末との容
量比を40/60とする以外は全て試料1の場合と同
様に作業して得られる接着性構造物は酸化チタン
粉末に対してフツ素樹脂粉末が不足して、該樹脂
粉末のバインダー効果が小さく、混合薄層を手で
触れると酸化チタン粉末の脱落を生じた。 実施例 2 平均粒径0.015μの超微粒状コロイダルシリカ粉
末(デユポン社製、商品名リユドツクスAS)を
ノニオン界面活性剤8重量%水溶液に均一に分散
せしめる。 一方、これとは別に平均粒径0.2μのPTFE粉末
の水性分散液(ダイキン社製、商品名ポリフロン
D−1)を用意する。 これら両者を混合し、PTFE粉末とコロイダル
シリカ粉末の容量比が80/20で、且つこれら分散
質と分散媒である水との容量比が20/80である分
散液とする。 次に、厚さ0.05mmのPTFEシートの片面に分散
液をグラビアコーターで塗布し、80℃の温度で10
分間予備加熱する。 その後、PTFEの融点以上での加熱および該加
熱によりPTFEシートの片面に形成される混合薄
層に対するスパツタエツチング処理を第1表に示
す条件で順次行ないシート状のPTFE接着性構造
物(試料4)を得た。 この構造物の接着力を実施例1と同条件で測定
した。得られた結果を第1表に示す。 比較のため、混合薄層に対しスパツタエツチン
グ処理を施さずに鉄板と接着せしめた場合(試料
5)のデータを同時に示す。 実施例 3 平均粒径0.007μの超微粒子状無水シリカ粉末
(日本アエロジル社製、商品名アエロジル#800)
をノニオン界面活性剤8重量%水溶液に均一に分
散せしめる。 一方、これとは別に平均粒径0.3μのFEP粉末の
水性分散液(ダイキン社製、商品名ネオフロン
ND−1)を用意する。 これら両者を混合し、FEP粉末と無水シリカ
粉末の容量比が90/10で、且つこれら分散質と分
散媒である水との容量比が30/70である分散液と
する。 次に、厚さ0.25mmのFEPシートの片面に上記分
散液を流しかけし、80℃の温度で10分間予備加熱
する。 その後、FEPの融点以上での加熱および該加
熱によりFEPシートの片面に形成される混合薄
層に対するスパツタエツチング処理を第1表に示
す条件で順次行ないシート状のFEP接着性構造
物(試料6)を得た。 この構造物の接着力を実施例1と同条件で測定
した。得られた結果を第1表に示す。 比較のため、混合薄層に対しスパツタエツチン
グ処理を施さずに鉄板と接着せしめた場合(試料
7)のデータを同時に示す。 実施例 4 平均粒径35μのPTFE粉末を用いること、予備
加熱を80℃で30分間とすること、加熱およびスパ
ツタエツチング処理条件を第1表に示すように設
定する以外は全て実施例1と同様に作業し、シー
ト状のPTFE接着性構造物(試料8)を得た。該
構造物の接着力を第1表に示す。 実施例 5 平均粒径7μの硅藻土粉末を用いる以外は全て
実施例1と同様に作業し、シート状の接着性構造
物(試料9)を得た。該構造物の接着力を第1表
に示す。
The present invention relates to a method for manufacturing a fluororesin adhesive structure that can be bonded with an adhesive and has extremely high adhesive strength. Fluoroplastics have excellent heat resistance, chemical resistance, and weather resistance, as well as unique properties such as friction resistance and non-adhesion, and are used in industrial fields such as chemicals, electricity, and machinery. . However, on the other hand, the excellent properties of fluororesins make them extremely difficult to process. In particular, the non-adhesive property of fluororesins poses a major obstacle in laminating them with other materials such as rubber, metals, and plastics, forcing restrictions on the development of their applications. In the past, several methods have been proposed for imparting adhesive properties to fluororesin, including chemical treatment in which the surface of the fluororesin base material is etched with a sodium-ammonia complex salt or a sodium-naphthalene complex compound. Laws can be mentioned. However, this method not only requires the use of dangerous chemicals, but also has the problem that the adhesive activity imparted by coloring or etching the treated surface is lost in a relatively short period of time. In addition, by applying a dispersion containing fluororesin powder and filler powder such as metal oxide powder to the surface of a fluororesin base material and then heating it, a layer of a mixture of fluororesin powder and filler can be formed. A method is also known in which the fluororesin base material is bonded to another material by forming a filler on the surface of the base material and using the anchoring function of the filler contained in the mixture layer. According to this method, there is no danger of using chemicals as in chemical treatment methods, but the surface of the filler powder in the mixture layer is likely to be covered with a fluororesin film, and the fluororesin base material can be mixed with other materials. When gluing, the anchoring force may not be sufficiently exerted. As a result of intensive studies to improve the latter method, the inventors of the present invention found that a mixed thin layer of fluororesin powder and filler powder formed on the surface of a fluororesin base material was subjected to atmospheric pressure within a predetermined range. It has been discovered that the anchoring function of the thin layer is increased by sputter etching treatment under these conditions, and that when the base material is bonded to other materials through this thin layer, the adhesive strength is improved, and the present invention has been made. This is what we have come to complete. That is, the method for manufacturing the fluororesin adhesive structure according to the present invention is such that the volume ratio of the fluororesin powder with an average particle size of 0.05 to 50μ and the filler powder with an average particle size of 10μ or less is
A dispersion of 95/5 to 50/50 is applied to the surface of a fluororesin base material, and then heated to a temperature higher than the melting point of the fluororesin to form fluororesin powder and filler powder on the surface of the base material. The method is characterized in that a mixed thin layer is fused and formed, and then the mixed thin layer is subjected to a sputter etching treatment under an atmospheric pressure of 0.0005 to 0.5 Torr. In the present invention, the fluororesin as a component of the fluororesin base material or the mixed thin layer formed on the surface of the base material is not particularly limited, and various fluororesins can be used, but polytetrafluorocarbon Ethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoro(alkyl vinyl ether) copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE) Application of the present invention to ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), etc.
These resins are of high value because they are used industrially and there is a desire to improve adhesive strength. Also,
In the present invention, it is preferable that the constituent components of the fluororesin base material and the constituent components of the mixed thin layer be of the same type of fluororesin, from the viewpoint of thermal fusion strength between the base material and the mixed thin layer. The dispersion used in the present invention has an average particle size of 0.05 to
A fluororesin powder with a diameter of 50μ and a filler powder with an average particle diameter of 10μ or less are contained as dispersoids, and the volume ratio of the two is 95/5 to 50/50, preferably 90/10 to 60/40. As the filler, metal oxides or silicon compounds that do not dissolve in the dispersion medium and have heat resistance can be used. Specific examples of metal oxides include aluminum oxide, zinc oxide, titanium oxide, chromium oxide, iron oxide, and cobalt oxide. Specific examples of silicon compounds include fine particulate silicon oxide, aluminum silicate, etc.
Examples include calcium silicate, diatomaceous earth, and kaolin. This filler is used in powder form with an average particle size of 10μ or less. The average particle size of the filler is
If it is 10μ or more, when the filler powder is mixed with the fluororesin powder into a dispersion medium and made into a dispersion liquid, the filler powder settles quickly and tends to separate, making it difficult to apply a dispersion liquid with a uniform composition to the surface of the fluororesin base material. This is not desirable because it becomes Further, the fluororesin powder used has an average particle size of 0.05 to 50 .mu.m in order to improve dispersibility and prevent the thickness of the mixed thin layer formed on the surface of the fluororesin base material from becoming unnecessarily thick. The volume ratio of the above fluororesin powder and filler powder is 95/
It is blended in a range of 5 to 50/50. Filler powder is 5
If the volume is less than %, even if the thin mixed layer formed on the base material is subjected to the sputter etching process described below,
When this material is bonded to other materials, there is almost no effect of improving the adhesive strength, and if it exceeds 50% by volume, the amount of fluororesin powder used as a binder for forming a mixed thin layer becomes too small and the base material becomes too small. Both are undesirable because the adhesive strength between the material and the filler powder decreases and the filler powder falls off from the mixed thin layer formed on the surface of the substrate. As the dispersion medium, non-toxic, unnatural water, trichlorotrifluoroethane, etc. are suitable, but tetrachloroethane, trichloroethylene, methylchloroform, etc. can also be used. Furthermore, a surfactant can be added to improve the stability of the dispersion. The ratio of the dispersoid to the dispersion medium in the dispersion liquid is 3/97 to 50/3 in terms of volume ratio from the viewpoint of stability of the dispersion liquid and workability when coating on the surface of the fluororesin base material.
It is preferable to set it in the range of 50. A dispersion containing a fluororesin powder and a filler powder as a dispersoid can be prepared by dispersing the fluororesin powder and filler powder separately in a dispersion medium and then mixing them together, or by dispersing the fluororesin powder and filler powder in a dispersion solution containing one of the powders. It can be obtained by adding and mixing the other powder. Furthermore, filler powder can also be used by dispersing it in a polymerization solution obtained by emulsion polymerization of a fluorine-based monomer. In the present invention, first, the above-described dispersion containing fluororesin powder and filler powder as dispersoids is applied to a predetermined surface of a fluororesin base material. The dispersion can be applied to the surface of the substrate by pouring, dipping, roll coating, gravure coating, spraying, or the like. After applying the dispersion liquid to the surface of the fluororesin base material in this manner, the base material is heated to a temperature higher than the melting point of the fluororesin, and a mixed thin layer of the fluororesin powder and filler powder is applied to the base material. Form a fusion bond on the surface. The preferred heating temperature varies depending on the type of fluororesin, and is, for example, 350 to 390°C in the case of PTFE, 310 to 380°C in the case of FEP or PFA, and 290 to 340°C in the case of ETFE. In addition, when the fluororesin constituting the base material and the fluororesin powder in the dispersion are different in type, at least one of them is preferably heated to a temperature higher than the melting point of both fluororesins. The thickness of this mixed thin layer is set depending on the particle size and content of the filler powder in the thin layer, but is usually about 0.5 to 70 microns, preferably about 1 to 10 microns. In addition, in the present invention, in order to prevent the formation of voids in the mixed thin layer due to evaporation of the dispersion medium during the heating, preheating is performed in advance at the evaporation temperature of the dispersion medium prior to the heating, and a portion of the dispersion medium is can also be removed. In the present invention, the mixed thin layer thus formed on the surface of the fluororesin base material is subjected to a sputter etching treatment. The sputter etching process for mixed thin layers is performed at an atmospheric pressure of 0.0005 to 0.5 Torr.
Conducted under the following conditions. This is because if the atmospheric pressure is less than 0.0005 Torr, the discharge for sputter etching will not be sustained, and if it is more than 0.5 Torr, the etching rate will drop significantly and the discharge itself will become unstable. Furthermore, other sputter etching processing conditions include the normal frequency of several hundred KHz to several tens of MHz, the practically allocated frequency for industrial use of 13.56MHz, and the discharge power of 0.1 to several tens of MHz.
It is 10Watt/ cm2 . The lower the discharge power, the longer the treatment time needs to be, so in practice it is better to increase the discharge power and reduce the treatment time (the degree of surface treatment is approximately expressed as the product of the discharge power and the treatment time). ). In the present invention, in order to perform sufficient sputter etching treatment on the mixed thin layer in a short time, the product of discharge power (Watt/cm 2 ) and treatment time (sec) is approximately 0.1
~200Watt・sc/cm 2 Preferably about 1~100watt・
It is best to set the discharge power and processing time so that the discharge rate is sec/cm 2 . Various gases can be used as the atmospheric gas, but in practice, inert gases such as argon, air, water vapor, carbon dioxide gas, etc. are used. Next, an example of a sputter etching processing apparatus will be explained with reference to the drawings. Reference numeral 1 denotes an exhaust pipe connected to a vacuum pump (not shown) for exhausting gas in the reduced pressure container 2, 3 indicates a valve for introducing atmospheric gas into the reduced pressure container 2, and 4 indicates a fluororesin base material 5. It is an electrode for sputter etching the mixed thin layer 6 formed on the surface of the external matching box 7 (impedance matching device), which is electrically insulated from the reduced pressure vessel 2 and connected to an external matching box 7 (impedance matching device) using a lead wire hermetically sealed. ), and is further led to a high frequency power source 8. 9 is a shielding electrode for electrode 4, and a high frequency power source 8
It is electrically connected to the ground side of the 10 is a counter electrode which is also connected to the ground side of the high frequency power source 8. The reduced pressure container 2 serves to maintain the atmospheric pressure constant, and if a metal reduced pressure container is used, it is connected to the ground side of the high frequency power source 8. The matching box 7 is a circuit consisting of capacitance and inductance, and performs impedance matching. Next, to explain the outline of the sputter etching process principle, when the potential on the electrode 4 side is negative with respect to the counter electrode 10, positive ions generated as a result of discharge are accelerated and collide with the surface of the mixed thin layer 6. Then, sputter etching is performed. At this time, the positive charges of the collided positive ions accumulate on the surface of the mixed thin layer 6, increasing the surface potential, so the potential difference between this surface and the counter electrode 10 becomes small, and the discharge is maintained. It becomes difficult to do. However, in the next half cycle of the high-frequency voltage, the potential on the electrode 4 side becomes positive with respect to the counter electrode 10, so electrons enter the surface of the mixed thin layer 6 from the discharge space, and the negative charge that the electrons have Neutralizes the positive ions that have accumulated on the surface. As a result, when the potential on the electrode 4 side becomes negative with respect to the counter electrode 10 in the next half cycle of the high frequency voltage, the potential difference between the two becomes large and discharge occurs, and the generated positive ions are accelerated. It impinges on the surface of the mixed thin layer 6, making it possible to carry out sputter etching.
The above steps are repeated for each cycle of the high frequency voltage, and the surface of the mixed thin layer 6 is sputter etched. By subjecting the surface of the mixed thin layer to sputter etching using the apparatus described above, the adhesive strength with other materials is improved. This is because the fluororesin film covering the filler powder is removed by sputter etching, exposing the filler powder on the surface of the mixed thin layer, and this exposed filler powder has excellent adhesion to other materials. It is inferred that the main reason for this is that it performs an anchoring function. The present invention is configured as described above, and since the mixed thin layer formed on the surface of the fluororesin base material is subjected to sputter etching treatment, it is possible to provide a structure that can firmly adhere to other materials. . Further, unlike conventional chemical treatment methods, this method not only does not cause discoloration of the treated surface, but also has the characteristics that the treatment effect hardly deteriorates over time. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Finely particulate titanium oxide (manufactured by Kanto Kagaku Co., Ltd., trade name: Titanium Oxide GR) having an average particle size of 0.03 μm was uniformly dispersed in an 8% by weight aqueous solution of a nonionic surfactant. Separately, an aqueous dispersion of PTFE powder having an average particle size of 0.2 μm (manufactured by Mitsui Fluorochemical Co., Ltd., trade name: Teflon 30-J) is prepared. These two are mixed to form a dispersion liquid in which the volume ratio of PTFE powder to titanium oxide powder is 60/40, and the volume ratio of these dispersoids to water as a dispersion medium is 10/90. Next, one side of a PTFE sheet with a thickness of 0.2 mm was masked, immersed in the above dispersion, pulled up, preheated at a temperature of 80 °C for 10 minutes, part of the water was removed, and the mask was removed. , and further heated at a temperature of 380° C. for 5 minutes to form a thin layer of the mixture with a thickness of 3 μm on one side of the PTFE sheet. After that, the PTFE sheet was set in the sputter etching processing equipment shown in the drawing, and the atmospheric pressure was maintained at 5 × 10 -3 Torr while introducing argon gas.
Apply a high frequency voltage of 13.56MHz to generate a discharge force.
The surface of the mixed thin layer was sputter etched for 15 seconds at a rate of 1Watt/ cm2 (the amount of discharge treatment was
15 Watt·sec/cm 2 ), the power was turned off and the pressure returned to normal pressure to obtain a sheet-shaped PTFE adhesive structure (Sample 1). The above PTFE adhesive structure and a 2 mm thick aluminum plate were bonded using an epoxy adhesive (manufactured by Konishi Co., Ltd., product name: Bond E Set Clear) by heating at a temperature of 80°C for 60 minutes, and the adhesive strength was The results are shown in Table 1 below. Adhesion strength is at temperature 25
It was measured by the 180° peeling method at a temperature of 300 mm/min at a tensile speed of 300 mm/min. For comparison, a PTFE adhesive structure (sample 2) obtained in the same manner as sample 1 except that the volume ratio of fluororesin powder and titanium oxide powder was 98/2 and one side of the PTFE sheet were prepared. At the same time, data are shown for a sheet (Sample 3) which was subjected to only sputter etching treatment without forming a mixed thin layer. The adhesive structure obtained by performing the same procedure as in Sample 1 except that the volume ratio of the fluororesin powder and the titanium oxide powder was 40/60 was the same as that of the fluororesin powder compared to the titanium oxide powder. was insufficient, the binder effect of the resin powder was small, and when the mixed thin layer was touched by hand, the titanium oxide powder fell off. Example 2 Ultrafine colloidal silica powder (manufactured by Dupont, trade name: Ryuudox AS) having an average particle size of 0.015 μm was uniformly dispersed in an 8% by weight aqueous solution of a nonionic surfactant. Separately, an aqueous dispersion of PTFE powder having an average particle size of 0.2 μm (manufactured by Daikin Corporation, trade name Polyflon D-1) is prepared. These two are mixed to form a dispersion liquid in which the volume ratio of PTFE powder to colloidal silica powder is 80/20, and the volume ratio of these dispersoids to water as a dispersion medium is 20/80. Next, the dispersion was applied to one side of a PTFE sheet with a thickness of 0.05 mm using a gravure coater, and
Preheat for a minute. Thereafter, heating above the melting point of PTFE and sputter etching treatment of the mixed thin layer formed on one side of the PTFE sheet by the heating were sequentially performed under the conditions shown in Table 1 to obtain a sheet-like PTFE adhesive structure (Sample 4). ) was obtained. The adhesive strength of this structure was measured under the same conditions as in Example 1. The results obtained are shown in Table 1. For comparison, data for the case where the mixed thin layer was bonded to the iron plate without undergoing sputter etching treatment (sample 5) is also shown. Example 3 Ultrafine anhydrous silica powder with an average particle size of 0.007μ (manufactured by Nippon Aerosil Co., Ltd., trade name Aerosil #800)
was uniformly dispersed in an 8% by weight aqueous solution of nonionic surfactant. On the other hand, apart from this, an aqueous dispersion of FEP powder with an average particle size of 0.3μ (manufactured by Daikin, trade name: NEOFLON)
Prepare ND-1). These two are mixed to form a dispersion liquid in which the volume ratio of FEP powder to anhydrous silica powder is 90/10, and the volume ratio of these dispersoids to water as a dispersion medium is 30/70. Next, the above dispersion liquid is poured onto one side of a 0.25 mm thick FEP sheet and preheated at a temperature of 80° C. for 10 minutes. Thereafter, heating above the melting point of FEP and sputter etching treatment of the mixed thin layer formed on one side of the FEP sheet by the heating were sequentially performed under the conditions shown in Table 1 to obtain a sheet-like FEP adhesive structure (Sample 6). ) was obtained. The adhesive strength of this structure was measured under the same conditions as in Example 1. The results obtained are shown in Table 1. For comparison, data for the case where the mixed thin layer was bonded to the iron plate without undergoing sputter etching treatment (sample 7) is also shown. Example 4 Everything was the same as Example 1 except that PTFE powder with an average particle size of 35μ was used, the preheating was at 80°C for 30 minutes, and the heating and sputter etching conditions were set as shown in Table 1. A sheet-like PTFE adhesive structure (Sample 8) was obtained by the same operation. The adhesive strength of the structure is shown in Table 1. Example 5 A sheet-like adhesive structure (Sample 9) was obtained by carrying out the same procedure as in Example 1 except for using diatomaceous earth powder with an average particle size of 7 μm. The adhesive strength of the structure is shown in Table 1.

【表】 上記実施例および比較例から明らかなように、
本発明の方法により得られるフツ素樹脂製接着性
構造物は他の材料との接着力が大きいことが判
る。
[Table] As is clear from the above examples and comparative examples,
It can be seen that the adhesive structure made of fluororesin obtained by the method of the present invention has a high adhesive strength with other materials.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に用いられるスパツタエツチング
処理装置の実例を示す概略図である。 2……減圧容器、4……電極、5……フツ素樹
脂基材、6……混合薄層、8……高周波電源、9
……シールド用電極、10……対向電極。
The drawing is a schematic diagram showing an example of a sputter etching processing apparatus used in the present invention. 2...Reduced pressure container, 4...Electrode, 5...Fluororesin base material, 6...Mixed thin layer, 8...High frequency power source, 9
...Shield electrode, 10...Counter electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径0.05〜50μのフツ素樹脂粉末と平均
粒径10μ以下の充填剤粉末との容量比が95/5〜
50/50の分散液をフツ素樹脂基材の表面に塗布
し、次いでフツ素樹脂の融点以上に加熱すること
により、前記基材の表面にフツ素樹脂粉末と充填
剤粉末との混合薄層を融着形成せしめ、その後該
混合薄層を雰囲気圧0.0005〜0.5Torrの条件下で
スパツタエツチング処理することを特徴とするフ
ツ素樹脂製接着性構造物の製造法。
1 The volume ratio of fluororesin powder with an average particle size of 0.05 to 50μ and filler powder with an average particle size of 10μ or less is 95/5 to 95/5.
By applying a 50/50 dispersion onto the surface of a fluororesin base material and then heating it above the melting point of the fluororesin, a thin layer of a mixture of fluororesin powder and filler powder is formed on the surface of the base material. 1. A method for producing an adhesive structure made of fluororesin, characterized in that the thin mixed layer is sputter etched under conditions of an atmospheric pressure of 0.0005 to 0.5 Torr.
JP6745883A 1983-04-15 1983-04-15 Production of adhesively bondable fluorocarbon resin structure Granted JPS59191735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6745883A JPS59191735A (en) 1983-04-15 1983-04-15 Production of adhesively bondable fluorocarbon resin structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6745883A JPS59191735A (en) 1983-04-15 1983-04-15 Production of adhesively bondable fluorocarbon resin structure

Publications (2)

Publication Number Publication Date
JPS59191735A JPS59191735A (en) 1984-10-30
JPH0218690B2 true JPH0218690B2 (en) 1990-04-26

Family

ID=13345513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6745883A Granted JPS59191735A (en) 1983-04-15 1983-04-15 Production of adhesively bondable fluorocarbon resin structure

Country Status (1)

Country Link
JP (1) JPS59191735A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489731B2 (en) * 2012-08-30 2019-03-27 太陽工業株式会社 Photocatalytic membrane bonding method
JP6141377B2 (en) * 2015-10-07 2017-06-07 株式会社森清化工 Perfluoro rubber molding
JP6782310B2 (en) * 2019-01-07 2020-11-11 太陽工業株式会社 Photocatalyst film bonding method
JP2022062590A (en) * 2020-10-08 2022-04-20 日東電工株式会社 Fluorine resin film and rubber molded article
JP2022062589A (en) * 2020-10-08 2022-04-20 日東電工株式会社 Fluorine resin film and rubber molded article

Also Published As

Publication number Publication date
JPS59191735A (en) 1984-10-30

Similar Documents

Publication Publication Date Title
EP0843599B1 (en) Vacuum flash evaporated polymer composites
US4933060A (en) Surface modification of fluoropolymers by reactive gas plasmas
US2789063A (en) Method of activating the surface of perfluorocarbon polymers and resultant article
EP2256152A1 (en) Method of treating fluoropolymer particles
WO2003091318A1 (en) Method of treating fluoropolymer particles and the products thereof
JPH0218690B2 (en)
EP1155818B1 (en) Multilayered film and process for producing the same
JPH033701B2 (en)
US5158657A (en) Circuit substrate and process for its production
JPH0639147B2 (en) Composite structure
JP2004323593A (en) Fluororesin powder and modification method therefor
JP3176740B2 (en) Surface modification method of fluororesin using ultraviolet laser light
US3703585A (en) D.c. sputtering of particulate polymeric compounds onto a substrate
US20060141244A1 (en) Multilayer film and process for producing the same
JPH0885186A (en) Fluorine plastic hydrophilic structure and manufacture
US7300683B2 (en) Method of forming resistance film
WO2022061971A1 (en) Insulating plate and preparation method therefor, laminated plate and preparation method therefor, and application thereof
JP7059764B2 (en) Method of manufacturing a laminate
JP6593701B2 (en) Dielectric thin film
JPH08155379A (en) Method for transfer-depositing particulate film
CN115678360B (en) Preparation method of composite electret and composite electret obtained by preparation method
JPS5953542A (en) Manufacture of composite
JPS58126640A (en) Forming method of phosphor screen
JPH11283875A (en) Solid electrolytic capacitor and manufacture thereof
JPH022892B2 (en)