JPH0218582Y2 - - Google Patents

Info

Publication number
JPH0218582Y2
JPH0218582Y2 JP13610081U JP13610081U JPH0218582Y2 JP H0218582 Y2 JPH0218582 Y2 JP H0218582Y2 JP 13610081 U JP13610081 U JP 13610081U JP 13610081 U JP13610081 U JP 13610081U JP H0218582 Y2 JPH0218582 Y2 JP H0218582Y2
Authority
JP
Japan
Prior art keywords
grating
film
antenna
side cross
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13610081U
Other languages
Japanese (ja)
Other versions
JPS5871211U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13610081U priority Critical patent/JPS5871211U/en
Publication of JPS5871211U publication Critical patent/JPS5871211U/en
Application granted granted Critical
Publication of JPH0218582Y2 publication Critical patent/JPH0218582Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Description

【考案の詳細な説明】 この考案は、レーダアンテナ特にアンテナホー
ンの開口部の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to the structure of an opening in a radar antenna, particularly in an antenna horn.

レーダーアンテナが輻射するマイクロ波には垂
直偏波成分と水平偏波成分が含まれている。
The microwaves radiated by a radar antenna include vertically polarized components and horizontally polarized components.

このうち垂直偏波成分は、送信パルスの水平方
向の指向方向にサイドローブを生じさせる。サイ
ドローブは水平面内の不要方向からの帰来信号に
感受するから、探知機能の方位分解能を劣化させ
る。
Among these, the vertically polarized component causes side lobes in the horizontal directivity direction of the transmitted pulse. Since the sidelobes sense return signals from unnecessary directions in the horizontal plane, they degrade the azimuth resolution of the detection function.

このサイドローブの除去対策として、アンテナ
ホーン開口部に金属性の垂直格子を成形した平板
を配設して、垂直偏波成分を抑圧する手段が常用
されている。その抑圧効果は、いわゆるマイクロ
波導波管内に垂直格子を配設した場合の垂直偏波
に対するフイルター作用と同様に考えることがで
き、垂直偏波抑圧度S(db)は次式で表わすこと
ができる。
As a countermeasure for removing these side lobes, a common method is to suppress the vertically polarized wave component by arranging a flat plate formed with a metal vertical grating in the antenna horn opening. The suppression effect can be thought of in the same way as a filter effect on vertically polarized waves when a vertical grating is placed inside a so-called microwave waveguide, and the degree of vertically polarized waves suppression S (db) can be expressed by the following equation. .

上記1式おいて、 α=a/λ を表わし、aは、格子幅aの垂直格子を格子幅間
隔で配列する時の寸法を示し、λはレーダー信号
の波長を示す。
In the above equation, α=a/λ, where a represents the dimension when vertical gratings with a grating width a are arranged at grating width intervals, and λ represents the wavelength of the radar signal.

ところでこの垂直格子の存在は、水平方向のサ
イドローブの抑圧という観点からは必要である
が、垂直方向の指向性向上という要請には何等寄
与するものではなく、むしろ不要物である。
By the way, the existence of this vertical grating is necessary from the viewpoint of suppressing side lobes in the horizontal direction, but it does not contribute in any way to the request for improving the directivity in the vertical direction, and is rather unnecessary.

垂直格子が平板状に配設されている場合は、垂
直方向の指向性には影響を与えないが、垂直格子
を曲面状に形成した場合は種々の影響を生じる。
If the vertical grating is arranged in the shape of a flat plate, it will not affect the directivity in the vertical direction, but if the vertical grating is formed in the shape of a curved surface, various effects will occur.

一方、レーダーアンテナは、アンテナ旋回用モ
ータの節電要請下、空力特性改善の観点からホー
ン開口部を曲面状に形成することが要請される。
On the other hand, radar antennas are required to have horn openings shaped into curved shapes in order to improve aerodynamic characteristics due to the need to save power in antenna rotation motors.

この考案は、上記要請に基づいて、ホーン開口
部を曲面状に形成した場合にも、垂直方向の指向
性を悪化させることのないアンテナホーンを実現
する。
Based on the above requirements, this invention realizes an antenna horn that does not deteriorate the directivity in the vertical direction even when the horn opening is formed into a curved surface.

以下、図面を用いて説明する。 This will be explained below using the drawings.

第1図はグレーテング用フイルム1を示すもの
で、aは正面図、bは平面図である。図中、2は
厚さ数十ミクロン程度で屈曲自在な樹脂性フイル
ム、3,3,…は該フイルム2の片面に予め貼布
された金属薄膜をエツチング法により成形された
金属性垂直格子である。第2図は上記グレーテイ
ング用フイルム1を用いたホーン開口部の構造の
一例を示す側断面図である。4は40゜の広がりを
有する3cm波レーダのアンテナホーン、5は中間
に腐蝕防止のため上記グレーテイング用フイルム
1をはさんで一体化され、該アンテナホーン4の
開口部に設けられた電波透過損失の少ない直径
100mmの半円形樹脂板である。尚、グレーテイン
グ用フイルム1は上記樹脂板5の中央に配置され
ている。
FIG. 1 shows a grating film 1, in which a is a front view and b is a plan view. In the figure, 2 is a flexible resin film with a thickness of about several tens of microns, and 3, 3, ... are metal vertical grids formed by etching a metal thin film previously pasted on one side of the film 2. be. FIG. 2 is a side sectional view showing an example of the structure of a horn opening using the grating film 1 described above. Reference numeral 4 denotes a 3cm wave radar antenna horn having a width of 40°, and 5 a radio wave transmitting antenna provided in the opening of the antenna horn 4, which is integrated with the grating film 1 interposed between them to prevent corrosion. Low loss diameter
It is a 100mm semicircular resin plate. Incidentally, the grating film 1 is placed at the center of the resin plate 5.

第3図は、上記グレーテイング用フイルム上に
形成した金属性垂直格子をホーン開口部に配設し
た場合の、垂直偏波抑圧特性と垂直方向指向特性
(ビーム幅)を示すもので、横軸は直径100mmの半
円形樹脂板にグレーテイングフイルムを張り付け
た状態における垂直格子の格子長lを示す。
Figure 3 shows the vertical polarization suppression characteristics and vertical directivity characteristics (beam width) when a metallic vertical grating formed on the above-mentioned grating film is placed in the horn opening. indicates the grating length l of a vertical grating in a state where a grating film is attached to a semicircular resin plate with a diameter of 100 mm.

レーダーアンテナは上述のように、水平面内の
サイドローブ抑圧の点から垂直偏波成分を極力抑
圧するのが望ましい。また、送信パルスの垂直方
向指向角(半減半角、すなわち3dbビーム幅)は
経験的に約3゜程度が望ましい。
As mentioned above, it is desirable for the radar antenna to suppress vertically polarized components as much as possible from the viewpoint of suppressing side lobes in the horizontal plane. Furthermore, empirically, it is desirable that the vertical directivity angle (half angle, ie, 3 db beam width) of the transmitted pulse be about 3 degrees.

この観点から最適格子長lを第3図から求める
と、 50≦l≦85(mm) になる。
From this point of view, the optimum lattice length l is determined from Figure 3 as follows: 50≦l≦85 (mm).

すなわち、格子長lが50mm以下になると、直交
偏波抑圧比曲線から明らかなように、抑圧度が極
端に悪化する。例えば、格子長lを25mmにした場
合、水平面内指向特性は第4図ロのごとくなる。
この特性曲線ロから分かるように、入社角の±
40゜付近で極めて大きなサイドローブが生じる。
That is, when the grating length l becomes 50 mm or less, the degree of suppression becomes extremely poor, as is clear from the orthogonal polarization suppression ratio curve. For example, when the grating length l is set to 25 mm, the directivity characteristics in the horizontal plane are as shown in Fig. 4 (b).
As can be seen from this characteristic curve B, the entry angle ±
An extremely large sidelobe occurs at around 40°.

また、3dbビーム幅曲線から分かるように、格
子長lが100mmを越えるとビーム幅が急激に大き
くなり、実験結果からすると、ビーム幅を3゜以上
にしないためには格子長lは85mm以下にする必要
があることが確かめられた。
Furthermore, as can be seen from the 3db beam width curve, the beam width increases rapidly when the grating length l exceeds 100 mm, and according to the experimental results, the grating length l must be 85 mm or less in order to prevent the beam width from exceeding 3 degrees. It was confirmed that it was necessary to do so.

次に、第4図は入射角θとゲインとの関係を示
す受波指向特性曲線で、曲線イはグレーテイング
用フイルム1のない場合、曲線ロはフイルム寸法
l=25mmの場合、そして曲線ハはフイルム寸法l
=157mm(開口部分全面)の場合を示す。同図よ
り、曲線ロ(l=25mm)ではピークレベルも高
く、指向巾(角度)も狭い。一方、曲線ハ(l=
157mm)ではピークレベルは低く、指向巾(角度)
は広い。該ピークレベルと指向巾との関係は寸法
lと対応する傾向にあるが、第3図3dBビーム巾
曲線はこれを詳しく示すものである。すなわち、
同図からグレーテイング用フイルムを用いない場
合に比し尖鋭な指向ビームを得るためにはl85
mmが好ましいことが判る。従つて、上述よりフイ
ルム寸法lの満足すべき条件としては50l85
mmが求まる。
Next, Figure 4 shows the received wave directivity characteristic curve showing the relationship between the incident angle θ and the gain. Curve A is for the case without the grating film 1, curve B is for the case where the film size l = 25 mm, and curve H is for the case where the grating film 1 is not used. is the film size l
= 157mm (full opening area). From the figure, the peak level is high and the directivity width (angle) is narrow in curve B (l = 25 mm). On the other hand, curve C (l=
157mm), the peak level is low and the directivity width (angle)
is wide. The relationship between the peak level and the directivity width tends to correspond to the dimension l, and the 3 dB beam width curve in FIG. 3 shows this in detail. That is,
From the same figure, in order to obtain a sharper directional beam than when no grating film is used, l85
It turns out that mm is preferable. Therefore, from the above, the condition that the film size l should satisfy is 50l85
Find mm.

以上の点に基づいて、最適格子長lを求める
と、アンテナホーン4の形状が断面半円状の場合
は全長の略1/3乃至2/3程度のグレーテイング処理
寸法が実際上好ましいことを確かめることができ
た。
Based on the above points, when determining the optimal grating length l, it is found that when the shape of the antenna horn 4 is semicircular in cross section, it is practically preferable to have a grating processing size of approximately 1/3 to 2/3 of the total length. I was able to confirm it.

尚、本実施例は断面半円形状の場合について説
明したが、断面形状が、円弧、放物線又は双曲線
状の場合でもほぼ同様の結果が得られる。(但し
曲率が大きいほど寸法lは小さくて済む傾向にあ
る。)
Although this embodiment has been described with reference to the case where the cross section is semicircular, substantially the same results can be obtained even when the cross section is arcuate, parabolic, or hyperbolic. (However, the larger the curvature, the smaller the dimension l tends to be.)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aはグレーテイング用フイルムの正面図
bは平面図である。第2図は本考案の一実施例を
示すアンテナ部の側断面図である。第3図はフイ
ルム寸法lと直交偏波抑圧比及び3dBビーム巾と
の各関係を示す関係図である。第4図はフイルム
寸法l毎の受波指向特性曲線を示す図である。 1……グレーテイング用フイルム、2……樹脂
フイルム、3……金属格子、4……アンテナホー
ン、5……樹脂板。
FIG. 1a is a front view of the grating film, and FIG. 1b is a plan view. FIG. 2 is a side sectional view of an antenna section showing an embodiment of the present invention. FIG. 3 is a relationship diagram showing the relationship between the film dimension l, the orthogonal polarization suppression ratio, and the 3 dB beam width. FIG. 4 is a diagram showing received wave directivity characteristic curves for each film size l. 1... Grating film, 2... Resin film, 3... Metal grid, 4... Antenna horn, 5... Resin plate.

Claims (1)

【実用新案登録請求の範囲】 電波透過損失の少ない側断面形状が流線形を有
する絶縁版と金属性垂直格子がエツチング成形さ
れた屈曲自在の樹脂フイルムとからなる二重合板
をアンテナホーン開口部に閉鎖したレーダアンテ
ナにおいて、 上記樹脂フイルムの側断面屈曲長が絶縁板の側
断面屈曲長に対して略1/3乃至2/3であることを特
徴とするレーダアンテナのアンテナホーン開口部
構造。
[Scope of Claim for Utility Model Registration] Double plywood made of an insulating plate with a streamlined side cross-sectional shape with low radio wave transmission loss and a bendable resin film on which a metallic vertical grid is etched is used in the antenna horn opening. 1. An antenna horn opening structure for a closed radar antenna, characterized in that a side cross-sectional bending length of the resin film is approximately 1/3 to 2/3 of a side cross-section bending length of the insulating plate.
JP13610081U 1981-09-11 1981-09-11 Radar antenna antenna horn opening structure Granted JPS5871211U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13610081U JPS5871211U (en) 1981-09-11 1981-09-11 Radar antenna antenna horn opening structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13610081U JPS5871211U (en) 1981-09-11 1981-09-11 Radar antenna antenna horn opening structure

Publications (2)

Publication Number Publication Date
JPS5871211U JPS5871211U (en) 1983-05-14
JPH0218582Y2 true JPH0218582Y2 (en) 1990-05-24

Family

ID=29929440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13610081U Granted JPS5871211U (en) 1981-09-11 1981-09-11 Radar antenna antenna horn opening structure

Country Status (1)

Country Link
JP (1) JPS5871211U (en)

Also Published As

Publication number Publication date
JPS5871211U (en) 1983-05-14

Similar Documents

Publication Publication Date Title
US5126750A (en) Magnetic hybrid-mode horn antenna
KR930008832B1 (en) Two layer matching dielectrics for radomes and lenses for wide angles of incidence
US20070132642A1 (en) Patch antenna element and application thereof in a phased array antenna
GB2338346A (en) Wide-band micropstrip dipole antenna array
JPH07106847A (en) Leaky-wave waveguide slot array antenna
CN210129581U (en) Millimeter wave radome and millimeter wave radar
Mailloux An overlapped subarray for limited scan application
US4460901A (en) Integrated antenna-radome structure that functions as a self-referencing interferometer
US3975733A (en) Transmitting antenna employing radial fins
JPH0218582Y2 (en)
JP2012122801A (en) Antenna for radar, and radar device
CN108400440A (en) A kind of wide angle antenna house and antenna assembly suitable for vehicle-mounted millimeter wave radar
US5327146A (en) Planar array with radiators adjacent and above a spiral feeder
CN113569192B (en) Multi-phase hierarchical nested array antenna beam synthesis method
US4219820A (en) Coupling compensation device for circularly polarized horn antenna array
JP2923930B2 (en) Radar antenna equipment
JPH06291538A (en) Microwave polarization lens device
US3821745A (en) Transmitting antenna employing parasitic end fire directors
JPH04121110U (en) planar antenna
CN113078471A (en) Reflecting surface sum-difference network antenna
JP3376683B2 (en) Array antenna
CN116031626B (en) High-gain millimeter wave antenna
KR940000797B1 (en) Broadband continuously flared noreh phase-array radiating element with controlled return loss contour
CN217062513U (en) Antenna structure and radar apparatus
CN215497083U (en) Millimeter wave radar metamaterial antenna housing and antenna system