JPH02184645A - Production of unsaturated alcohol - Google Patents

Production of unsaturated alcohol

Info

Publication number
JPH02184645A
JPH02184645A JP1002806A JP280689A JPH02184645A JP H02184645 A JPH02184645 A JP H02184645A JP 1002806 A JP1002806 A JP 1002806A JP 280689 A JP280689 A JP 280689A JP H02184645 A JPH02184645 A JP H02184645A
Authority
JP
Japan
Prior art keywords
reaction
pressure
oil
catalyst
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1002806A
Other languages
Japanese (ja)
Inventor
Yoshichika Shibata
柴田 喜愛
Noriyuki Suzuki
則之 鈴木
Akira Sugimoto
明 杉本
Fujio Tsuchiya
土屋 富士雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP1002806A priority Critical patent/JPH02184645A/en
Publication of JPH02184645A publication Critical patent/JPH02184645A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To selectively produce the subject alcohol having a high degree of unsaturation by using a fish oil having a high degree of unsaturation and many double bonds as the raw material and carrying out high-pressure hydrogenation thereof in the presence of a specified Zn-Cr-based catalyst under specified conditions using a fixed bed-type reactor. CONSTITUTION:A fish oil having a high degree of unsaturation and many double bonds or an ester thereof is subjected to high-pressure hydrogenation in the presence of a Zn-Cr-based catalyst having 1.75-3.20 Zn/Cr atomic ratio and reduced at 270-450 deg.C at 285-320 deg.C under 170-250kg/cm<2>G and 1.2-3.0Nm<3>/1 ratio of H2/raw material using a fixed bed-type reactor, thus producing the objective compound. In addition, the lowering ratio of iodine value is <=15% and impurities such as dimer or trimer are not produced. A separation process after the reaction can be omitted and the equipment is simplified. The reaction pressure and hydrogen supply can be reduced and a remarkable improvement is possible in respect of safety and reduction of the equipment cost and the manufacturing cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、魚油またはそのエステル体を水素化分解し、
原料の二重結合の大部分を残した不飽和度の高いアルコ
ールを選択的に製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for hydrogenolyzing fish oil or its ester,
The present invention relates to a method for selectively producing a highly unsaturated alcohol that retains most of the double bonds in the raw material.

[従来の技術] 不飽和度の高い油種を原料とした不飽和アルコール製造
方法は種々提案されており、以下その主なものについて
説明する。
[Prior Art] Various methods for producing unsaturated alcohols using oils with a high degree of unsaturation as raw materials have been proposed, and the main ones will be explained below.

従来用いられてきたのは金属Naを使用して脂肪酸エス
テルをアルコールに還元する方法で、この方法では不飽
和度を全く低下させずに目的とするアルコールを製造す
ることができるが、金ffNaが極めて高価であること
、金属Naの使用量が多いこと、また金属Naの危険性
が高いことなどの欠点がある。
The conventional method used is to reduce fatty acid esters to alcohol using metallic Na, and this method allows the production of the desired alcohol without reducing the degree of unsaturation at all. It has drawbacks such as being extremely expensive, using a large amount of metallic Na, and being highly dangerous.

そこで適当な触媒を使用した水素還元により不飽和アル
コールを製造しようとする試みがなされており、特公昭
40−27730号明細書には、不飽和脂肪酸を含む油
脂、液体ロウならびに低級アルコールのエステルを亜鉛
−アルミニウムならびに亜鉛−クロミウム系触媒で加圧
還元するに際し反応温度における水素加圧を300〜5
00気圧とする不飽和アルコールの製造方法が提案され
ている。
Therefore, attempts have been made to produce unsaturated alcohols by hydrogen reduction using suitable catalysts, and Japanese Patent Publication No. 40-27730 discloses that fats and oils containing unsaturated fatty acids, liquid waxes, and esters of lower alcohols have been produced by hydrogen reduction using suitable catalysts. When performing pressurized reduction using zinc-aluminum and zinc-chromium catalysts, the hydrogen pressure at the reaction temperature is set at 300 to 5
A method for producing unsaturated alcohol under pressure of 0.00 atm has been proposed.

しかしその実施例によると、ヨウ素価が100程度ある
いはそれ以上の高度不飽和脂肪酸を原料とした場合、不
飽和度を示すヨウ素価の減少率はすべて20%以上であ
り、必ずしも満足すべき方法ではない。
However, according to the examples, when highly unsaturated fatty acids with an iodine value of about 100 or more are used as raw materials, the reduction rate of the iodine value, which indicates the degree of unsaturation, is all 20% or more, which is not necessarily a satisfactory method. do not have.

また特公昭45−2562号明細書には、還元性雰囲気
中で、酸素含有化合物の形で500〜900℃での高温
処理に付された触媒を使用し、250〜330℃なる温
度、100〜500気圧なる圧力に於いて、そして水素
化すべき原料12当たり10〜1100N’なる水素量
で水素化を行うことを特徴とする、塊状の亜鉛−クロム
触媒又は亜鉛−アルミニウム触媒の存在下で高温加圧下
過剰の水素で8〜22個の炭素原子をもつ不飽和脂肪酸
又は1価の脂肪族アルコールとのそのエステルを連続的
に水素化することによる不飽和脂肪族アルコールの製法
が提案されている。
Furthermore, Japanese Patent Publication No. 45-2562 discloses that a catalyst which has been subjected to a high temperature treatment at 500 to 900°C in the form of an oxygen-containing compound in a reducing atmosphere is used at a temperature of 250 to 330°C; High temperature heating in the presence of a bulk zinc-chromium or zinc-aluminum catalyst, characterized in that the hydrogenation is carried out at a pressure of 500 atm and with an amount of hydrogen of 10 to 1100 N' per 12 of the feedstock to be hydrogenated. A process has been proposed for the preparation of unsaturated aliphatic alcohols by continuous hydrogenation of unsaturated fatty acids with 8 to 22 carbon atoms or their esters with monohydric aliphatic alcohols under pressure in excess of hydrogen.

同明細書によれば、この方法は、従来二重結合の保持に
関して最大の選択性を示した280〜350℃での低温
還元によって造られた亜鉛−クロム触媒よりも著しくま
さっていると記載されており、その実施例によってもヨ
ウ素価の減少率が小さいことが示されているが、所要水
素量が原料12当たり10〜1100N!と著しく多い
According to the same specification, this process is said to be significantly superior to zinc-chromium catalysts made by low-temperature reduction at 280-350°C, which previously showed the greatest selectivity in terms of double bond retention. Although the examples show that the rate of decrease in iodine value is small, the required amount of hydrogen is 10 to 1100 N per 12 raw materials! There are significantly more.

−力木発明の実施対象である魚油は、一般にヨウ素価1
00以上の高度不飽和脂肪酸で、特に二重結合を4〜6
個有することがほかの油脂と太き(異なる。これらは、
時として熱による分解・重合反応が起き、生成油のヨウ
素価は低下し、炭素−炭素結合による二量体或は三量体
を生じる。
-Fish oil, which is the subject of the Rikiki invention, generally has an iodine value of 1
00 or more highly unsaturated fatty acids, especially with 4 to 6 double bonds
They are different from other fats and oils in that they are
Occasionally, thermal decomposition/polymerization reactions occur, the iodine value of the resulting oil decreases, and dimers or trimers are formed due to carbon-carbon bonds.

上記先行技術は二重結合が1個ないし2〜3個までの油
脂を処理した実施例は示しているが、二重結合を4〜6
個有する魚油に対する実施例は示していない。
The above-mentioned prior art shows examples in which oils and fats having 1 to 2 to 3 double bonds are treated, but
Examples for individual fish oils are not shown.

本発明者らは魚油を原料として上記先行技術をトレース
したが、多くの場合ヨウ素価の低下が著しく、かつ生成
油中に二量体等が確認された。
The present inventors traced the above-mentioned prior art using fish oil as a raw material, but in many cases the iodine value decreased significantly and dimers etc. were confirmed in the produced oil.

二、三量体等の不純物が多くなると後段の精製工程の負
荷が増加する。
When impurities such as di- and trimers increase, the load on the subsequent purification process increases.

[発明が解決しようとする課題] 本発明は、不飽和度の高い魚油又はそのエステルの高圧
水素化により不飽和度の高いアルコールを製造するにあ
たり、ヨウ素価の低下率が15%以下、望ましくは10
%以下で、かつ二量体や三量体等の不純物を生じない方
法を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention is directed to producing highly unsaturated alcohols by high-pressure hydrogenation of highly unsaturated fish oils or esters thereof. 10
% or less and does not generate impurities such as dimers and trimers.

このような原料を使用する場合、触媒活性や反応条件が
温和であれば二重結合は温存されヨウ素価の減少は少な
いが、アルコールへの転化率は低下する。即ちケン化価
減少率が小さい。
When such raw materials are used, if the catalyst activity and reaction conditions are mild, double bonds are preserved and the iodine value decreases little, but the conversion rate to alcohol decreases. That is, the saponification value decrease rate is small.

これとは逆に、触媒の活性が高く反応条件が苛酷であれ
ばアルコールへの転化率は向上し高いケン化価減少率を
示すが二重結合も水素化されヨウ素価が低下する。
On the contrary, if the activity of the catalyst is high and the reaction conditions are severe, the conversion rate to alcohol will increase and the saponification value will decrease at a high rate, but the double bonds will also be hydrogenated and the iodine value will decrease.

したがって魚油の水素化にはきわめて微妙な条件選択が
要求される。本発明はかかる問題を解決したものである
Therefore, hydrogenation of fish oil requires extremely delicate selection of conditions. The present invention solves this problem.

[課題を解決するための手段] 本発明は、魚油又はそのエステルの高圧水素化により不
飽和度の高いアルコールを製造するにあたり、Z n 
/ Crの原子比が1.75〜3.20の範囲で且つ2
70〜450℃の範囲の温度で還元処理された亜鉛−ク
ロム系触媒の存在下で、固定床形式の反応装置を用い、
下記の反応条件下で高圧水素化することを特徴とする不
飽和アルコールの製造方法である。
[Means for Solving the Problems] The present invention provides a method for producing a highly unsaturated alcohol by high-pressure hydrogenation of fish oil or its ester.
/Cr atomic ratio is in the range of 1.75 to 3.20 and 2
Using a fixed-bed reactor in the presence of a zinc-chromium catalyst that has been reduced at a temperature in the range of 70 to 450°C,
This is a method for producing an unsaturated alcohol, which is characterized by high-pressure hydrogenation under the following reaction conditions.

反応温度  =285〜320℃ 反応圧力  :170〜250Kg/cm2GH,/原
料比: 1.2〜3.ONm’ /42以下上記上記性
設定の基礎となる試験結果について順次説明する。
Reaction temperature = 285-320°C Reaction pressure: 170-250 Kg/cm2GH, /Raw material ratio: 1.2-3. ONm' /42 and below The test results that serve as the basis for the above gender settings will be explained in order.

〔試験1](Zn/Cr原子比の影響)第  1  表 Z n / Cr原子比1.50,1.90,3.05
又は3.20の亜鉛−クロム酸化物系触媒を用いて、第
1表の性状のイワシ油エチルエステルを原料として水素
化分解反応を行った。
[Test 1] (Influence of Zn/Cr atomic ratio) Table 1 Z n / Cr atomic ratio 1.50, 1.90, 3.05
Alternatively, using a zinc-chromium oxide catalyst of 3.20, a hydrogenolysis reaction was carried out using sardine oil ethyl ester having the properties shown in Table 1 as a raw material.

各触媒ごとに、3mmφ打錠品約45ccを固定床形式
の反応器に充填し、水素気流中300℃で約4時間常圧
で還元し、還元終了後水素により系内な200Kg/c
m’Gまで昇圧し、水素/原料比2.ONm3/I2、
反応温度290℃、LH8V0.15hr−’の条件で
反応させた。
Approximately 45 cc of 3 mmφ tablets of each catalyst were packed into a fixed bed type reactor and reduced in a hydrogen stream at 300°C for approximately 4 hours at normal pressure.
Increase the pressure to m'G and reduce the hydrogen/raw material ratio to 2. ONm3/I2,
The reaction was carried out at a reaction temperature of 290°C and a LH8V of 0.15 hr-'.

試験結果を第1図に示す。第1図において横軸は触媒の
Z n / Cr原子比、縦軸はケン化価減少率又はヨ
ウ素価減少率(%)を表し、O印はケン化価減少率、0
印はヨウ素価減少率を示す、また線Aは本発明の領域を
示す。
The test results are shown in Figure 1. In Figure 1, the horizontal axis represents the Z n / Cr atomic ratio of the catalyst, the vertical axis represents the saponification value reduction rate or iodine value reduction rate (%), and the O mark represents the saponification value reduction rate, 0
The marks indicate the iodine number reduction rate, and line A indicates the area of the invention.

なおケン化価減少率及びヨウ素価減少率はそれぞれ下式
で示される値である。
Note that the saponification value reduction rate and the iodine value reduction rate are values shown by the following formulas, respectively.

ケン化価減少率= ヨウ素価減少率= ヨウ素価減少率はZ n / Cr原子比1.5では4
0%にもなるが、1.75では15%、1.9では10
%となり、以降原子比の増加と共にさらに小さ(なる。
Saponification value reduction rate = Iodine value reduction rate = Iodine value reduction rate is 4 when the Z n / Cr atomic ratio is 1.5
It can be 0%, but at 1.75 it is 15% and at 1.9 it is 10%.
%, and thereafter becomes smaller as the atomic ratio increases.

一方ケン化価減少率はZ n / Cr原子比1.5で
は80%以下であるが、1.75付近で90%以上にな
り、3.2付近まで高水準を持続した後低下する。
On the other hand, the saponification value decrease rate is 80% or less when the Z n /Cr atomic ratio is 1.5, but increases to 90% or more when it is around 1.75, maintains a high level until around 3.2, and then decreases.

[試験2] (触媒還元温度の影響) 試験lで用いたZ n / Cr原子比1.90の亜鉛
−クロム酸化物系触媒を用い、触媒還元温度を200℃
、300℃、500℃、700℃又は950℃と変えた
ものを使用した以外は、試験1と同じ固定床形式の反応
器を用い、同じ原料、同じ条件で反応を行った。
[Test 2] (Influence of catalyst reduction temperature) Using the zinc-chromium oxide catalyst with a Z n /Cr atomic ratio of 1.90 used in Test 1, the catalyst reduction temperature was set at 200°C.
, 300°C, 500°C, 700°C, or 950°C, but using the same fixed bed type reactor as in Test 1, the reaction was carried out using the same raw materials and under the same conditions.

試験結果を第2図に示す、第2図において横軸は触媒の
還元温度(℃)、縦軸はケン化価減少率(%)を表し、
O印はケン化価減少率を示す、また線Aは本発明の領域
を示す。
The test results are shown in Figure 2. In Figure 2, the horizontal axis represents the catalyst reduction temperature (°C), and the vertical axis represents the saponification value reduction rate (%).
The O symbol indicates the saponification value reduction rate, and the line A indicates the area of the present invention.

ケン化価減少率は、還元温度200℃では60%以下で
あるが、250℃付近で90%以上になり、400℃付
近をピークとして、それ以上の温度では次第に低下する
The saponification value reduction rate is 60% or less at a reduction temperature of 200°C, but increases to 90% or more at around 250°C, peaks at around 400°C, and gradually decreases at higher temperatures.

【試験3] (反応温度の影響) 第  2  表 第2表の性状のイワシ油メチルエステルを原料として、
試験1で用いたZ n / Cr原子比3.05の亜鉛
−クロム酸化物系触媒を水素気流中290℃で約5時間
常圧で還元したものを使用し、試験1と同じ固定床形式
の反応器を用い、反応温度を260℃、275℃、29
0”C又は310”Cと変えた以外は試験1と同じ条件
で反応を行った。
[Test 3] (Effect of reaction temperature) Table 2 Using sardine oil methyl ester with the properties shown in Table 2 as a raw material,
The zinc-chromium oxide catalyst with a Zn/Cr atomic ratio of 3.05 used in Test 1 was reduced at 290°C in a hydrogen stream at normal pressure for about 5 hours, and the same fixed bed type catalyst as in Test 1 was used. Using a reactor, the reaction temperature was set to 260°C, 275°C, 29
The reaction was carried out under the same conditions as Test 1 except that the temperature was changed to 0"C or 310"C.

試験結果を第3図に示す。第3図において横軸は反応温
度(℃)、縦軸はケン化価減少率又はヨウ素価減少率(
%)を表し、O印はケン化価減少率、0印はヨウ素価減
少率を示す、また線Aは本発明の領域を示す。
The test results are shown in Figure 3. In Figure 3, the horizontal axis is the reaction temperature (°C), and the vertical axis is the saponification value reduction rate or iodine value reduction rate (
%), O mark indicates saponification number reduction rate, 0 mark indicates iodine value reduction rate, and line A indicates the area of the present invention.

ヨウ素価減少率は反応温度260℃では4%程度である
が、この温度ではケン化価減少率が40%と非常に低い
0反応温度270℃でもケン化価減少率は70%以下で
あるが、285℃付近で90%以上になり、以後高水準
を持続する。なおヨウ素価減少率は反応温度285℃付
近で10%を越えるが、それ以後の増加は緩慢である。
The iodine value reduction rate is about 4% at a reaction temperature of 260°C, but at this temperature the saponification value reduction rate is very low at 40%. Even at a reaction temperature of 270°C, the saponification value reduction rate is less than 70%. , it becomes over 90% at around 285°C and remains at a high level thereafter. Note that the iodine value reduction rate exceeds 10% at around the reaction temperature of 285°C, but the increase thereafter is slow.

[試験4] (反応圧力の影響) 試験1で用いたZ n / Cr原子比3.05の亜鉛
−クロム酸化物系触媒を水素気流中290℃で約5時間
常圧で還元したものを使用し、試験1と同じ固定床形式
の反応器を用い、反応圧力を150.200.2501
290または500 K g/cm2Gと変えた以外は
試験3と同じ原料、同じ条件で反応を行った。
[Test 4] (Effect of reaction pressure) The zinc-chromium oxide catalyst used in Test 1 with a Zn/Cr atomic ratio of 3.05 was reduced at 290°C in a hydrogen stream at normal pressure for about 5 hours. Using the same fixed bed type reactor as Test 1, the reaction pressure was set to 150.200.2501.
The reaction was carried out using the same raw materials and under the same conditions as in Test 3, except that 290 or 500 K g/cm2G was used.

試験結果を第4図に示す。第4図において横軸は反応圧
力(K g / c m 2G ) 、縦軸はケン化価
減少率又はヨウ素価減少率(%)を表し、O印はケン化
価減少率、0印はヨウ素価減少率を示す。
The test results are shown in Figure 4. In Figure 4, the horizontal axis represents the reaction pressure (K g / cm 2G), the vertical axis represents the saponification value reduction rate or iodine value reduction rate (%), the O mark represents the saponification value reduction rate, and the 0 mark represents the iodine value. Indicates the rate of decrease in value.

また線Aは本発明の領域を示す。Line A also indicates the area of the present invention.

ケン化価減少率は反応圧力170Kg/cm2で90%
を越え、反応圧力200 K g / c m 2で9
5%を越えた後はい(ら圧力を増しても増加しない。一
方ヨウ素価減少率は反応圧力250Kg/cm’G付近
までは10%程度であるが、以後次第に増加の勢いを増
す。
Saponification value reduction rate is 90% at reaction pressure 170Kg/cm2
9 at a reaction pressure of 200 K g/cm2
After it exceeds 5%, it does not increase even if the pressure is increased. On the other hand, the iodine value reduction rate is about 10% until the reaction pressure is around 250 kg/cm'G, but after that it gradually increases.

このことから、反応圧力を250Kg/cm’G以上に
することは無意味であるばかりか、有害でさえあること
が判る。
This shows that it is not only meaningless to increase the reaction pressure above 250 Kg/cm'G, but is even harmful.

[試験5] (水素/油化の影響) 試験lで用いたZ n / Cr原子比3.05の亜鉛
−クロム酸化物系触媒を、水素気流中290℃で約5時
間常圧で還元したものを使用し、試験1と同じ固定床形
式の反応器を用い、水素/油化を1.0.1.6.1.
8.2.0.5.3又は10、ONm3/βと変えた以
外は試験3と同じ原料、同じ条件で反応を行った。
[Test 5] (Effect of hydrogen/oil conversion) The zinc-chromium oxide catalyst with a Zn/Cr atomic ratio of 3.05 used in Test 1 was reduced at 290°C in a hydrogen stream at normal pressure for about 5 hours. Using the same fixed bed type reactor as in Test 1, hydrogen/oil conversion was carried out in 1.0.1.6.1.
8.2.0.5.3 or 10, and the reaction was carried out using the same raw materials and under the same conditions as Test 3, except that ONm3/β was changed.

試験結果を第5図に示す。第5図において横軸は水素/
油化(Nm’ /β)、縦軸はケン化価減少率又はヨウ
素価減少率(%)を表し、○印はケン化価減少率、0印
はヨウ素価減少率を示す。また線Aは本発明の領域を示
す。
The test results are shown in Figure 5. In Figure 5, the horizontal axis is hydrogen/
Oil conversion (Nm'/β), the vertical axis represents the saponification value reduction rate or iodine value reduction rate (%), the circle mark indicates the saponification value reduction rate, and the 0 mark indicates the iodine value reduction rate. Line A also indicates the area of the present invention.

ケン化価減少率は水素/油化1.ONm3/βでは85
%程度であるが、水素/油化1.2で90%を越え、水
素/油化1.5で95%を越えた後はいくら水素/油化
を増しても増加しない。
The saponification value reduction rate is hydrogen/oil conversion 1. 85 for ONm3/β
%, but after exceeding 90% at hydrogen/oil conversion of 1.2 and exceeding 95% at hydrogen/oil conversion of 1.5, it does not increase no matter how much hydrogen/oil conversion is increased.

方ヨウ素価減少率は水素/油化2.0付近までは10%
程度であるが、以後次第に増加する。
However, the iodine value reduction rate is 10% until hydrogen/oil conversion around 2.0
However, it will gradually increase thereafter.

このことから、水素/油化を3Nm3/42以上にする
ことは無意味であるばかりか、有害でさえあることが判
る。
This shows that increasing the hydrogen/oil ratio to 3 Nm3/42 or more is not only meaningless, but even harmful.

本発明により、イワシ油、サバ油又はタラ油等不飽和度
が高く二重結合数が多い魚油又はそのエステルから不飽
和アルコールを容易に製造することができる。
According to the present invention, unsaturated alcohols can be easily produced from fish oils with a high degree of unsaturation and a large number of double bonds, such as sardine oil, mackerel oil, or cod oil, or esters thereof.

[実施例1] Z n / Cr原子比1.90の触媒3mmφ打錠品
約45ccを固定床形式の反応器に充填し、水素気流中
300℃で約4時間常圧で還元した。還元終了後、水素
により系内を200Kg/cm2Gま)昇圧した。原料
はイワシ油エチルエステルを用い、水素比2.ONm’
/β、反応温度290℃、LH3V0.15hr−’で
水素化分解反応を行った。
[Example 1] Approximately 45 cc of a 3 mm diameter compressed catalyst having a Z n /Cr atomic ratio of 1.90 was packed into a fixed bed type reactor and reduced at 300° C. for approximately 4 hours at normal pressure in a hydrogen stream. After the reduction was completed, the pressure inside the system was increased to 200 Kg/cm2G) with hydrogen. The raw material is sardine oil ethyl ester, and the hydrogen ratio is 2. ONm'
/β, a reaction temperature of 290° C., and a hydrogenolysis reaction of LH3V of 0.15 hr-'.

原料イワシ油エチルエステルおよび生成油の性状は第3
表の通りであった。
The properties of the raw sardine oil ethyl ester and the produced oil are as follows.
It was as shown in the table.

第  3  表 Z n / Cr原子比3.05の触媒3mmφ打錠品
約45ccを固定床形式の反応器に充填し、水素気流中
290℃で約5時間常温で還元した。還元終了後、水素
により反応器系内を200 K g/cm2Gまで昇圧
した。原料にはイワシ油エチルエステルを使用し、実施
例1の還元条件及び反応条件で水素化分解反応を行った
Table 3 About 45 cc of a 3 mm diameter tablet of catalyst having a Zn/Cr atomic ratio of 3.05 was charged into a fixed bed type reactor and reduced at room temperature for about 5 hours at 290° C. in a hydrogen stream. After the reduction was completed, the pressure inside the reactor system was increased to 200 Kg/cm2G using hydrogen. Sardine oil ethyl ester was used as a raw material, and a hydrogenolysis reaction was carried out under the reduction conditions and reaction conditions of Example 1.

原料イワシ油エチルエステルおよび生成油の性状は第4
表の通りであった。
The properties of the raw material sardine oil ethyl ester and the produced oil are as follows.
It was as shown in the table.

第  4  表 なおヒドロキシル価はOH基(アルコール)の量を示す
In Table 4, the hydroxyl value indicates the amount of OH groups (alcohol).

[実施例2] [比較例1] Z n / Cr原子比3.40の触媒的45ccを固
定床形式の反応器に充填し、常圧下水素気流中300℃
で約5時間遠元した。還元終了後、実施例1の反応条件
で水素化分解反応を行った。
[Example 2] [Comparative Example 1] A fixed bed type reactor was filled with 45 cc of a catalyst having a Z n /Cr atomic ratio of 3.40 and heated at 300° C. in a hydrogen stream under normal pressure.
I was away for about 5 hours. After completion of the reduction, a hydrogenolysis reaction was carried out under the reaction conditions of Example 1.

原料イワシ油エチルエステルおよび生成油の性状は第5
表の通りであった。
The properties of the raw material sardine oil ethyl ester and the produced oil are as follows.
It was as shown in the table.

第  5  表 [比較例2] Z n / Cr原子比1.50の触媒量45ccを固
定床形8式の反応器に充填し、常圧下水素気流中300
℃で約5時間遠元した。還元終了後、実施例1の反応条
件で水素化分解反応を行った。
Table 5 [Comparative Example 2] 45 cc of a catalyst with a Z n /Cr atomic ratio of 1.50 was packed into a fixed bed type 8 reactor, and 300 cc of catalyst with a Z n /Cr atomic ratio of 1.50 was charged in a hydrogen stream under normal pressure.
It was incubated at ℃ for about 5 hours. After completion of the reduction, a hydrogenolysis reaction was carried out under the reaction conditions of Example 1.

原料イワシ油エチルエステルおよび生成油の性状は第6
表の通りであった。
The properties of the raw material sardine oil ethyl ester and the produced oil are as follows.
It was as shown in the table.

第  6  表 [実施例3] 原料としてイワシ油(グリセリド)を使用し、実施例2
の触媒、還元条件及び反応条件により水素化分解反応を
行った。
Table 6 [Example 3] Using sardine oil (glyceride) as a raw material, Example 2
A hydrogenolysis reaction was carried out using the following catalyst, reduction conditions, and reaction conditions.

原料油および生成油の性状は第7表の通りであった・ 第  7  表 〔比較例3] 本発明方法は固定床形式の反応器を使用する場合に特に
効果を発揮するものであり、同じ触媒を用いても懸濁床
形式の反応器を用いたのでは満足すべき結果を得られな
い、その場合の例を示す。
The properties of the raw material oil and the produced oil were as shown in Table 7. Table 7 [Comparative Example 3] The method of the present invention is particularly effective when using a fixed bed type reactor, and the same An example of a case in which satisfactory results cannot be obtained using a suspended bed type reactor even if a catalyst is used will be shown below.

実施例1の触媒を使用し、懸濁床形式の反応器を用いて
イワシ油エチルエステルの水素化分解反応を行った。触
媒の還元は水素雰囲気下350℃で約6時間行った。還
元後水素により200Kg/cm2Gまで昇圧し、かつ
29,0℃まで降温した。所定温度及び圧力に到達後約
10時間撹拌した。反応時、圧力の低下をきたした時は
随時所定圧力まで水素を補給した。触媒量は原料油の5
%量を使用した。
Using the catalyst of Example 1, a hydrogenolysis reaction of sardine oil ethyl ester was carried out using a suspended bed type reactor. The reduction of the catalyst was carried out at 350° C. for about 6 hours under a hydrogen atmosphere. After reduction, the pressure was increased to 200 kg/cm2G using hydrogen, and the temperature was lowered to 29.0°C. After reaching the predetermined temperature and pressure, the mixture was stirred for about 10 hours. During the reaction, whenever the pressure decreased, hydrogen was replenished to a predetermined pressure. The amount of catalyst is 5% of the feedstock oil.
% amount was used.

原料油および生成油の性状は第8表の通りであった。The properties of the raw material oil and the produced oil were as shown in Table 8.

第  8  表 温した。所定温度及び圧力に到達後約10時間撹拌した
。反応時、圧力の低下をきたした時は随時所定圧力まで
水素を補給した。触媒量は原料油の5%量を使用した。
8th Table temperature. After reaching the predetermined temperature and pressure, the mixture was stirred for about 10 hours. During the reaction, whenever the pressure decreased, hydrogen was replenished to a predetermined pressure. The amount of catalyst used was 5% of the raw oil.

原料油および生成油の性状は第9表の通りであった。The properties of the raw material oil and produced oil were as shown in Table 9.

第  9  表 [比較例4] 原料としてイワシ油を用い、実施例2の触媒を使用し、
懸濁床形式の反応器を用いて水素化分解反応を行った。
Table 9 [Comparative Example 4] Using sardine oil as a raw material and the catalyst of Example 2,
Hydrocracking reaction was carried out using a suspended bed type reactor.

触媒の還元は水素雰囲気下300℃で5時間行った。還
元終了後水素により200Kg/cm2Gまで昇圧し、
かつ290℃まで降[比較例5] また本発明方法は不飽和度が高(且つ二重結合数の多い
魚油の場合に特に効果を発揮するものであり、同じ触媒
、同じ条件を用いても魚油以外の油の場合は満足すべき
結果を得られない。その場合の例を示す。
The reduction of the catalyst was carried out at 300° C. for 5 hours under a hydrogen atmosphere. After completion of reduction, increase the pressure to 200Kg/cm2G with hydrogen,
[Comparative Example 5] The method of the present invention is particularly effective in the case of fish oil with a high degree of unsaturation (and a large number of double bonds), and even if the same catalyst and the same conditions are used. Satisfactory results cannot be obtained with oils other than fish oil.An example of such a case is shown below.

実施例1の触媒及び反応条件によって、原料としてパー
ム油を用いて水素化分解反応を固定床流通形式の反応器
で行った。
Using the catalyst and reaction conditions of Example 1, a hydrocracking reaction was carried out in a fixed bed flow type reactor using palm oil as a raw material.

原料油および生成油の性状は第1O表の通りであった。The properties of the raw material oil and the produced oil were as shown in Table 1O.

第  10 表 不飽和度の低いパーム油では、触媒の反応活性が極めて
低い。
Table 10 In palm oil with a low degree of unsaturation, the reaction activity of the catalyst is extremely low.

[発明の効果] ■不飽和度が高(且つ二重結合数の多い魚油な原料とし
て不飽和アルコールが得られる。
[Effects of the invention] (1) An unsaturated alcohol can be obtained as a fish oil raw material with a high degree of unsaturation (and a large number of double bonds).

■従来の高圧水素化分解法に比べて比較的低い圧力で実
施できる。また従来の高圧水素化分解法に比べて極めて
小さい水素/油化で実施できる。
■Compared to conventional high-pressure hydrocracking methods, it can be carried out at relatively lower pressures. Furthermore, compared to conventional high-pressure hydrocracking methods, it can be carried out with extremely small amounts of hydrogen/oil.

従って反応圧力および水素供給量の低減が可能となり、
安全性、装置コストの低減化及び製造コストの低減化の
点で従来法よりも大幅な改善が図られる。
Therefore, it is possible to reduce the reaction pressure and hydrogen supply amount,
Significant improvements can be made over conventional methods in terms of safety, reduction in equipment cost, and reduction in manufacturing cost.

■生成油中の未反応脂肪酸が少なく、また副反応生成物
(炭化水素、二量体、二量体等)も殆ど無いため、反応
後の分離工程の省略が可能である。
(2) Since there is little unreacted fatty acid in the produced oil and there are almost no side reaction products (hydrocarbons, dimers, dimers, etc.), it is possible to omit the separation step after the reaction.

従って装置が簡易化され、この点も装置コストおよび製
造コストの低減化に大きく貢献する。
Therefore, the device is simplified, which also greatly contributes to reducing the device cost and manufacturing cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図はいずれもケン化価減少率及びヨウ素価
減少率に対する触媒又は操業条件の影響を示す図で、第
1図は触媒のZ n / Cr原子比の影響、第2図は
触媒還元温度の影響、第3図は反応温度の影響、第4図
は反応圧力の影響、第5図は水素/油化の影響を示す。
Figures 1 to 5 all show the influence of the catalyst or operating conditions on the saponification number reduction rate and the iodine value reduction rate. Figure 1 shows the influence of the Zn/Cr atomic ratio of the catalyst, and Figure 2 3 shows the effect of catalyst reduction temperature, FIG. 3 shows the effect of reaction temperature, FIG. 4 shows the effect of reaction pressure, and FIG. 5 shows the effect of hydrogen/oil conversion.

Claims (1)

【特許請求の範囲】 魚油又はそのエステルの高圧水素化により不飽和度の高
いアルコールを製造するにあたり、Zn/Crの原子比
が1.75〜3.20の範囲で且つ270〜450℃の
範囲の温度で還元処理された亜鉛−クロム系触媒の存在
下で、固定床形式の反応装置を用い、下記の反応条件下
で高圧水素化することを特徴とする不飽和アルコールの
製造方法。 反応温度:285〜320℃ 反応圧力:170〜250Kg/cm^2G H_2/原料比:1.2〜3.0Nm^3/l
[Claims] In producing a highly unsaturated alcohol by high-pressure hydrogenation of fish oil or its ester, the Zn/Cr atomic ratio is in the range of 1.75 to 3.20 and the temperature is in the range of 270 to 450°C. A method for producing an unsaturated alcohol, which comprises carrying out high-pressure hydrogenation under the following reaction conditions using a fixed-bed reactor in the presence of a zinc-chromium catalyst that has been subjected to a reduction treatment at a temperature of . Reaction temperature: 285-320℃ Reaction pressure: 170-250Kg/cm^2G H_2/raw material ratio: 1.2-3.0Nm^3/l
JP1002806A 1989-01-11 1989-01-11 Production of unsaturated alcohol Pending JPH02184645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002806A JPH02184645A (en) 1989-01-11 1989-01-11 Production of unsaturated alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002806A JPH02184645A (en) 1989-01-11 1989-01-11 Production of unsaturated alcohol

Publications (1)

Publication Number Publication Date
JPH02184645A true JPH02184645A (en) 1990-07-19

Family

ID=11539628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002806A Pending JPH02184645A (en) 1989-01-11 1989-01-11 Production of unsaturated alcohol

Country Status (1)

Country Link
JP (1) JPH02184645A (en)

Similar Documents

Publication Publication Date Title
US4338221A (en) Catalyst for the reduction of unsaturated organic acids
JPH0699337B2 (en) Alcohol production method
JP2990568B2 (en) Method for preparing copper-containing hydrogenation catalyst and method for producing alcohol
US5658843A (en) Method for preparing copper-containing hydrogenation reaction catalyst and method for producing alcohol
JPH02191232A (en) Olefin oligomer functional fluid using internal olefin
US2607805A (en) Hydrogenation of glycolic acid to ethylene glycol
US4161483A (en) Hydrogenation process
GB1580683A (en) Hydrogenation catalyst and process
JP2008013477A (en) High-purity and low-malodorous squalane and method for producing the same
JPH02184645A (en) Production of unsaturated alcohol
US8648005B2 (en) Method for preparing catalyst
US3123574A (en) Hydrogenation of cottonseed and soybean oils foe shortening stock
DE19506096A1 (en) Process for the preparation of succinic acid dialkyl esters
CN101370760A (en) Process for production of 1,6-hexanediol
JP3662063B2 (en) Method for producing alcohol
US20040236127A1 (en) Method for hardening unsaturated fatty substances
EP2324922B1 (en) Process for preparing catalyst
US2844633A (en) Process for preparation of
US2375495A (en) Catalytic hydrogenation processes
US5250713A (en) Process for producing desulfurized fats and oils or fatty acid esters and process for producing alcohols by using said desulfurized fats and oils or fatty acid esters
CA1181432A (en) Method for producing reaction products substantially free from nitrogen-containing compounds from carboxylic acid alkyl esters
US2121368A (en) Process of catalytically hydrogenating metal salts of high molecular nonaromatic carboxylic acids
JPH0331696B2 (en)
JPH0967282A (en) Production of alcohol
JPH0912491A (en) Production of alcohol