JPH02185314A - Electric discharge machining - Google Patents

Electric discharge machining

Info

Publication number
JPH02185314A
JPH02185314A JP48589A JP48589A JPH02185314A JP H02185314 A JPH02185314 A JP H02185314A JP 48589 A JP48589 A JP 48589A JP 48589 A JP48589 A JP 48589A JP H02185314 A JPH02185314 A JP H02185314A
Authority
JP
Japan
Prior art keywords
workpiece
resistance
circuit
discharge
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP48589A
Other languages
Japanese (ja)
Inventor
Harumi Watanabe
渡邉 晴美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP48589A priority Critical patent/JPH02185314A/en
Publication of JPH02185314A publication Critical patent/JPH02185314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To effectively perform electric discharge machining on even a workpiece having high resistance by, in the case of the workpiece having high resistance, making an electric circuit which starts from a d. c. source and returns to the same source through a workpiece and a main discharge electrode function as an attenuation circuit. CONSTITUTION:A d. c. source 12 is connected through a lead wire 13 between a work piece 10 and a wire electrode 11 with the workpiece 10 set as a positive pole (+). An equivalent circuit of a discharge circuit is composed of resistance R of the lead wire 13, an inductance L, a contact resistance r1 between the lead wire 13 and the wire electrode 11, a gap resistance r2 between the workpiece 10 and the wire electrode 11, discharge gap capacity Cg and a resistance Ra of the workpiece 10, which are mutually connected in series, with the d, c source 12 used as a capacitor Ca, and a discharge current i is expressed by the equation of V=Lodi/dt+Roi+1/Cintegral idt, where Lo, Ro, Co and V denote combined inductance, combined resistance, combined capacity and applied voltage respectively. When the workpiece 10 is changed for one having high resistance, the circuit becomes an attenuation circuit, but when the capacity of the capacitor C0 is reduced and the applied d. c. voltage is raised, the peak value of the discharge current i becomes higher and the width of pulse shorter.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、被加工物と主電極との間に放電を発生させて
加工を行なう放電加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an electric discharge machining method in which machining is performed by generating electric discharge between a workpiece and a main electrode.

(従来の技術) 第4図はワイヤ放電加工を示す図であって、被加工物1
に対してワイヤ電極2が配置されている。そして、これ
ら被加工物1とワイヤ電極2との間に被加工物1を正極
(+)として直流電源3が接続されている。これにより
、被加工物1に対してワイヤ電極2が所定距離になると
被加工物1とワイヤ電極2との間に放電が発生して被加
工物1が加工される。
(Prior art) FIG. 4 is a diagram showing wire electrical discharge machining, in which a workpiece 1
A wire electrode 2 is arranged against. A DC power source 3 is connected between the workpiece 1 and the wire electrode 2, with the workpiece 1 as the positive electrode (+). As a result, when the wire electrode 2 reaches a predetermined distance from the workpiece 1, electric discharge occurs between the workpiece 1 and the wire electrode 2, and the workpiece 1 is machined.

ところで、かかる放電加工では被加工物1として金属の
加工が行われている。そして、この金属はその抵抗値が
10−5〜10−4Ω(至)オーダのものとなっている
。一方、放電加工での放電回路つまり直流電源3から見
た等両回路は、放電ギャップ抵抗や放電ギャップ容量等
によりインダクタンス、抵抗及びコンデンサの直列回路
となっている。そして、この放電回路は、上記の抵抗値
を持った金属の被加工物1が最も良い効率で加工が行え
るように振動回路に形成されている。しかるに、その放
電電流は第5図に示すように時間経過とともに振動する
。なお、実際の放電加工では第5図に示す放電電流のう
ち第2半波以降はカットされている。
By the way, in such electrical discharge machining, metal is processed as the workpiece 1. The resistance value of this metal is on the order of 10-5 to 10-4 ohms. On the other hand, a discharge circuit in electrical discharge machining, that is, both circuits as seen from the DC power supply 3, is a series circuit of an inductance, a resistor, and a capacitor due to discharge gap resistance, discharge gap capacitance, and the like. This discharge circuit is formed into a vibrating circuit so that the metal workpiece 1 having the above-mentioned resistance value can be machined with the highest efficiency. However, the discharge current oscillates over time as shown in FIG. Note that in actual electrical discharge machining, the second half wave and subsequent waves of the discharge current shown in FIG. 5 are cut off.

ところが、上記構成の放電回路を用いて高抵抗値10−
’−100Ω■オーダの被加工物1例えばセラミックを
加工すると、放電回路における抵抗分が大きくなって放
電回路は振動回路から減衰回路に変わってしまう。従っ
て、放電電流は第6図に示すようにそのピーク値が非常
に低下してしまう。
However, using the discharge circuit with the above configuration, a high resistance value of 10-
When processing the workpiece 1, for example, ceramic, on the order of '-100Ω■, the resistance in the discharge circuit becomes large and the discharge circuit changes from an oscillating circuit to a damping circuit. Therefore, the peak value of the discharge current is greatly reduced as shown in FIG.

このため、異常放電が発生したり、又ショートが起こっ
て放電加工が不可能となっていた。
For this reason, abnormal electrical discharge occurs or short circuit occurs, making electrical discharge machining impossible.

(発明が解決しようとする課WJ) 以上のように高抵抗の被加工物を放電加工しようとする
と、異常放電などが発生して放電加工の効率が低下する
ばかりでなく放電加工が不可能となっていた。
(Problem WJ to be solved by the invention) As described above, when attempting to perform electric discharge machining on a workpiece with high resistance, abnormal electric discharge occurs, which not only reduces the efficiency of electric discharge machining, but also makes electric discharge machining impossible. It had become.

そこで本発明は、高抵抗の被加工物でも効率良く放電加
工ができる放電加工方法を提供することを目的とする。
Therefore, an object of the present invention is to provide an electric discharge machining method that can efficiently perform electric discharge machining even on a workpiece having a high resistance.

[発明の構成] (課題を解決するための手段と作用) 本発明は、主電極と被加工物との間に直流電源から電圧
を印加して主電極と被加工物との間に放電を発生させて
被加工物を加工する放電加工方法において、被加工物が
高抵抗の場合に直流電源から被加工物及び主放電電極を
経て直流電源に戻る電気回路を減衰回路に設定するよう
にした放電加工方法である。
[Structure of the invention] (Means and effects for solving the problem) The present invention applies a voltage from a DC power source between the main electrode and the workpiece to generate an electric discharge between the main electrode and the workpiece. In the electric discharge machining method that processes the workpiece by generating electrical discharge, when the workpiece has high resistance, the electric circuit from the DC power source, through the workpiece and main discharge electrode, and returning to the DC power source is set as an attenuation circuit. This is an electric discharge machining method.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明方法を適用したワイヤ放電加工装置の構
成図である。同図において10は高抵抗10−3Ω■以
上の被加工物であって、例えばセラミックとなっている
。この被加工物10の加工部分にはワイヤ電極11が配
置されている。そして、これら被加工物10とワイヤ電
極11との間には直流電源12が被加工物10を正極(
+)としてリード線13を介して接続されている。とこ
ろで、かかる装置の等価回路は第2図に示す通りである
FIG. 1 is a configuration diagram of a wire electrical discharge machining apparatus to which the method of the present invention is applied. In the figure, numeral 10 indicates a workpiece having a high resistance of 10 -3 Ω■ or more, and is made of, for example, ceramic. A wire electrode 11 is arranged in the processing portion of the workpiece 10. A DC power supply 12 is connected between the workpiece 10 and the wire electrode 11 to connect the workpiece 10 to the positive electrode (
+) is connected via a lead wire 13. By the way, the equivalent circuit of such a device is as shown in FIG.

ここで、直流電源12は実際にはコンデンサCaに直流
電圧を印加してその充電電圧Vを用いているので、第2
図では直流電源12をコンデンサCaとして示しである
。そこで、放電回路の等価回路は、リード線13のリー
ド線抵抗R1間り一ド線13のインダクタンスL1リー
ド線13とワイヤ電極11との接触抵抗rl、被加工物
10とワイヤ電極11との間のギャップにおける抵抗「
2、同ギャップにおける放電ギャップ容量Cg及び彼加
]−物10の抵抗Raが直列接続されたものとなってい
る。さて、以上のような放電回路では容量成分、例えば
コンデンサCaの容量が小さく設定されるとともにこの
コンデンサCaに印加される直流電圧が高く設定されて
いる。
Here, since the DC power supply 12 actually applies a DC voltage to the capacitor Ca and uses the charging voltage V, the second
In the figure, the DC power supply 12 is shown as a capacitor Ca. Therefore, the equivalent circuit of the discharge circuit is: the lead wire resistance R1 of the lead wire 13, the inductance L1 of the lead wire 13, the contact resistance rl between the lead wire 13 and the wire electrode 11, and the distance between the workpiece 10 and the wire electrode 11. Resistance in the gap of “
2. The discharge gap capacitance Cg in the same gap and the resistor Ra of the resistor 10 are connected in series. Now, in the discharge circuit as described above, the capacitance component, for example, the capacitance of the capacitor Ca, is set to be small, and the DC voltage applied to this capacitor Ca is set to be high.

ここで、上記等価回路に流れる放電電流lを求める。そ
こで、等価回路における合成インダクタンスをL01合
成抵抗をR,%合成容量をC,とすると次式が成立つ。
Here, the discharge current l flowing through the above equivalent circuit is determined. Therefore, if the combined inductance in the equivalent circuit is L01, the combined resistance is R, and the % combined capacitance is C, the following equation holds true.

そして、この式から放電電流iを求めると、i =p、
Atε#1’+psAtεp、tここで、 であり、又A I + A 2は積分定数で、初期条件
によって決定される。
Then, when calculating the discharge current i from this formula, i = p,
Atε#1'+psAtεp,twhere, A I + A 2 is an integration constant, which is determined by the initial conditions.

上記1)++i)2の根号の中の正負によって、p1+
  p2は実数か複素数かになり、又根号の中が「0」
になればul+92は相等しい実数になる。これら3つ
の場合に応じて放電電流iは異なることになる。しかる
に、上記述べたように金属の被加工物を放電加工する場
合には放電回路は振動回路となワているので、 Ru<2F[77で丁 の回路定数に設定されている。ところが、被加工物10
を高抵抗に変えると放電回路は減衰回路となるが、本回
路では容量成分coを小さくすることによって L□/
Coを大きくしている。
Depending on the sign of the radical in 1)++i)2 above, p1+
p2 can be a real number or a complex number, and the radical inside is "0"
Then ul+92 becomes equal real numbers. The discharge current i will differ depending on these three cases. However, as mentioned above, when electrical discharge machining is performed on a metal workpiece, the electrical discharge circuit is connected to a vibration circuit, so the circuit constant is set to Ru<2F[77]. However, the workpiece 10
If the discharge circuit is changed to a high resistance, the discharge circuit becomes an attenuation circuit, but in this circuit, by reducing the capacitance component co, L□/
Co is increasing.

すなわち、高抵抗の被加工物10を放14加工ずる場合
は、以上のように容量成分coを小さくするとともにコ
ンデンサCaに印加する直流電圧Vを高く設定する。こ
れにより、放電電流iは第3図に示すようにピーク値が
高くなるとともにそのパルス幅が短くなる。具体的には
放電電流iは第6図に示す放ff1ffi流と比較して
ピーク値が約10倍となるとともにパルス幅が約15分
の1となる。しかるに、このような放電電流iであれば
、被加工物10とワイヤ電極11との間に放電が発生し
て、被加工物10は加工される。つまり、放電電流iは
高抵抗の被加工物10を放電加工するのに十分となる。
That is, when processing a high-resistance workpiece 10, the capacitance component co is made small as described above, and the DC voltage V applied to the capacitor Ca is set high. As a result, the discharge current i has a higher peak value and a shorter pulse width, as shown in FIG. Specifically, the peak value of the discharge current i is about 10 times that of the discharge ff1ffi flow shown in FIG. 6, and the pulse width is about 1/15. However, with such a discharge current i, a discharge occurs between the workpiece 10 and the wire electrode 11, and the workpiece 10 is machined. In other words, the discharge current i is sufficient for electrical discharge machining the workpiece 10 having high resistance.

このように上記一実施例においては、被加工物10が高
抵抗の場合に容量成分C,を小さくするとともに被加工
物10とワイヤ電極11との間に印加する直流電圧Vを
高くしたので、ピーク値が高くかつパルス幅の短い放電
電流iを得ることができ、これにより被加工物10が1
0−1〜100Ω(至)オーダの高抵抗であっても放電
を発生させて加工を行なうことができる。
In this way, in the above embodiment, when the workpiece 10 has a high resistance, the capacitance component C is made small and the DC voltage V applied between the workpiece 10 and the wire electrode 11 is increased. It is possible to obtain a discharge current i with a high peak value and a short pulse width, so that the workpiece 10
Even if the resistance is high, on the order of 0-1 to 100 ohms, it is possible to process it by generating electric discharge.

なお、本発明は上記一実施例に限定されるものでなくそ
の主旨を逸脱しない範囲で変形してもよい。例えば、上
記一実施例ではワイヤ放電加工に適用した場合について
説明したが、ワイヤ放電加工に限らず電解放電加工や平
板電極を用いた放電加工にも適用できる。
Note that the present invention is not limited to the above-mentioned embodiment, and may be modified without departing from the spirit thereof. For example, in the above-mentioned embodiment, a case where the present invention is applied to wire electrical discharge machining has been described, but the present invention is not limited to wire electrical discharge machining, but can also be applied to electrolytic electrical discharge machining and electrical discharge machining using flat plate electrodes.

[発明の効果〕 以上詳記したように本発明によれば、高抵抗の被加工物
でも効率良く放電加工ができる放電加工方法を提供でき
る。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to provide an electric discharge machining method that can efficiently perform electric discharge machining even on a workpiece having a high resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明に係わる放電加工方法を説明
するための図であって、第1図は同方法を適用したワイ
ヤ放電加工装置の構成図、第2図は同装置の等価回路図
、第3図は同装置での放電電流を示す図、第4図乃至第
6図は従来技術を説明するための図である。 10・・・被加工物、11・・・ワイヤ電極、12・・
・直流電源、13・・・リード線、Ca・・・コンデン
サ、R・・・リード線抵抗、L・・・リード線インダク
タンス、「1・・・電極の接触抵抗、「2・・・放電ギ
ャップ抵抗、Cg・・・放電ギャップ容量、Ra・・・
被加工物抵抗。 出願人代理人 弁理士 鈴江武彦 第 1 図 第 第 図 図 狩間()Is) 第 図
1 to 3 are diagrams for explaining the electrical discharge machining method according to the present invention, in which FIG. 1 is a configuration diagram of a wire electrical discharge machining device to which the method is applied, and FIG. 2 is an equivalent diagram of the same device. The circuit diagram, FIG. 3, is a diagram showing the discharge current in the same device, and FIGS. 4 to 6 are diagrams for explaining the prior art. 10... Workpiece, 11... Wire electrode, 12...
・DC power supply, 13... Lead wire, Ca... Capacitor, R... Lead wire resistance, L... Lead wire inductance, "1... Contact resistance of electrode, "2... Discharge gap Resistance, Cg...discharge gap capacity, Ra...
Workpiece resistance. Applicant's Representative Patent Attorney Takehiko Suzue No. 1 Fig. Fig. Karima () Is) Fig.

Claims (1)

【特許請求の範囲】[Claims] 主電極と被加工物との間に直流電源から電圧を印加して
前記主電極と前記被加工物との間に放電を発生させて前
記被加工物を加工する放電加工方法において、前記被加
工物が高抵抗の場合に前記直流電源から前記被加工物及
び前記主放電電極を経て前記直流電源に戻る電気回路を
減衰回路に設定することを特徴とする放電加工方法。
In the electric discharge machining method, the workpiece is machined by applying a voltage from a DC power source between the main electrode and the workpiece to generate an electric discharge between the main electrode and the workpiece. An electrical discharge machining method characterized in that when an object has a high resistance, an electric circuit that returns from the DC power source to the DC power source via the workpiece and the main discharge electrode is set as an attenuation circuit.
JP48589A 1989-01-06 1989-01-06 Electric discharge machining Pending JPH02185314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48589A JPH02185314A (en) 1989-01-06 1989-01-06 Electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48589A JPH02185314A (en) 1989-01-06 1989-01-06 Electric discharge machining

Publications (1)

Publication Number Publication Date
JPH02185314A true JPH02185314A (en) 1990-07-19

Family

ID=11475071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48589A Pending JPH02185314A (en) 1989-01-06 1989-01-06 Electric discharge machining

Country Status (1)

Country Link
JP (1) JPH02185314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007057948A1 (en) * 2005-11-16 2007-05-24 Mitsubishi Denki Kabushiki Kaisha Wire electrical discharge machining method, semiconductor wafer manufacturing method and solar battery cell manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007057948A1 (en) * 2005-11-16 2007-05-24 Mitsubishi Denki Kabushiki Kaisha Wire electrical discharge machining method, semiconductor wafer manufacturing method and solar battery cell manufacturing method
JPWO2007057948A1 (en) * 2005-11-16 2009-04-30 三菱電機株式会社 Wire electrical discharge machining method, semiconductor wafer manufacturing method, and solar cell manufacturing method

Similar Documents

Publication Publication Date Title
HUP0002857A2 (en) Method of and arrangement for electrochemical machining
DE69021217T2 (en) WAKE POINTS OF A WIRE GENERATED BY A WIRE CONNECTOR.
JPH02185314A (en) Electric discharge machining
JPH0120017B2 (en)
JPH11347842A (en) Electric discharge machining method and device
JP3361057B2 (en) Electric discharge machining method and power supply device for electric discharge machining
US4443682A (en) Superimposed high striking voltage power supply circuit for electrical discharge machining
JPH0355117A (en) Power source device for electric discharge
US3796897A (en) High voltage generating apparatus utilizing piezoelectric transformers
JPH02185316A (en) Electric discharge machining device
JPH0329407A (en) Surface acoustic wave generator
JPS6066417U (en) Wire cut electric discharge machining power supply device
JPS5973226A (en) Machining power supply of electric discharge machining device
JPS63154B2 (en)
JPS59232474A (en) Carbon dioxide gas laser equipment
JPH059209B2 (en)
JP2002263471A (en) Plasma processing method and plasma processor using marx circuit
JPH04135119A (en) Electric discharge machine
JPS61260916A (en) Power source for electric discharge machining
MD1368F1 (en) Installation for electric spark alloying
JPH01234114A (en) Power supply device for electric discharge machining
US3206639A (en) Electrical discharge machining apparatus
JPH01234115A (en) Power supply device for spark erosion machining
RU2074068C1 (en) Power source for electro-spark doping of metals
JPS61260917A (en) Power source for electric discharge machining