JPH02186503A - Thermosetting resin sheet material having fine electricity-removability - Google Patents

Thermosetting resin sheet material having fine electricity-removability

Info

Publication number
JPH02186503A
JPH02186503A JP654989A JP654989A JPH02186503A JP H02186503 A JPH02186503 A JP H02186503A JP 654989 A JP654989 A JP 654989A JP 654989 A JP654989 A JP 654989A JP H02186503 A JPH02186503 A JP H02186503A
Authority
JP
Japan
Prior art keywords
sheet
fiber
fibers
resin
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP654989A
Other languages
Japanese (ja)
Inventor
Hisanobu Hori
堀 尚之武
Kiyonobu Fujii
藤井 清伸
Kazuhiko Tanaka
和彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP654989A priority Critical patent/JPH02186503A/en
Publication of JPH02186503A publication Critical patent/JPH02186503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To have the fine electricity-removability and eliminate the lower of its performance as it is repeatedly bent by arranging the organic conductive fiber, as it is long, in the surface or the inside of a sheet material. CONSTITUTION:The organic continuous fiber made of filament more than one and having the conductivity or the fiber bundle (organic conductive fiber) is included in the thermosetting resin sheet material less than 1 capacity %. This organic conductive fiber is arranged in one direction, and is presented under the continued condition form one end of a sheet to the other end. The unsaturated polyester resin, the vinylester resin, the epoxy resin and these modified resin are desirably used as the thermosetting resin from the point of the formability. Thereby, the thermosetting sheet material having the fine electricity- removability and the high degree of freedom of coloring without the danger of the electric shock and the lower of the performance by the repeated bending.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は優れた除電性能を有する熱硬化性樹脂シート状
物に関するものである。さらに詳しくは最近静電気蓄積
により種々の問題が発生している建材分野、電気、電子
分野、自動車分野、機械分野、食品分野等における壁、
隔壁、間仕切り、筐体等に有用である。シート状物の表
面又は内部に、何機導電性繊維を長繊維のまま配列する
ことによりシートの性状を損なイつず、安価で、非帯電
性を附与された熱硬化性樹脂シート状物に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a thermosetting resin sheet having excellent static elimination performance. In more detail, walls in the building materials field, electricity, electronics field, automobile field, machinery field, food field, etc., where various problems have recently occurred due to static electricity accumulation,
Useful for bulkheads, partitions, housings, etc. A thermosetting resin sheet that is inexpensive and imparts non-static properties without damaging the properties of the sheet by arranging several conductive fibers as long fibers on the surface or inside of the sheet. It is about things.

[従来の技術] 従来から熱硬化性樹脂シート状物は、その不導電性の為
に静電気が蓄積し、シート表面への砂、塵芥等の黒物の
耐着、帯電した電荷が一度に放電する時、人体が電撃を
受けたり、周辺の電子部品の故障の原因となることなと
は、身近に頻発している。
[Prior art] Thermosetting resin sheet materials have traditionally been used to accumulate static electricity due to their non-conductivity, prevent sand, dust, and other dark objects from adhering to the sheet surface, and prevent charged charges from being discharged all at once. When doing so, the human body may receive an electric shock or damage to surrounding electronic components may occur frequently.

これらシート状物の帯電防止の為に熱硬化性樹脂に帯電
防止剤や導電性フィラーを配合する方法、シート状物表
面に導電性塗料を塗布する方法等が一般的に行なわれて
き1こ。帯電防止剤を用いる方法は長期の使用に際して
帯電防止剤がブリードアウトすることにより帯電防止性
能を低下させるとともにシート状物表面の粘着性が増し
、周辺の塵芥を耐着させる問題かある。導電性フィラー
を配合する場合は帯電防止性能発現の為には高価で多量
の導電性フィラーを必要とする為に経済性に劣り、力学
物性の低下、特に繊維状導電材を用いる場合は屈曲によ
る帯電防止性能の低下、カラーリングが困難特に透明感
が無い等の問題があり、導電性塗料を塗布する方法は長
期使用、摩耗、屈曲等による塗料の脱落により周辺電気
、電子機器等の故障の原因になるとともに導電性塗料中
の導電材の色相の為にカラーリングの自由度がない、特
に透明感がない等の問題かあり、従来用いられていた方
法には夫々問題点があるのか現状てある。
In order to prevent static electricity on these sheet-like materials, methods such as adding an antistatic agent or a conductive filler to a thermosetting resin, and applying a conductive paint to the surface of the sheet-like material have been generally used. The method of using an antistatic agent has the problem that the antistatic agent bleeds out during long-term use, reducing the antistatic performance and increasing the tackiness of the surface of the sheet-like material, making it resistant to adhesion of surrounding dust. When a conductive filler is added, it is expensive and requires a large amount of conductive filler in order to achieve antistatic performance, resulting in poor economic efficiency and a decrease in mechanical properties, especially when using fibrous conductive materials, due to bending. There are problems such as a decrease in antistatic performance, difficulty in coloring, and a lack of transparency, and the method of applying conductive paint can cause damage to surrounding electrical and electronic equipment due to paint falling off due to long-term use, wear, bending, etc. In addition to being the cause of the problem, there are also problems such as lack of freedom in coloring due to the hue of the conductive material in the conductive paint, and a lack of transparency.The current situation is that the methods used in the past have their own problems. There is.

[発明が解決しようとする課題] 本発明の目的は経済的に有利であり、除電効果に優れ、
電撃の心配がなく、カラーリングの自由度が高<、操り
返し屈曲による性能の低下のない熱硬化性シート状物を
提供することにある。
[Problems to be Solved by the Invention] The objects of the present invention are to provide an economically advantageous, excellent static elimination effect,
To provide a thermosetting sheet-like material that is free from electric shock, has a high degree of freedom in coloring, and has no deterioration in performance due to repeated bending.

[課題を解決するための手段] 上記目的は、導電性を有する少なくとも1本以上のフィ
ラメントよりなる有機連続繊維又は繊維束(以下、単に
有機導電性繊維と称する)を1容量%以下含む熱硬化性
樹脂シート状物であって、有機導電性繊維が少なくとも
一方向に配列され、かつシートの一端から他端迄連続し
た状態で存在することを特徴とするシート状物によって
達成されるものである。
[Means for Solving the Problems] The above object is to produce a thermosetting fiber containing 1% or less by volume of organic continuous fibers or fiber bundles (hereinafter simply referred to as organic conductive fibers) consisting of at least one conductive filament. This is achieved by a sheet-like resin sheet material characterized by organic conductive fibers arranged in at least one direction and present in a continuous state from one end of the sheet to the other. .

本発明のシート状物の特徴は除電性態に優れている他に
有機導電性繊維が連続した状態で存在する為に繰返し屈
曲しても除電性能が低下しなく、しかも従来にない低充
填率でこれらの性能を実現するという有利性を有してい
る。
The sheet-like material of the present invention is characterized by excellent static elimination properties, and because the organic conductive fibers exist in a continuous state, static elimination performance does not deteriorate even when repeatedly bent, and the filling rate is unprecedentedly low. It has the advantage of being able to achieve these performances.

本発明において用いられる熱硬化性樹脂はシート状に成
形出来るものであれば特に制限はなく、例えば不飽和ポ
リエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、
フェノール樹脂、尿素樹脂、メラミン樹脂等およびこれ
らの混合及び変性樹脂を挙げることが出来るが成形性の
点から不飽和ポリエステル樹脂、ビニルエステル樹脂、
エポキシ樹脂又はこれらの変性樹脂が好ましく用いられ
る。
The thermosetting resin used in the present invention is not particularly limited as long as it can be molded into a sheet, such as unsaturated polyester resin, vinyl ester resin, epoxy resin,
Examples include phenol resins, urea resins, melamine resins, and mixtures and modified resins thereof, but from the viewpoint of moldability, unsaturated polyester resins, vinyl ester resins,
Epoxy resins or modified resins thereof are preferably used.

なく、目的によって変更することができる。It can be changed depending on the purpose.

また、本発明においては、その目的を損わない範囲で、
前記の樹脂に例えば雲母、タルク、ガラスフレーク、ガ
ラス繊維、炭酸カルシウム、水酸化アルミニウム、クレ
ー等の各種フィラー ガラスチョツプドストランドマッ
ト、ガラス長繊維マット、ガラス織布等の無機繊維マッ
ト、ポリエステル、ビニロン、ナイロン、アクリル繊維
、綿、毛、絹等の有機繊維編、織布の細索外線吸収剤、
空気乾燥剤、増粘剤、着色剤等の添加剤を配合すること
ができる。
In addition, in the present invention, within the scope that does not impair the purpose,
Various fillers such as mica, talc, glass flakes, glass fibers, calcium carbonate, aluminum hydroxide, and clay can be added to the resin; inorganic fiber mats such as glass chopped strand mats, glass long fiber mats, and glass woven fabrics; polyester; Organic fiber knits such as vinylon, nylon, acrylic fiber, cotton, wool, silk, etc., fiber absorbers for woven fabrics,
Additives such as air drying agents, thickeners, colorants, etc. can be included.

本発明において、導電性を有する少なくとも1本のフィ
ラメントよりなる有機連続繊維又は繊維束(有機導電性
繊維)は例えば従来公知の、芯鞘構造をもち、その芯部
が導電性を有する有機複合導電性繊維や金属メツキが施
された有機繊維等を使用することが可能であり、その電
気抵抗値が108Ω・cm以下のらのが好ましく使用さ
れる。特に本発明においては、多芯々鞘複合繊維が好ま
しく使用され、該繊維は繊維形成ポリマー(Δ)を鞘成
分、導電性カーホンブラックを15〜50重量%含有す
るポリマー(B)を芯成分とする多芯々鞘複合繊維であ
って、(B)と(A)との複合重量分率が(B)/(A
)= 5/95−30/70、複合繊維の直径(D)が
40μm以下、−複合繊維当りの芯数が2〜8、とくに
4〜6、芯の直径が5μm以上110l7以下であり、
がっ、複合繊維外周と6芯との最短距離(L)がすべて
1μm以上5μm以下にあり、1OKV印加した時の放
電々流が10−7〜10.−3Aであることを特徴とす
る多芯々鞘複合繊維である。
In the present invention, the organic continuous fiber or fiber bundle (organic conductive fiber) consisting of at least one conductive filament has, for example, a conventionally known organic composite conductive fiber having a core-sheath structure and whose core is conductive. It is possible to use synthetic fibers, organic fibers plated with metal, etc., and those having an electrical resistance value of 10 8 Ω·cm or less are preferably used. In particular, in the present invention, a multicore-to-sheath composite fiber is preferably used, and the fiber has a fiber-forming polymer (Δ) as a sheath component and a polymer (B) containing 15 to 50% by weight of conductive carbon black as a core component. A multicore-to-sheath composite fiber having a composite weight fraction of (B) and (A) of (B)/(A
) = 5/95-30/70, the diameter (D) of the composite fiber is 40 μm or less, - the number of cores per composite fiber is 2 to 8, especially 4 to 6, the diameter of the core is 5 μm or more and 110l7 or less,
However, the shortest distance (L) between the outer periphery of the composite fiber and the six cores is 1 μm or more and 5 μm or less, and the discharge current when 1 OKV is applied is 10-7 to 10. -3A multicore-to-sheath composite fiber.

さらに好ましくは、上記において繊維断面中の芯成分の
配置が円周方向にほぼ一列に、実質的に等間隔に並ぶも
のであることを特徴とする多芯々鞘繊維、前記におイテ
(B)/ (A)−10/90〜20/8+H,:して
、−複合繊維当りの芯数が4であることを特徴とする複
合繊維、および前記において繊維形成ポリマー(A)が
ポリエステル系ポリマーであり、導電性カーボンブラッ
クを含有するポリマー(B)がポリアミド系ポリマーで
あることを特徴とする多芯々鞘複合繊維である。現在こ
の様な多芯々鞘複合繊維は商品名クラカーホ■として止
車されている。
More preferably, the above-mentioned multi-core core-sheath fiber is characterized in that the core components in the cross section of the fiber are arranged substantially in a row in the circumferential direction at substantially equal intervals. / (A) -10/90 to 20/8+H, - A composite fiber characterized in that the number of cores per composite fiber is 4, and in the above, the fiber-forming polymer (A) is a polyester polymer. It is a multi-core core-sheath composite fiber characterized in that the polymer (B) containing conductive carbon black is a polyamide-based polymer. Currently, such multi-core core-sheath composite fibers are sold under the trade name of Cracaho ■.

本発明の如く、有機導電性繊維を含む熱硬化性樹脂シー
ト状物の除電機構は未だ明確ではないが、シート表面に
帯電した電荷が該有機導電性繊維に対しコロナ放電し、
さらに有機導電性繊維の先端部より先端放電し除電され
るものと推定される。
Although the static elimination mechanism of a thermosetting resin sheet containing organic conductive fibers as in the present invention is not yet clear, the charges on the sheet surface cause corona discharge to the organic conductive fibers, and
Furthermore, it is presumed that static electricity is removed by discharging from the tip of the organic conductive fiber.

先端放電により放電除電されるとすれば、この有機導電
性繊維の直径が小さい程先端部での電荷密度が容易に高
まり、より低い荷電量でも放電される。
If discharge static electricity is removed by discharging at the tip, the smaller the diameter of the organic conductive fiber, the easier the charge density at the tip will increase, and the discharge will occur even with a lower amount of charge.

本発明において、有機導電性繊維はシート状物製造時に
同時に埋め込まれた状態でも良く、熱硬化性樹脂シート
の表面に接着等の方法で接着された状態でもよいが、本
発明のシート状物中に1容量%以下で少なくとも一方向
に配列され、かつシートの一端から他端迄連続した状態
で存在することが必要である。該有機導電性繊維は本発
明のシート状物においてl容量%以下、望ましくは0.
02〜0.5容量%でも優れた除電性能を示すものであ
り、この点数%〜数10%の多量の充填を必要とする従
来の導電性フィラーと比べ極めて効率性の高いものであ
る。該有機導電性繊維は本発明シート状物中に少なくと
も一方向に配列されており、その方向は特に制限はなく
、タテ、ヨコ、ナナメいずれの方向に配列されていても
かまわないがシート状物の作成の容易さから一方向のみ
に配列されたものが好ましい。本発明のシート状物はい
わゆる先端放電により優れた除電効果を示すものと推定
される為、有機導電性繊維はシートの端部に必ず露出し
、連続した状態で他端迄存在することが必要であり、途
中で切断されていたり、端部迄連続していない場合除電
効果が極端に低下する。特に本発明に用いられる有機導
電性繊維は有機質主体で伸びが大きい為、繰返し屈曲に
よる除電性能低下がない。
In the present invention, the organic conductive fibers may be embedded at the same time as the sheet-like product is manufactured, or may be adhered to the surface of the thermosetting resin sheet by adhesive or other methods. It is necessary for the particles to be arranged in at least one direction at a concentration of 1% by volume or less, and to exist continuously from one end of the sheet to the other. The amount of the organic conductive fiber in the sheet-like article of the present invention is 1% by volume or less, preferably 0.1% by volume.
It shows excellent static elimination performance even at 0.02 to 0.5% by volume, and is extremely efficient compared to conventional conductive fillers that require a large amount of filling of this number % to several 10%. The organic conductive fibers are arranged in at least one direction in the sheet-like article of the present invention, and the direction is not particularly limited, and they may be arranged in any direction, vertically, horizontally, or diagonally. It is preferable to arrange them in only one direction for ease of preparation. Since the sheet-like material of the present invention is presumed to exhibit excellent static elimination effects due to so-called tip discharge, it is necessary that the organic conductive fibers are always exposed at the edge of the sheet and exist in a continuous state all the way to the other edge. If it is cut in the middle or is not continuous all the way to the end, the static elimination effect will be extremely reduced. In particular, since the organic conductive fiber used in the present invention is mainly organic and has high elongation, there is no deterioration in static elimination performance due to repeated bending.

更に本発明において配列された有機導電性繊維同志の隣
り合う間隔は、狭い程除電性能が高くなるため50mm
以下が好ましく、さらに好ましくは30mm以下である
。但し、2mm以下にすると経済的に不利のため2〜3
0mmの間隔が特に好ましく用いられる。
Furthermore, in the present invention, the distance between adjacent organic conductive fibers arranged is 50 mm because the narrower the distance between adjacent organic conductive fibers, the higher the static elimination performance.
It is preferably 30 mm or less, and more preferably 30 mm or less. However, if it is less than 2mm, it is economically disadvantageous, so 2-3
A spacing of 0 mm is particularly preferably used.

次にシート表面と該有機導電性繊維の距離、つまり有機
導電性繊維の埋め込み深さは浅ければ浅い程除電効果は
高くなるため好ましくは1mm以下であり、さらに好ま
しくは0.7mm以下である。
Next, the distance between the sheet surface and the organic conductive fibers, that is, the depth of embedding the organic conductive fibers, is preferably 1 mm or less, more preferably 0.7 mm or less, because the shallower the static elimination effect becomes. .

本発明のシート状物の製造方法は、該有機導電性繊維と
熱硬化性樹脂が一体化出来る方法であれば特に制限はな
いが、製造方法の一例として例えば熱硬化性樹脂シート
の表面に、配列された有機導電性繊維を接着剤により接
着又は熱硬化性樹脂層間に配列された有機導電性繊維を
埋め込む方法、離型用フィルム又は離型ベルト上に熱硬
化性樹脂を連続的にコートし、その上から一方向に配列
された有機導電性繊維を連続的に供給し、常温又は加熱
硬化させ本発明のシート状物を製造する方法等が挙げら
れるがこれらに限定されるものではない。更に、本発明
のシート状物は本発明の目的を損わない範囲でシート状
物表面に熱可塑性樹脂フィルムを接着もしくは溶着する
ことができる。例えば接着可能な熱可塑性樹脂フィルム
上に一方向に配列された有機導電性繊維を連続的に供給
し、その上に熱硬化性樹脂を連続的にコートし、更にそ
の上から熱可塑性樹脂フィルムを連続的に供給した後、
熱硬化性樹脂を硬化させ本発明のシート状物を得る方法
か挙げられるがこの方法に限定されるものではない。
The method for manufacturing the sheet-like product of the present invention is not particularly limited as long as the organic conductive fibers and the thermosetting resin can be integrated, but as an example of the manufacturing method, for example, A method of bonding arranged organic conductive fibers with an adhesive or embedding arranged organic conductive fibers between thermosetting resin layers, and continuously coating a thermosetting resin on a release film or a release belt. Examples include, but are not limited to, a method of manufacturing the sheet-like product of the present invention by continuously supplying organic conductive fibers arranged in one direction from above and curing at room temperature or by heating. Furthermore, a thermoplastic resin film can be adhered or welded to the surface of the sheet-like article of the present invention within a range that does not impair the object of the present invention. For example, organic conductive fibers arranged in one direction are continuously supplied onto an adhesive thermoplastic resin film, a thermosetting resin is continuously coated on top of the organic conductive fibers, and then a thermoplastic resin film is applied on top of that. After continuously feeding,
Examples include a method of curing a thermosetting resin to obtain the sheet-like article of the present invention, but the method is not limited to this method.

該有機導電性繊維は、本発明に限定された範囲で、導電
性を有しない繊維間に混繊又は混編され73編、織布の
形で用いる方が、有機導電性繊維の取扱い易さ、配列の
乱れがない等の面で好ましく用いられる。該導電性を有
しない編、織布としては特に限定はないが、例えば綿、
絹、毛等の天然繊維、ポリエステル、ヒニロン、アクリ
ル、アラミド、アリレート等の合成繊維、レイヨン、キ
ュプラ等の人造繊維、ガラス等の無機質繊維等の編、織
布が挙げられる。
The organic conductive fibers are mixed or knitted between non-conductive fibers within the scope of the present invention, and it is easier to handle the organic conductive fibers when used in the form of a woven fabric. , is preferably used because there is no disorder in the arrangement. The non-conductive knitted or woven fabric is not particularly limited, but includes, for example, cotton,
Examples include knitted and woven fabrics of natural fibers such as silk and wool, synthetic fibers such as polyester, hinilon, acrylic, aramid, and arylate, artificial fibers such as rayon and cupro, and inorganic fibers such as glass.

次に本発明を実施例により更に具体的に説明ずろが、本
発明はこれらの実施例に何ら限定されるらのではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way.

実施例1〜4、比較例1 カラス板」二に離型用ビニロンフィルムを貼り、その上
にパーメツ7N(商品名、日本油脂製)1重量%含むリ
ボラック158BQT(商品名、昭和高分子製不飽和ポ
リエステル樹脂)を硬化後厚さ0.1mmとなるように
流延し、半硬化状態にした後(以下第1段流延と略す)
、あらかしめ配列しである多芯々鞘りラカーポ■(商品
名、クラレ製、芯成分/鞘成分−11/89重量%、芯
数4本)20デニールのフィラメント8本よりなる繊維
束を表1に示した繊維間隔で一端から他端迄繊椎束が連
続した状態で載置し、更にその上から前記パーメックN
1重量%含むリボラック1.58BQTを流延、硬化せ
しめた後、ビニロンフィルムを剥離して厚さ1mmのシ
ート状物を得た。
Examples 1 to 4, Comparative Example 1 A vinylon film for mold release was pasted on a glass plate, and on top of that, Rivolac 158BQT (trade name, Showa Kobunshi Co., Ltd.) containing 1% by weight of Parmets 7N (trade name, Nippon Oil & Fats Co., Ltd.) was applied. Saturated polyester resin) was cast to a thickness of 0.1 mm after curing to a semi-cured state (hereinafter abbreviated as first stage casting)
Table 1 shows a fiber bundle consisting of eight 20-denier filaments. The fiber bundle is placed in a continuous state from one end to the other with the fiber spacing shown in , and then the Permec N is placed on top of it.
After casting and curing Rivolac 1.58BQT containing 1% by weight, the vinylon film was peeled off to obtain a sheet-like product with a thickness of 1 mm.

次いて多芯々鞘りラカーボ■繊維束を用いない他は同一
配合、同一方法で厚さ1mmの比較用シート状物を得た
。(比較例1) ここで得られrコシート状物について、労働省産業安全
研究所発行の静電気安全指針であるrt 1S−TR−
78−1によって帯電々荷密度を測定し、除電効果を調
へた。さらにこれらのシー)・両端部を持ち60°に曲
げることを20回繰り返したのち帯電々荷密度を前記R
r T 5−TR−78−1によつて測定し、除電効果
を調べた。その結果を表1に示す。
Next, a comparative sheet with a thickness of 1 mm was obtained using the same formulation and method except that the multicore-to-sheath Lacarbo ■ fiber bundle was not used. (Comparative Example 1) Regarding the rcosheet-like material obtained here, the rt 1S-TR-
78-1, the charge density was measured to examine the static elimination effect. Furthermore, after holding both ends of these seams and bending them at 60° 20 times, the charge density was adjusted to R.
r T 5-TR-78-1 was measured to examine the static elimination effect. The results are shown in Table 1.

有機導電性繊維であるクラカーポ■を挿入したシートは
除電効果がクラカーボ■を挿入しないザンプル(比較例
1)の1710程度迄低下することが確認されるととも
に、繰返し屈曲後も除電効果が低下しないことが確認さ
れた。
It was confirmed that the static elimination effect of the sheet inserted with the organic conductive fiber Cracarpo ■ was reduced to about 1710 of the sample without the insertion of Kracarbo ■ (Comparative Example 1), and the static elimination effect did not decrease even after repeated bending. was confirmed.

実施例5〜7 シート状物中への有機導電性繊維であるクラカーボOの
埋め込み深さの影響を調べる為に、第1段流延を硬化後
の厚さ0.5mm (実施例5 ) 、0.8mm(実
施例6)及び1.2mm(実施例7)となるように流延
する他は実施例2と同一配合、同一方法で厚さ1mm(
実施例5)、1.6mm(実施例6)及び2.4mm(
実施例7)の本発明のシート状物を得た。ここで得られ
たシート状物につき実施例1と同様の方法て除電効果を
調へその結果を表1に示した。
Examples 5 to 7 In order to investigate the influence of the embedding depth of Kurakabo O, which is an organic conductive fiber, in the sheet-like material, the first stage casting was performed to a thickness of 0.5 mm after curing (Example 5), The same formulation and method as in Example 2 were used to obtain a thickness of 1 mm (
Example 5), 1.6 mm (Example 6) and 2.4 mm (
A sheet-like product of the present invention in Example 7) was obtained. The static elimination effect of the sheet-like material obtained here was examined in the same manner as in Example 1, and the results are shown in Table 1.

これから、埋め込み深さ1mm以下で充分満足できる除
電性能を発揮ずろことが確認でき、このことは実際工業
的に1. m m程度の厚さのシート状物を製造すると
き、特別な配慮や工夫をして埋め込み深さをコントロー
ルする必要がないことを示している。
From this, it can be confirmed that satisfactorily static elimination performance can be achieved with an embedding depth of 1 mm or less, and this fact is actually industrially compatible with 1. This shows that there is no need to take any special consideration or ingenuity to control the embedding depth when manufacturing a sheet-like product with a thickness of about 2 mm.

実施例8 市販の0.05mm厚さポリエステルフィルム上に実施
例1で用いたと同一のクラカーポ■をタテ、ヨコ方向各
3mmの繊維間隔て一端から他端迄連続した状態で載置
し、その上にエピタンE −303/ラツカマイト03
6S (商品名、大日本インキ化学工業製)を75/2
5重量%混合したエボキン樹脂をコートして硬化せしめ
、厚さ1mmのクラカーポ■含有量0.85容量%のシ
ート状物を得た。ここで得られたシート状物につき実施
例1と同様の方法て除電効果を調へその結果を表1に示
した。
Example 8 On a commercially available 0.05 mm thick polyester film, the same Cracapo ■ used in Example 1 was placed in a continuous state from one end to the other with fiber spacing of 3 mm in both the vertical and horizontal directions, and then Epitan E-303/Ratsukamite 03
6S (trade name, manufactured by Dainippon Ink and Chemicals) at 75/2
A 5% by weight mixed Evokin resin was coated and cured to obtain a 1 mm thick sheet containing 0.85% by volume of Cracapo. The static elimination effect of the sheet-like material obtained here was examined in the same manner as in Example 1, and the results are shown in Table 1.

実施例9 多芯々鞘りラカーボ[F]繊維束のかわりに、ポリエス
テル繊維間に、繊維間隔10mmで一方向に、実施例1
と同一の多芯々鞘りラカーポ0繊維束を混繊した100
g/m’の平織織布を用いる他は実施例5と同一配合、
同一方法で厚さ1mmの本発明によるシート状物を得た
。ここで得られたシート状物につき実施例1と同様の方
法で除電効果を調べその結果を表1に示した。
Example 9 Instead of the multi-core sheath Lacarbo [F] fiber bundle, Example 1 was applied between polyester fibers in one direction with a fiber spacing of 10 mm.
100, which is a mixture of the same multi-core core-to-sheath La Capo 0 fiber bundles.
The same formulation as in Example 5 except that a plain weave fabric of g/m' was used,
A sheet-like product according to the present invention having a thickness of 1 mm was obtained in the same manner. The static elimination effect of the sheet-like material obtained here was examined in the same manner as in Example 1, and the results are shown in Table 1.

これから多芯々鞘りラカーボ■が導電性を有しない繊維
間に一定間隔で配列された織布を用いても除電効果は変
らないことを示す。該織布を用いることにより本発明に
よるシート状物製造時、非常に作業性が良いことが確認
された。
This will show that the static elimination effect does not change even if a woven fabric in which multi-core core-sheath Lacarbo ■ is used with non-conductive fibers arranged at regular intervals. It was confirmed that by using the woven fabric, the workability is very good when producing a sheet-like article according to the present invention.

比較例2.3 導電性繊維としてN1メツキガラス繊維束(体積固有抵
抗値10Ω・cm、直径24μ×80フイラメント)を
用い、実施例2.3と同じ間隔とする他は実施例1と同
一配合、同一方法で厚さ1mmの本発明によるシート状
物を得た。ここで得られたシート状物につき実施例1と
同様の方法て除電効果を調べその結果を表Iに示した。
Comparative Example 2.3 Same composition as Example 1 except that N1 plated glass fiber bundle (volume resistivity 10 Ω cm, diameter 24μ x 80 filaments) was used as the conductive fiber, and the spacing was the same as in Example 2.3. A sheet-like product according to the present invention having a thickness of 1 mm was obtained in the same manner. The static elimination effect of the sheet-like material obtained here was examined in the same manner as in Example 1, and the results are shown in Table I.

この結果、繰返し屈曲後の除電性能に明らかに低下が見
られた。これは屈曲によるメツキ層の剥離又は基材であ
る無機ガラス繊維の屈曲による切断により除電性能の低
下が生じている為と考えられる。
As a result, a clear decrease in static elimination performance was observed after repeated bending. This is thought to be due to deterioration of the static elimination performance due to peeling of the plating layer due to bending or cutting of the inorganic glass fiber that is the base material due to bending.

比較例4〜6 ガラス板上にビニロンフィルムを貼り、その上に表2に
示す含有量で導電性カーボンブラックであるケッチエン
ブラックEC(商標名、ケッチエンブラックインターナ
ショナル社製)を配合した、パーメックN1重量%含む
リボラック158B Q Tを流延、硬化せしめた後、
ビニロンフィルムを剥離して厚さ1mmのシート状物を
得た。ここで得られたシート状物を実施例1と同様な方
法て除電効果を調べ、その結果を表2に示す。
Comparative Examples 4 to 6 A vinylon film was pasted on a glass plate, and a conductive carbon black, Ketchen Black EC (trade name, manufactured by Ketchen Black International Co., Ltd.) was blended thereon with the content shown in Table 2. After casting and curing Rivolac 158B QT containing 1% by weight of N,
The vinylon film was peeled off to obtain a sheet with a thickness of 1 mm. The static elimination effect of the sheet-like material obtained here was examined in the same manner as in Example 1, and the results are shown in Table 2.

この結果より明らかなように、本発明のシート状物にお
ける除電効果を得るにはケッチエンブラック2〜3容量
%以上の配合が必要であり、それ以下ではクラカーボ■
を埋込んだ場合に比べ性能が低く、又得られたシート状
物は真黒であった。
As is clear from this result, in order to obtain the static elimination effect in the sheet material of the present invention, it is necessary to mix Ketchen Black at 2 to 3% by volume or more;
The performance was lower than that in the case of embedding, and the sheet-like material obtained was pitch black.

以下余白 [発明の効果] 本発明の熱硬化性シート状物は少量の有機導電性繊維の
使用で、優れた除電性能を示し、かつ繰返し屈曲による
該性能の低下のないものである。
Margins below [Effects of the Invention] The thermosetting sheet material of the present invention exhibits excellent static eliminating performance by using a small amount of organic conductive fibers, and does not deteriorate in performance due to repeated bending.

特許出願人 株式会社 り ラ しPatent applicant RiRashi Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] (1)導電性を有する少なくとも1本以上のフィラメン
トよりなる有機連続繊維又は繊維束を1容量%以下含む
熱硬化性樹脂シート状物であって、該繊維又は繊維束が
少なくとも一方向に配列され、かつシートの一端から他
端迄連続した状態で存在することを特徴とするシート状
物。
(1) A thermosetting resin sheet containing 1% by volume or less of organic continuous fibers or fiber bundles consisting of at least one conductive filament, the fibers or fiber bundles being arranged in at least one direction. , and exists in a continuous state from one end of the sheet to the other end.
(2)シート状物の表面又は内部において該繊維又は繊
維束が一方向に平行に配列しており、該繊維又は繊維束
の間隔が50mm以下である請求項1記載のシート状物
(2) The sheet-like article according to claim 1, wherein the fibers or fiber bundles are arranged in parallel in one direction on the surface or inside the sheet-like article, and the intervals between the fibers or fiber bundles are 50 mm or less.
(3)該繊維又は繊維束が芯に導電性を有する多芯々鞘
複合繊維であり、該繊維又は繊維束の電気抵抗が10^
6Ω・cm以下である請求項1又は2記載のシート状物
(3) The fiber or fiber bundle is a multi-core core-sheath composite fiber with conductivity in the core, and the electrical resistance of the fiber or fiber bundle is 10^
The sheet-like article according to claim 1 or 2, which has a resistance of 6 Ω·cm or less.
(4)熱硬化性樹脂が不飽和ポリエステル樹脂、ビニル
エステル樹脂、又はエポキシ樹脂である請求項1〜3い
ずれかに記載のシート状物。
(4) The sheet-like article according to any one of claims 1 to 3, wherein the thermosetting resin is an unsaturated polyester resin, a vinyl ester resin, or an epoxy resin.
(5)シート状物の表面からの該繊維又は繊維束の埋め
込み深さが1mm以下である請求項1〜4いずれかに記
載のシート状物。
(5) The sheet-like article according to any one of claims 1 to 4, wherein the embedded depth of the fibers or fiber bundles from the surface of the sheet-like article is 1 mm or less.
(6)導電性を有する少なくとも1本以上のフィラメン
トよりなる有機連続繊維又は繊維束を含む織布又は編布
を含有する請求項1記載のシート状物。
(6) The sheet-like article according to claim 1, comprising a woven or knitted fabric containing organic continuous fibers or fiber bundles made of at least one conductive filament.
JP654989A 1989-01-12 1989-01-12 Thermosetting resin sheet material having fine electricity-removability Pending JPH02186503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP654989A JPH02186503A (en) 1989-01-12 1989-01-12 Thermosetting resin sheet material having fine electricity-removability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP654989A JPH02186503A (en) 1989-01-12 1989-01-12 Thermosetting resin sheet material having fine electricity-removability

Publications (1)

Publication Number Publication Date
JPH02186503A true JPH02186503A (en) 1990-07-20

Family

ID=11641413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP654989A Pending JPH02186503A (en) 1989-01-12 1989-01-12 Thermosetting resin sheet material having fine electricity-removability

Country Status (1)

Country Link
JP (1) JPH02186503A (en)

Similar Documents

Publication Publication Date Title
US4983456A (en) Compositions convertible to reinforced conductive components and articles incorporating same
EP0090151A1 (en) Compositions convertible to reinforced conductive components and articles incorporating same
US4522889A (en) Lightning protection composite material
BR112021001755A2 (en) fiber-reinforced thermoplastic resin substrate and laminated using the same
ATE329961T1 (en) ELECTRICALLY CONDUCTIVE FLEXIBLE COMPOSITION, METHOD FOR THE PRODUCTION THEREOF
EP1094257B1 (en) Conductive coating on a non-conductive flexible substrate
TW201938350A (en) Thermoplastic resin-coated reinforced fiber composite yarn, method of producing the composite yarn, continuous fiber-reinforced resin molded article, method of producing composite material molded article
CN106147133A (en) There is the carbon fibre composite of high conductivity and for the method preparing it
EP0572911A1 (en) Liquid crystal polyester resin composition and molded article
WO2001096100A1 (en) Multilayered polymeric structure
JP6807315B2 (en) Fiber-reinforced polyamide resin composition and its molded product
JP2013177560A (en) Method for producing carbon fiber reinforced molded product, and carbon fiber reinforced molded product
JP2013191551A (en) Planar heating element, manufacturing method therefor, and electrode for planar heating element
CN116622102A (en) fiber reinforced resin composition
US5512355A (en) Anti-static woven coated fabric and flexible bulk container
US4909910A (en) Yarns and tows comprising high strength metal coated fibers, process for their production, and articles made therefrom
JP6611413B2 (en) Conductive fiber reinforced polymer composition
JPH02186503A (en) Thermosetting resin sheet material having fine electricity-removability
CN109610172B (en) Yarn and fabric with electrostatic load characteristic
JP2007510821A5 (en)
BR112018007016B1 (en) Process for manufacturing a conductive composite material and composite material obtained in this way
JPH0560492B2 (en)
JP6711876B2 (en) Fiber reinforced resin composition
CN114667310B (en) Fiber-reinforced thermoplastic resin molded article
CN110099949B (en) Structural body