JPH02185942A - Sliding member for high-temperature use - Google Patents

Sliding member for high-temperature use

Info

Publication number
JPH02185942A
JPH02185942A JP366589A JP366589A JPH02185942A JP H02185942 A JPH02185942 A JP H02185942A JP 366589 A JP366589 A JP 366589A JP 366589 A JP366589 A JP 366589A JP H02185942 A JPH02185942 A JP H02185942A
Authority
JP
Japan
Prior art keywords
sliding member
temp
hard
hard phase
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP366589A
Other languages
Japanese (ja)
Inventor
Yasuo Shinozaki
泰夫 篠崎
Kazuo Hamashima
和雄 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP366589A priority Critical patent/JPH02185942A/en
Publication of JPH02185942A publication Critical patent/JPH02185942A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sliding member excellent in strength at high temp., wear resistance, and oxidation resistance by manufacturing a sliding member for high-temp. service used, e.g. for forming glass member by sintering the hard double borides of specific metals by the use of Ni, Mo, etc., as binding materials. CONSTITUTION:At the time of manufacturing a sliding member for high-temp. service for use, e.g. in press forming equipment and bending device for glass products, such as lens, pulverized powders of high-purity MoB, WB, Mo, Ni, etc., are subjected, together with organic solvents such as ethanol, to wet grinding by means of a ball mill, etc., and then to mixing. The resulting slurry is dried, compacted by means of mold press, etc., and sintered in vacuum or in a reducing atmosphere. By this method, the hard sintered material which contains a hard double boride phase of Mo2NiB2, W2NiB2, (Mo,W)2NiB2, etc., by 20-95wt.% and in which Ni and Mo are used as binding materials can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガラス製品のプレス成形装置や曲げ装置等で使
用される高温下で摺動する部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a member that slides at high temperatures and is used in press molding equipment, bending equipment, etc. for glass products.

[従来の技術] 近年、ガラス部品の多様化、復雑形状化あるいはコスト
ダウンの要求に伴い、レンズ等の光学部品を直接プレス
成形する動きや、自動車用のフロントやリアウィンドを
従来の重力による曲げからプレス等による曲げによって
製造する動きが活発化している。
[Conventional technology] In recent years, with the diversification of glass parts, more complex shapes, and demands for cost reduction, there has been a movement to directly press mold optical parts such as lenses, and to make front and rear windows for automobiles using the conventional method of gravity. There is an increasing movement towards manufacturing by bending instead of bending using a press or the like.

このような加工方法を工業的に可能とするためには、5
00〜800℃のガラス軟化点以上の温度において、繰
り返し被加工材であるガラス素材や金型な精度よく位置
決めするための装置が必要となる。したがって、このよ
うな装置の摺動部には、500〜800℃の温度下で焼
き付きやかじりを生ずることがなく、更に耐摩耗性に優
れた材料を用いることが必要である。特に耐摩耗性につ
いてはその摩耗粉がガラス製品の欠点の原因となるため
、第一に留意すべき点である。また生産性の観点からは
、出来る限り早い温度変動にも耐える材料であることが
望ましい。
In order to make such a processing method industrially possible, five steps must be taken.
At temperatures above the glass softening point of 00 to 800 degrees Celsius, a device is required to accurately position glass materials and molds that are repeatedly processed. Therefore, it is necessary to use a material that does not cause seizing or galling at temperatures of 500 to 800 DEG C. and has excellent wear resistance for the sliding parts of such devices. In particular, the wear resistance is the first point to be kept in mind, since the abrasion powder causes defects in glass products. Furthermore, from the viewpoint of productivity, it is desirable that the material be resistant to temperature fluctuations as quickly as possible.

従来、このような用途には、Fe−N1−(:r鋼、ス
テライトに代表されるCo基耐熱合金、インコネルに代
表されるNL基耐熱合金等が使用されることが多い。ま
た最近では、耐摩耗性の点から窒化ケイ素、炭化ケイ素
、サイアロンに代表されるセラミックスを使用する試み
もなされている。
Conventionally, for such applications, Fe-N1-(:r steel, Co-based heat-resistant alloys such as Stellite, NL-based heat-resistant alloys such as Inconel, etc.) have often been used. Attempts have also been made to use ceramics such as silicon nitride, silicon carbide, and sialon from the viewpoint of wear resistance.

[発明の解決しようとする課題] しかしながら、これらの耐熱性金属材料をもってしても
、比較的に高い軟化点を有する光学ガラスやフロートガ
ラスを加工する場合には材料の軟化によるかじり、焼き
つき1表面の摩耗、酸化による寸法変化、さらに摩耗粉
や脱落した酸化スケールに起因する製品の不良等種々の
問題が生じている。また、高温での強度や硬度にすぐれ
るセラミックスを用いた場合には酸化や摩耗による問題
は低減されるが、相手材が金属の場合には相手材の摩耗
が多(なることや、じん性や、耐熱衝撃性の不足による
、破損等の問題が多く生じている。そこで、じん性や耐
熱衝撃性にすぐれた耐熱性金属材料の上にプラズマ溶射
あるいは化学的、物理蒸着法等により、炭化ケイ素、酸
化アルミナ、炭化チタン等のセラミックス皮膜をコーテ
ィングして金属とセラミックスの双方の欠点を補なおう
とする試みも数多くなされているが、加熱や冷却のサイ
クルによる皮膜の剥離の問題があり、広く実用化される
には至っていない。
[Problems to be Solved by the Invention] However, even with these heat-resistant metal materials, when processing optical glass or float glass that has a relatively high softening point, galling and burn-in due to softening of the material occur. Various problems occur, such as surface wear, dimensional changes due to oxidation, and product defects due to wear particles and fallen oxide scale. Additionally, when using ceramics that have excellent strength and hardness at high temperatures, problems caused by oxidation and wear are reduced; however, when the mating material is metal, the mating material may be subject to increased wear and toughness. There are many problems such as breakage due to lack of thermal shock resistance and thermal shock resistance. Therefore, carbonization is applied to heat-resistant metal materials with excellent toughness and thermal shock resistance by plasma spraying or chemical or physical vapor deposition methods. Many attempts have been made to compensate for the drawbacks of both metals and ceramics by coating them with ceramic films made of silicon, alumina oxide, titanium carbide, etc. However, there is a problem with the films peeling off due to heating and cooling cycles, so it is not widely used. It has not yet been put into practical use.

[課題を解決するための手段] 本発明は前述の問題点を解決すべくなされたものであり
、Ni、Mo複硼化物、Ni、W複硼化物及び、Ni、
Mo、W複硼化物の1種又は2種以上を主体とする硬質
相とNi、Moを主体とする結合相よりなる焼結体で構
成されることを特徴とする高温摺動部材を提供するもの
である。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and includes a Ni, Mo complex boride, a Ni, W complex boride, and a Ni,
Provided is a high-temperature sliding member comprising a sintered body comprising a hard phase mainly composed of one or more of Mo and W complex borides and a binder phase mainly composed of Ni and Mo. It is something.

なお、本発明の材質である複硼化物系焼結体は硼化物サ
ーメットとして知られているものであるが、一般に摩擦
係数の高いNi基合金の金属層を有している事から、高
温にさらされる摺動部には用い難いと考えていたもので
あった。
The compound boride sintered body that is the material of the present invention is known as a boride cermet, and since it generally has a metal layer of a Ni-based alloy with a high coefficient of friction, it cannot be used at high temperatures. It was thought that it would be difficult to use it for exposed sliding parts.

本発明の高温摺動部材は以下に述べる方法により得られ
る。原料として、MoB、 W B、 !i!o、 N
iの各粉末を回転ボールミルや振動ミル等を用いて、エ
タノール等の有機溶媒中で粉砕・混合する。得られたス
ラリーを減圧下、あるいはスプレードライ等で乾燥した
後、金型ブレスやラバープレス等で加圧成形して真空中
またはアルゴン、水素等の中性あるいは還元性雰囲気に
おいて1000℃以上の温度、多くの場合1100〜1
500℃程度の温度領域で加熱すればよい。用いる原料
粉は必ずしも上記のMoB、 W B、 Mo、 Ni
の各粉末である必要はな(、N1−B合金、 Mo、 
WおよびNiの各粉末との組み合わせ等であってもかま
わない。原料粉は可及的に純度の高いものを用いるのが
好ましく、また粒径も可及的に小さいものが好ましい。
The high temperature sliding member of the present invention can be obtained by the method described below. As raw materials, MoB, W B, ! i! o, N
Each powder of i is ground and mixed in an organic solvent such as ethanol using a rotary ball mill, a vibration mill, or the like. The obtained slurry is dried under reduced pressure or by spray drying, etc., and then pressure molded using a mold press, rubber press, etc., and heated to a temperature of 1000°C or higher in a vacuum or in a neutral or reducing atmosphere such as argon or hydrogen. , often 1100-1
Heating may be performed in a temperature range of about 500°C. The raw material powders used are not necessarily the above MoB, WB, Mo, Ni.
(, N1-B alloy, Mo,
A combination with each powder of W and Ni may be used. It is preferable to use raw material powder with as high a purity as possible, and it is also preferable that the particle size is as small as possible.

具体的には純度99%以上、粒径は10μm以下が好ま
しい。
Specifically, it is preferable that the purity is 99% or more and the particle size is 10 μm or less.

混合原料は焼結すると、昇温過程で互いに反応し、最終
的に、主としてMoJiBzあるいはWJi8gあるい
は (No、W )JiBzである硬質相と、主にNi
およびMoからなる結合相に変化する。
When the mixed raw materials are sintered, they react with each other during the heating process, and finally, a hard phase that is mainly MoJiBz or WJi8g or (No, W)JiBz and a mainly Ni
and a bonded phase consisting of Mo.

結合相は硬質相をとり囲むように分布し、硬質相相互が
連続しておらず、独立していることが好ましい。また、
硬質相の平均粒径は10μm以下であることが好ましい
。結合相の微細組織が上記の形態であることが好ましい
理由は、組織が上記のような場合に焼結体の強度、靭性
が向上する為である。
It is preferable that the binder phase is distributed so as to surround the hard phase, and that the hard phases are not continuous with each other but are independent. Also,
The average particle size of the hard phase is preferably 10 μm or less. The reason why it is preferable that the microstructure of the binder phase has the above-mentioned form is that when the structure is as described above, the strength and toughness of the sintered body are improved.

焼結体中の硬質相の重量%は20〜95%が好ましく、
特に30〜85%が好ましい。焼結体中の硬質相の割合
を上記のように定めた理由は、硬質相が20重量%未満
であると、500℃〜800℃の高温に加熱された際の
焼結体の硬度の低下が著しく、相手材との焼き付きや、
かじりが起こりやす(なるためであり、硬質相が95重
量%を越えると、焼結体の靭性が低下し、摩擦中に硬質
相が脱落してアブレッシブ摩擦を起こしやすくなるため
である。
The weight percent of the hard phase in the sintered body is preferably 20 to 95%,
Particularly preferred is 30 to 85%. The reason why the ratio of the hard phase in the sintered body is determined as above is that if the hard phase is less than 20% by weight, the hardness of the sintered body decreases when heated to a high temperature of 500°C to 800°C. is noticeable, causing burning with the mating material,
This is because galling tends to occur, and if the hard phase exceeds 95% by weight, the toughness of the sintered body decreases and the hard phase falls off during friction, making it easy to cause abrasive friction.

硬質相の割合は上記範囲内で、部材の使用条件にあわせ
て適宜変更するのが好ましく、例えば、衝撃的荷重がか
かる摺動箇所では硬質相の割合を減じて靭性を高め、ま
た、負荷は小さいが高速で摺動するような箇所では硬質
相の割合を増して硬度を増す等である。
It is preferable that the ratio of the hard phase is within the above range and changed as appropriate depending on the usage conditions of the member. For example, at sliding parts where impact loads are applied, the ratio of the hard phase is reduced to increase toughness, and the load is For small areas that slide at high speeds, the proportion of hard phase is increased to increase hardness.

[作用] 本発明による高温摺動部材を構成する焼結体の主たる成
分である複硼化物は、本質的に。
[Function] Complex boride, which is the main component of the sintered body constituting the high-temperature sliding member according to the present invention, is essentially.

Fe−NL−Cr鋼などと比べ、高温での硬度や強度の
低下は小さく、主にNi−Moからなる結合相と複合化
されてもその特性は顕著に発揮されている。したがって
、本発明による部材を他の金属材料部材あるいは同材質
部材(回合)と〜800℃程度の高温下で摺動摩擦した
場合、本発明による部材の摩耗量が小さくなるものと考
えられる。
Compared to Fe-NL-Cr steel, etc., the decrease in hardness and strength at high temperatures is small, and even when composited with a binder phase mainly composed of Ni-Mo, its properties are clearly exhibited. Therefore, when the member according to the present invention is subjected to sliding friction with another metal material member or a member made of the same material (coupling) at a high temperature of about 800° C., it is considered that the amount of wear of the member according to the present invention is reduced.

一方、硬度の大きい部材をそれよりも硬度の小さい相手
材と高温下で摺動摩擦した場合、般には、相手材側の摩
耗量が極端に増加し、早期に寿命を迎えることが多いの
であるが、本発明による部材をそれより硬度の小さい、
例えばFe−Ni−Cr鋼と高温下で摺動摩擦した場名
、相手材であるFe−N1−(:r鋼の摩耗量も小さ(
なる。このような現象が起こるメカニズムは必ずしも明
確ではないが1本発明による高温摺動部材中の硬質相で
ある複硼化物の幾何学的形状が等軸状で比較的丸みをお
びているため、微視的にみて、相手材に傷を付けること
が少ないこと、さらには、硬質相と結合相の結合が強固
で焼結体の靭性が高いため、硬質相の脱落によるアブレ
ッシブ摩耗が起こりに(いことなどが考えられる。
On the other hand, when a member with a high hardness undergoes sliding friction with a mating material of lower hardness at high temperatures, the amount of wear on the mating material side generally increases dramatically, often leading to the end of its life prematurely. However, the member according to the present invention has a lower hardness,
For example, in the case of sliding friction with Fe-Ni-Cr steel at high temperatures, the wear amount of the mating material Fe-N1-(:r steel is also small (
Become. Although the mechanism by which such a phenomenon occurs is not necessarily clear, 1.The geometrical shape of the complex boride, which is the hard phase in the high-temperature sliding member according to the present invention, is equiaxed and relatively rounded, In general, it does not cause much damage to the mating material, and since the bond between the hard phase and the binder phase is strong and the sintered body has high toughness, abrasive wear due to the hard phase falling off is less likely to occur. etc. are possible.

また本発明による高温摺動部材は、耐酸化性にもすぐれ
ているため、酸化層の形成と脱落による部材の寸法変化
も小さい。
Furthermore, since the high-temperature sliding member according to the present invention has excellent oxidation resistance, dimensional changes in the member due to the formation and falling off of the oxidized layer are also small.

以上のような、本発明による高温摺動部材の特性は、同
材質同志を摩擦させた場合には、さらに良好に発揮され
、例えば非常に高精度が要求されるガラス光学部品の直
接プレス成形用のピストンとシリンダーに本発明の材料
を使用した場合、摩耗粉の発生も少な(、ピストンとシ
リンダー間のクリアランスも長期間にわたって一定範囲
内に保たれるため、良好な品質の光学部品が安定して生
産可能となった。
The properties of the high-temperature sliding member according to the present invention as described above are even better exhibited when the same materials are rubbed against each other. When the material of the present invention is used for the piston and cylinder of production became possible.

[実施例] 以下、実施例により発明の詳細な説明する。[Example] Hereinafter, the invention will be explained in detail with reference to Examples.

0実施例1 MoB粉末(純度99.5%、平均粒径4.5μm15
0重量%、WB粉末(純度99.5%、平均粒径3.5
μm) 10重量%、 Mo粉末(純度99.9%、平
均粒径0.8μm ) 5重量%、 Ni粉末(純度9
9.6%、平均粒径3μm)35重量%を原料として用
い、真空中で焼成温度1270℃で焼結し焼結体を得た
。この焼結体を研削加工により図1に示すようなピスト
ンとシリンダーを作成し、N2中で800℃まで急速加
熱し、大量の冷却用N2ガスを吹き付けて冷却する熱サ
イクル試験後にクラックの生じないことを確認した後、
以下の試験に供した。
0 Example 1 MoB powder (purity 99.5%, average particle size 4.5 μm15
0% by weight, WB powder (purity 99.5%, average particle size 3.5
μm) 10% by weight, Mo powder (purity 99.9%, average particle size 0.8 μm) 5% by weight, Ni powder (purity 9
A sintered body was obtained by sintering in vacuum at a firing temperature of 1270° C. using 35% by weight of the powder (9.6%, average particle size 3 μm) as a raw material. A piston and a cylinder as shown in Fig. 1 are created by grinding this sintered body, rapidly heated to 800℃ in N2, and cooled by blowing a large amount of cooling N2 gas.No cracks occur after a thermal cycle test. After confirming that
It was subjected to the following tests.

700℃のN2中で1000回往復摺銅摩擦させて冷却
後、ピストンとシリンダーのクリアランスを測定した。
After cooling by rubbing the copper plate back and forth 1000 times in N2 at 700°C, the clearance between the piston and the cylinder was measured.

その結果初期クリアランス15μmが1oooo回往復
後に50μmに達した。
As a result, the initial clearance of 15 μm reached 50 μm after 100 times of reciprocation.

0実施例2〜7 実施例1と同様のプロセスで表1に示す組成の焼結体を
焼成温度1150〜1300℃で作成した。
0 Examples 2 to 7 Sintered bodies having the compositions shown in Table 1 were produced using the same process as in Example 1 at a firing temperature of 1150 to 1300°C.

実施例2〜5は同材質(共金)でピストンとシリンダー
を作成し、実施例6〜7はピストンを本発明材、シリン
ダーを Fe−Ni−Cr鋼とNi−Cr−Fe合金で
作成して、両者の初期クリアランスを15μmに設定し
、実施例1と同様の摩耗試験を行なったところ表1に示
す結果を得た。
In Examples 2 to 5, the piston and cylinder were made of the same material (common metal), and in Examples 6 to 7, the piston was made of the invention material, and the cylinder was made of Fe-Ni-Cr steel and Ni-Cr-Fe alloy. The initial clearance between the two was set at 15 μm, and the same wear test as in Example 1 was conducted, and the results shown in Table 1 were obtained.

0比較例1〜2 実施例1と同様のプロセスで焼結体を焼成温度1150
℃で作成し、比較例1は同材質でピストンとシリンダー
を作成し、比較例2はシリンダーのみ、Fe−Ni−C
r鋼で作成して、実施例1と同様の試験を行なったとこ
ろ表1に示す結果を得た。
0 Comparative Examples 1 to 2 A sintered body was fired at a temperature of 1150 in the same process as in Example 1.
In Comparative Example 1, the piston and cylinder were made of the same material, and in Comparative Example 2, only the cylinder was made of Fe-Ni-C.
When the same test as in Example 1 was conducted using R steel, the results shown in Table 1 were obtained.

比較例3〜5 比較のために従来材である、Fe−Ni−Cr鋼。Comparative examples 3 to 5 For comparison, a conventional material, Fe-Ni-Cr steel.

Ni−Cr−Fe合金およびザイアロンでピストンとシ
リンダーを作成し、実施例1と同様の試験を行なったと
ころ表1に示す結果を得た。
Pistons and cylinders were made of Ni-Cr-Fe alloy and Xialon, and the same tests as in Example 1 were conducted, and the results shown in Table 1 were obtained.

L発明の効果ノ このように本発明による高温摺動部材は高温での耐摩耗
性や強度、耐酸化性にすぐれ、同r+;’+に相手材へ
の攻撃性が少ないため、常に500〜800°Cの高温
下にさらされるガラス部材の成形用装置等の摺動箇所に
用いれば、長期間安定して装置の運転が可能となると共
番こ摩耗粉の何首による成形品の不良も大幅に減少する
。特に光学ガラスの成形には最適のものである。
Effects of the Invention As described above, the high-temperature sliding member according to the present invention has excellent wear resistance, strength, and oxidation resistance at high temperatures, and is less aggressive to the mating material, so it always has a If used in sliding parts of equipment for molding glass components exposed to high temperatures of 800°C, stable operation of the equipment will be possible for a long period of time, and molded products will not be defective due to abrasion particles. significantly reduced. It is particularly suitable for molding optical glass.

すなわち、本発明の高温摺動部材を用いる事により、成
形品の精度が向上すると共に、製品歩留りも向上する。
That is, by using the high-temperature sliding member of the present invention, the precision of molded products is improved and the product yield is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は高温摺動摩耗試験装置の概要を示す側面断面図で
ある。 1・・・ピストン     2・・・シリンダー3・・
・加熱用ヒーター  4・・測温n1熱?T1対5・・
・エアシリンダー
FIG. 1 is a side cross-sectional view showing an outline of a high-temperature sliding wear test device. 1...Piston 2...Cylinder 3...
・Heating heater 4...Temperature measurement n1 fever? T1 vs 5...
·Air cylinder

Claims (2)

【特許請求の範囲】[Claims] (1)Ni,Mo複硼化物、Ni,W複硼化物及びNi
,Mo,W複硼化物の1種又は2種以上を主体とする硬
質相とNi,Moを主体とする結合相よりなる焼結体で
構成されることを特徴とする高温摺動部材
(1) Ni, Mo complex boride, Ni, W complex boride, and Ni
A high-temperature sliding member comprising a sintered body consisting of a hard phase mainly composed of one or more of complex borides such as , Mo, and W, and a binder phase mainly composed of Ni and Mo.
(2)焼結体中の硬質相の重量%が20〜95%である
請求項1記載の高温摺動部材
(2) The high temperature sliding member according to claim 1, wherein the weight percentage of the hard phase in the sintered body is 20 to 95%.
JP366589A 1989-01-12 1989-01-12 Sliding member for high-temperature use Pending JPH02185942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP366589A JPH02185942A (en) 1989-01-12 1989-01-12 Sliding member for high-temperature use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP366589A JPH02185942A (en) 1989-01-12 1989-01-12 Sliding member for high-temperature use

Publications (1)

Publication Number Publication Date
JPH02185942A true JPH02185942A (en) 1990-07-20

Family

ID=11563736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP366589A Pending JPH02185942A (en) 1989-01-12 1989-01-12 Sliding member for high-temperature use

Country Status (1)

Country Link
JP (1) JPH02185942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196608A (en) * 2002-12-19 2004-07-15 Asahi Glass Co Ltd Glass shaping tool and its manufacturing method
WO2012133328A1 (en) * 2011-03-30 2012-10-04 東洋鋼鈑株式会社 Hard sintered alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196608A (en) * 2002-12-19 2004-07-15 Asahi Glass Co Ltd Glass shaping tool and its manufacturing method
JP4725000B2 (en) * 2002-12-19 2011-07-13 旭硝子株式会社 Glass forming jig and manufacturing method thereof
WO2012133328A1 (en) * 2011-03-30 2012-10-04 東洋鋼鈑株式会社 Hard sintered alloy

Similar Documents

Publication Publication Date Title
JP5404032B2 (en) Thermal spray raw material composition
CN104817327A (en) Silicon nitride composite ceramic die material, and preparation method and application thereof
CN113278858B (en) Y2(Zr) O3 hardening and toughening WC-Co hard alloy material and preparation method thereof
KR101793031B1 (en) Manufacturing method of alumina-graphene composites with excellent wear resistance
CN113443919A (en) Amorphous alloy nozzle material and preparation method thereof
JPH09268072A (en) Production of silicon nitride sintered compact
JPH02185942A (en) Sliding member for high-temperature use
JP4598212B2 (en) Method for producing WC-based composite ceramic sintered body
JP4822534B2 (en) Manufacturing method of ceramics
JPS6050750B2 (en) Silicon nitride composite sintered body
JP2002275570A (en) Die for hot-forming optical glass and sintered alloy suitable for peripheral member thereof
JPS61132564A (en) Boron nitride normal pressure sintered body
JPS6335593B2 (en)
JPS60165339A (en) W-base sintered alloy for die cast mold member
US3110590A (en) Compositions of molybdenum, nitrogen and silicon and shaped objects therefrom
JP4971564B2 (en) Sintered alloy with excellent high-temperature properties and hot forming mold using the same
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
JPH01502426A (en) Method for preparing aluminum oxide ceramics with increased wear resistance
JP2004176136A (en) Method of producing corrosion resistant and wear resistant material
JP7116234B1 (en) Manufacturing method of composite ceramics
JPH06263540A (en) Composite compact and its production
CN112341993B (en) Production process of composite non-oxide grinding material with cross crystal structure
JPH0193470A (en) Ceramic sintered material
JPH04247801A (en) Injecting parts for die casting machine
JPH0497952A (en) Silicon carbide-based composite body