JPH02184569A - Production of silicon carbide molded product - Google Patents

Production of silicon carbide molded product

Info

Publication number
JPH02184569A
JPH02184569A JP1003846A JP384689A JPH02184569A JP H02184569 A JPH02184569 A JP H02184569A JP 1003846 A JP1003846 A JP 1003846A JP 384689 A JP384689 A JP 384689A JP H02184569 A JPH02184569 A JP H02184569A
Authority
JP
Japan
Prior art keywords
acid
oxygen
containing organic
molded product
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1003846A
Other languages
Japanese (ja)
Inventor
Akio Nakaishi
昭夫 中石
Keizo Shimada
島田 恵造
Toru Sawaki
透 佐脇
Setsu Watanabe
渡辺 節
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1003846A priority Critical patent/JPH02184569A/en
Publication of JPH02184569A publication Critical patent/JPH02184569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Silicon Polymers (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To contrive to improve the characteristics, such as physical properties and heat resistance, of a silicon carbide final molded product and largely shorten a crosslinking non-fusing process by allowing an oxygen-containing organic acid to absorb to or act on an organic silicon polymer molded product and subsequently sintering the product in an inert gas atmosphere. CONSTITUTION:An organic silicon polymer is formed into a shape such as fiber, tape, film or sheet. An oxygen-containing organic acid is allowed to adsorb to and/or act on the formed product in an amount of 0.01-300wt.% based on the weight of the formed product. The product is treated with a basic substance, if necessary, preliminarily calcined and subsequently sintered in an inert gas atmosphere to provide the objective product. The organic silicon polymer as a raw material is especially preferably a polycarbosilastyrene copolymer. The oxygen-containing organic acid includes methane sulfonic acid, trichloroacetic acid, formic acid and oxalic acid. The basic substance is most preferably ammonia.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機珪素ポリマーを原料として、良好な物性
、耐熱性を有するシリコンカーバイド系成形物(m維9
テープ、フィルム、シート、薄葉体等)を効率的に製造
する方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is a silicon carbide-based molded product (m-fiber 9) that uses an organosilicon polymer as a raw material and has good physical properties and heat resistance.
This invention relates to a method for efficiently manufacturing tapes, films, sheets, thin sheets, etc.).

[従来技術] 従来、米国特許筒4,324,901号記載の如きポリ
シラスチレンを中空成形物、フィルム、!維等に成形後
、紫外線、電子ビーム等の照射により架橋不敵化させた
後、焼成することによってシリコンカーバイド成形物を
製造することが知られている(特開昭58−21542
6号)、シかし、この方法は架橋不融化時の成形物(例
えば繊維)の収縮や融着が著しく工業的な実施に適さな
い。
[Prior Art] Conventionally, polysilastyrene as described in U.S. Pat. It is known to manufacture silicon carbide molded products by molding into fibers, etc., making them invulnerable by cross-linking by irradiating them with ultraviolet rays, electron beams, etc., and then firing them (Japanese Patent Laid-Open No. 58-21542).
No. 6) However, this method is not suitable for industrial implementation because of the shrinkage and fusion of the molded product (for example, fibers) during crosslinking and infusibility.

このため、本発明者らは、先に、ポリシラスチレンを熱
処理又は/及び紫外線照射処理することによりポリカル
ボシラスチレン共重合体に添加させた後、これを溶融法
又は乾式法により成形し、得られた成形物に空気中で熱
処理を施して不敵化させ、次いで不活性ガス中で焼成す
ることにより、従来公知の方法に比べて極めて効率的に
高品質のシリコンカーバイドの成形物を製造する方法(
米国特許筒4,743,411号参照)を開発した。し
かし、この方法によっても、架橋不融化段階でポリマー
中に取込まれる酸素量が多いため、最終的に得られるシ
リコンカーバイド成形物の物性が必ずしも充分ではなく
、またポリカルボシラスチレン共重合体成形物の不敵化
のための処理にかなりの時間を要すると言う問題が残さ
れている。
For this reason, the present inventors first added polysilastyrene to a polycarbosilastyrene copolymer by heat-treating and/or ultraviolet irradiation treatment, and then molding it by a melting method or a dry method, By heat-treating the obtained molded product in air to make it invulnerable, and then firing it in an inert gas, we can produce high-quality silicon carbide molded products much more efficiently than conventionally known methods. how to(
(See U.S. Pat. No. 4,743,411). However, even with this method, a large amount of oxygen is incorporated into the polymer during the crosslinking and infusibility stage, so the physical properties of the silicon carbide molded product ultimately obtained are not necessarily sufficient, and polycarbosilastyrene copolymer moldings There remains the problem that it takes a considerable amount of time to process things to make them invulnerable.

また、ポリカルボシランを前駆体ポリマーとしてシリコ
ンカーバイド成形物を製造する方法も知られているが(
特公昭57−53892号、 58−38534号。
There is also a known method for producing silicon carbide molded products using polycarbosilane as a precursor polymer (
Special Publication No. 57-53892, No. 58-38534.

60−28927号等)、前述の場合と同様に、架橋不
融化段階でポリマー中に取込まれる酸素量が多く、得ら
れるシリコンカーバイド成形物の物性は充分とは言えず
、かつ、不融化に要する時間も長いという問題がある。
No. 60-28927, etc.), as in the case described above, the amount of oxygen taken into the polymer during the crosslinking and infusibility stage is large, and the physical properties of the silicon carbide molded product obtained are not sufficient. There is a problem that it takes a long time.

さらに、ポリカルボチタノシロキサン等の他種金属元素
を少量含有するポリカルボシラン類を前駆体ポリマーと
してシリコンカーバイド系成形物を製造する方法も知ら
れているが(例えば特公昭60−1405号)、この方
法においても前述と同様な問題を有している。
Furthermore, a method of manufacturing silicon carbide molded products using polycarbosilanes containing a small amount of other metal elements such as polycarbotitanosiloxane as a precursor polymer is also known (for example, Japanese Patent Publication No. 1405/1983). However, this method also has the same problems as described above.

[発明の目的] 本発明の第一の目的は、有機珪素ポリマーからシリコン
カーバイド系成形物を製造する方法において、最終成形
物の強度、モジュラス等の物性及び耐熱性等の特性を改
善することにあり、第二の目的は、有機珪素ポリマー成
形物の架橋不敵化工程を大幅に短縮することによって生
産性の向上を図ることにある。
[Object of the Invention] The first object of the present invention is to improve the physical properties such as strength and modulus, and heat resistance of the final molded product in a method for producing silicon carbide molded products from organosilicon polymers. The second objective is to improve productivity by significantly shortening the crosslinking process for making organosilicon polymer molded articles invulnerable.

し発明の構成] 上述の如き本発明の目的は、有機珪素ポリマーを、繊維
、テープ、フィルム、シート、’l1葉体等に成形後、
該有機珪素ポリマー成形物に、含酸素有機酸を、該成形
物基準で0.01〜300(重量)%吸着及び/又は作
用させ、次いで塩基性物質を作用させ、必要により予備
焼成した後、不活性ガス雰囲気中で焼成を行って有機珪
素ポリマーをシリコンカーバイドに転換させることを特
徴とする本発明の方法によって達成される。
[Structure of the Invention] The object of the present invention as described above is to form an organosilicon polymer into a fiber, tape, film, sheet, 'l1 leaf, etc.
An oxygen-containing organic acid is adsorbed and/or acted on the organosilicon polymer molded article in an amount of 0.01 to 300% (by weight) based on the molded article, then a basic substance is applied thereto, and if necessary, after pre-calcination, This is achieved by the method of the invention, characterized in that the organosilicon polymer is converted into silicon carbide by calcination in an inert gas atmosphere.

以下、本発明方法の各構成要件を順次詳細に説明する。Each component of the method of the present invention will be explained in detail below.

本発明方法において、原料となる有機珪素ポリマーとし
ては、シリコンカーバイトの前駆体となる有機珪素ポリ
マーが用いられ、例えば、ポリシラスチレン類、ポリカ
ルボシラン類、ポリカルボシラスチレン共重合体等が使
用される。また、これらの2種の共分解重合物でもよい
、これらの中でもポリカルボシラスチレン共重合体が特
に好適である。
In the method of the present invention, the organosilicon polymer used as a raw material is an organosilicon polymer that is a precursor of silicon carbide, such as polysilastyrenes, polycarbosilanes, polycarbosilastyrene copolymers, etc. used. It may also be a co-decomposed polymer of these two types, and among these, polycarbosilastyrene copolymer is particularly preferred.

かかるポリマーの合成方法としては、ポリシラスチレン
類においては、例えばジクロロジメチルシランとジクロ
ロメチルフェニルシランとをトルエン、キシレンの如き
不活性溶媒中でナトリウム金属触媒を用い、その融点以
上で反応させる方法が採用できる。
As a method for synthesizing such polymers, for polysilastyrenes, for example, dichlorodimethylsilane and dichloromethylphenylsilane are reacted in an inert solvent such as toluene or xylene using a sodium metal catalyst at a temperature above their melting point. Can be adopted.

かかるポリシラスチレン類の組成は、次式、CHs  
   C@ Hう (上式中、RはCH,又はcs H5、nは10〜30
00の整数)で示される高分子化合物において、Xの値
が0.2〜0.9の範囲、好ましくは0.3〜0.7の
範囲のものが使用される。
The composition of such polysilastyrenes is represented by the following formula, CHs
C@H (in the above formula, R is CH, or cs H5, n is 10-30
In the polymer compound represented by (an integer of 00), those in which the value of X is in the range of 0.2 to 0.9, preferably in the range of 0.3 to 0.7 are used.

なお、上記ポリシラスチレン類と共に少量のポリシラン
類を併用してもよい。
In addition, a small amount of polysilanes may be used together with the above-mentioned polysilastyrenes.

かかるポリシラスチレンの製造方法は、例えば米国特許
第4,324,901号、特公昭82−96)2号等に
詳述されている。
Such a method for producing polysilastyrene is described in detail in, for example, US Pat. No. 4,324,901 and Japanese Patent Publication No. 82-96)2.

また、本発明方法で使用されるポリカルボシランは、例
えばポリジメチルシランの熱分解転移反応により合成す
ることができる。かかる方法の一例は西ドイツ特許公開
第2,236,078号、米国特許第4,052,43
0号、特公昭57−26527号等に記載されている。
Further, the polycarbosilane used in the method of the present invention can be synthesized, for example, by thermal decomposition transition reaction of polydimethylsilane. An example of such a method is West German Patent Publication No. 2,236,078, U.S. Pat. No. 4,052,43.
No. 0, Japanese Patent Publication No. 57-26527, etc.

一方、本発明方法で好ましく使用されるポリカルボシラ
スチレン共重合体は、本発明者らが先に提案した米国特
許第4,743,411号、特開昭62−275131
号等に記載した通り、特殊な有機珪素ポリマーであり、
該共電き体は、上記ポリシラスチレン類に熱処理を施す
か又は/及び紫外線照射処理を施すことにより、ポリカ
ルボシラスチレン共重合体に転換させることにより製造
される。
On the other hand, the polycarbosilastyrene copolymer preferably used in the method of the present invention is disclosed in U.S. Pat.
As described in the issue, it is a special organosilicon polymer,
The coelectric body is produced by converting the above-mentioned polysilastyrenes into a polycarbosilastyrene copolymer by subjecting them to a heat treatment and/or an ultraviolet irradiation treatment.

ポリシラスチレン類の熱処理は、300〜500℃の温
度範囲、好ましくは350〜450℃の温度範囲で行わ
れる。熱処理時間は5分〜10時間の範囲内で熱処理温
度に応じて適宜選択される。
The heat treatment of polysilastyrenes is carried out in a temperature range of 300 to 500°C, preferably in a temperature range of 350 to 450°C. The heat treatment time is appropriately selected within the range of 5 minutes to 10 hours depending on the heat treatment temperature.

即ち、熱処理の温度及び時間は、およそ500℃では3
〜10分、450℃では10〜100分程度で十分であ
る。
That is, the heat treatment temperature and time are approximately 3
~10 minutes; at 450°C, approximately 10 to 100 minutes is sufficient.

また、紫外線照射による処理においては、例えば出力5
〜500W/csnの紫外線ランプを用いて20〜20
0℃の温度で照射するのが好tしい。
In addition, in the treatment by ultraviolet irradiation, for example, the output 5
20-20 using ~500W/csn UV lamp
Preferably, the irradiation is carried out at a temperature of 0°C.

上記方法に従ってポリシラスチレン類を熱処理又は紫外
線照射処理すると、低沸物として一部ベンゼンが生成し
、同時にメチル基の転位によるカルボシラン(Si  
CH2)結合が生成されす ると共に、一部架橋化により高分子量化され、軟化点が
上昇し、成形温度も上昇する。
When polysilastyrenes are heat-treated or UV irradiated according to the above method, some benzene is produced as a low-boiling substance, and at the same time, carbosilane (Si) is produced by rearrangement of methyl groups.
As CH2) bonds are generated, the molecular weight is increased due to partial crosslinking, the softening point increases, and the molding temperature also increases.

本発明でいうポリカルボシラスチレン共重合体は、これ
らのカルボシラン結合、シラスチレン結合、一部架橋し
た結合を有するものからなる有機珪素ポリマーを総称す
るが、なかでも、分子量1000〜50000の範囲内
にありかつカルボシラン結合とシラスチレン結合との共
重合モル比が3ニア〜7:3のものが好ましい。
The polycarbosilastyrene copolymer referred to in the present invention is a general term for organosilicon polymers having carbosilane bonds, silastyrene bonds, and partially crosslinked bonds. It is preferable that the copolymerization molar ratio of carbosilane bonds and silastyrene bonds is 3 to 7:3.

これらの各種有機珪素ポリマーには、必要に応じ少量の
−Ti −0+、 −Zr−0−等の結合を含んでもよ
い、このような結合を導入させる方法としては、例えば
特公昭60−1405号に記載されるごとく、ポリカル
ボシランとポリチタノシロキサンとの混合物を、有機溶
媒中において不活性雰囲気下で加熱しポリカルボシラン
の珪素原子の少くとも1部をポリチタノシロキサンの珪
素原子及び/又はチタン原子の少くとも1部と酸素原子
を介して結合させることによって実施される。
These various organosilicon polymers may contain small amounts of bonds such as -Ti-0+, -Zr-0-, etc. as required. Methods for introducing such bonds include, for example, Japanese Patent Publication No. 1405/1983. As described in , a mixture of polycarbosilane and polytitanosiloxane is heated in an organic solvent under an inert atmosphere to convert at least a portion of the silicon atoms of the polycarbosilane and the silicon atoms of the polytitanosiloxane. /or by bonding at least a portion of titanium atoms via oxygen atoms.

本発明方法において、成形に供する有機珪素ポリマーに
は、必要に応じ、少量(例えば繊維の場合有機珪素ポリ
マーに対し20重量%以下)の有機潤滑剤、改質剤、架
橋剤、安定剤、その他の添加剤を含むことができる。
In the method of the present invention, the organosilicon polymer used for molding may contain a small amount (for example, 20% by weight or less of the organosilicon polymer in the case of fibers) of an organic lubricant, a modifier, a crosslinking agent, a stabilizer, etc. may contain additives.

有機潤滑剤は高級脂肪酸、高級脂肪酸エステル。Organic lubricants are higher fatty acids and higher fatty acid esters.

高級脂肪酸アミド、高級アルコール等が単独又は混合物
の状態で使用され、これらの化合物としては例えば下記
のような物質を挙げることができるが、これに限られる
ものではない、即ち、高級脂肪酸としてはカプリン酸、
ラウリン酸、パルミチン酸、マーガリン酸、ステアリン
酸、オレイン酸など:高級脂肪酸エステルとしてはカプ
リン酸エステル、ノニルアセテート、ラウリル酸エステ
ル。
Higher fatty acid amides, higher alcohols, etc. are used singly or in a mixture, and examples of these compounds include, but are not limited to, the following substances. Namely, as higher fatty acids, caprin, acid,
Lauric acid, palmitic acid, margaric acid, stearic acid, oleic acid, etc. Higher fatty acid esters include capric acid ester, nonyl acetate, lauric acid ester.

ステアリン酸エチル、ステアリン酸ブチル等の如き前記
高級脂肪酸のエステルなど;高級脂肪酸アミドとしては
オレイン酸アミド、リノール酸アミド、リノール酸アミ
ド、ステアリン酸アミドなど;高級アルコールとしては
カプリルアルコール、デシルアルコール、ラウリルアル
コール、オレイルアルコール、ステアリルアルコールな
どがあげられる。これらは、特にシート状成形物を製造
する場合に有用である。
Esters of the above-mentioned higher fatty acids such as ethyl stearate, butyl stearate, etc.; Higher fatty acid amides include oleic acid amide, linoleic acid amide, linoleic acid amide, stearic acid amide, etc.; higher alcohols include caprylic alcohol, decyl alcohol, and lauryl. Examples include alcohol, oleyl alcohol, and stearyl alcohol. These are particularly useful when manufacturing sheet-like molded products.

さらに、成形性を損わない範囲内で、少量のSi微粉末
、TiR粉末、sic微粉末、Tic微粉末等を添加す
ることもできる。
Furthermore, a small amount of Si fine powder, TiR powder, SIC fine powder, Tic fine powder, etc. may be added within a range that does not impair moldability.

上述の如き有機珪素ポリマーの繊維、テープ。Organosilicon polymer fibers and tapes as described above.

フィルム、シート、薄葉体等への成形方法は、溶融法、
乾式法(溶液法)のいずれでもよい、溶融法の場合は、
有機珪素ポリマーは冷却雰囲気中に吐出して冷却固化さ
せる方法が採用され、乾式法の場合は有機珪素ポリマー
を有機溶媒に溶解したドープをノズル、スリット等から
押出し、ドープ中の溶媒を蒸発除去して凝固させる方法
が採用される。工業的には溶融法が好ましく、かかる溶
融法については本発明者らの提案じた米国特許第4.7
43,411号に詳しく記載されている。
Molding methods for films, sheets, thin sheets, etc. include melting method,
Either dry method (solution method) may be used; in the case of melt method,
The organic silicon polymer is discharged into a cooled atmosphere and cooled to solidify. In the dry method, a dope in which the organic silicon polymer is dissolved in an organic solvent is extruded through a nozzle or slit, and the solvent in the dope is removed by evaporation. A method of coagulating is adopted. Industrially, a melting method is preferable, and this melting method is described in US Pat. No. 4.7 proposed by the present inventors.
It is described in detail in No. 43,411.

このようにして、例えば#l帷等の成形物とした後、該
成形物を不敵化し、焼成してシリコンカーバイド系成形
物に転換させる。従来技術では、空気中で加熱して熱酸
化により不融化を行っているが、成形物中に含まれる酸
素は得られた製品の物性及び耐熱特性に悪影響を及ぼす
、そしてこの酸素取り込みは、大部分が、空気もしくは
酸化性雰囲気中で実施される不融化によって生ずる。こ
のため、酸素の取り込みを極力抑えて不融化を実施する
ことにより、シリコンカーバイド成形物の物性、i1熱
性が向上するものと期待される。しかしながら、酸素の
作用なしに不融化を完結する方法は、放射線を使用する
特別の例(「高分子」37巻6月号466頁参照)を除
き、見い出されておらず、工業的に実施可能な方法で非
酸素不融化を行うことは、未だ知られていない。
In this way, after forming a molded product such as a #1 cloth, the molded product is rendered invulnerable and converted into a silicon carbide-based molded product by firing. In conventional technology, infusibility is achieved by thermal oxidation by heating in air, but the oxygen contained in the molded product has a negative effect on the physical properties and heat resistance properties of the obtained product, and this oxygen uptake has a large effect. The portion results from infusibility carried out in air or an oxidizing atmosphere. Therefore, it is expected that the physical properties and i1 thermal properties of the silicon carbide molded product will be improved by suppressing the uptake of oxygen as much as possible to make it infusible. However, no method has been found to complete infusibility without the action of oxygen, except for a special example of using radiation (see "Kobunshi" Vol. 37, June issue, p. 466), and it is industrially feasible. It is not yet known that non-oxygen infusibility can be achieved by such a method.

本発明者らは、このような要求に応えるべく、先に、ハ
ロゲンを使用する低酸素不融化法を提案した(特願昭6
3−39682号)、この方法によれば、従来の空気不
融化法に比べ、飛躍的に不融化時の酸素取り込み量を低
減できる。しかしながら、かかる低酸素不融化法におい
ても、ポリマ一種等により生じる耐炎化程度のバラツキ
を抑えるためには、若干の酸素の取り込みが必要であっ
た0本発明者らは、かかる状況にかんがみ、さらに低酸
素にて不融化を実施できる方法を見い出すべく、さらに
研究を重ねた結果、含酸素有m酸による処理と塩基性物
質による処理とを逐次的に行うことにより、実質上雰囲
気中に酸素を含まない状態で効率的に不融化を実現でき
ることを見い出し、本発明に到達した。
In order to meet these demands, the present inventors previously proposed a low-oxygen infusibility method using halogens (Japanese Patent Application No. 1983).
3-39682), according to this method, the amount of oxygen taken in during infusibility can be dramatically reduced compared to the conventional air infusibility method. However, even in such a low-oxygen infusibility method, it was necessary to incorporate a small amount of oxygen in order to suppress variations in the degree of flame resistance caused by the type of polymer, etc. In view of this situation, the present inventors further As a result of further research to find a method that can achieve infusibility in low oxygen conditions, we found that by sequentially performing treatment with an oxygen-containing m-acid and treatment with a basic substance, it was possible to substantially eliminate oxygen in the atmosphere. The present invention was achieved by discovering that infusibility can be efficiently achieved without the presence of silane.

本発明方法では、例えば有機珪素ポリマーからなるm維
等の成形物を、不活性雰囲気中で、メタンスルホン酸、
トリクロロ酢酸、ギ酸、シュウ酸あるいは無水酢酸等の
含酸素有機酸を吸着/作用せしめ、次いでアンモニア、
メチルアミン、エチレンジアミン、水酸化す1−リムウ
等の塩基性物質を非酸化性ガス中で作用せしめることに
より、実質的に酸素の不存在下で不融化を完結させるこ
とができる。このため、焼成して得られるシリコンカー
バイド系成形物の酸素含有量を低いレベルに抑えること
が可能となり、成形物の物性及び耐熱性等の緒特性が向
上する。
In the method of the present invention, a molded product such as m-fiber made of an organosilicon polymer is heated with methanesulfonic acid,
Oxygen-containing organic acids such as trichloroacetic acid, formic acid, oxalic acid or acetic anhydride are adsorbed/acted on, and then ammonia,
By reacting a basic substance such as methylamine, ethylenediamine, or 1-limu hydroxide in a non-oxidizing gas, infusibility can be completed in the substantial absence of oxygen. Therefore, it becomes possible to suppress the oxygen content of the silicon carbide molded product obtained by firing to a low level, and the properties such as physical properties and heat resistance of the molded product are improved.

本発明方法に使用される含酸素有機酸としては、例えば
トリクロロ酢vi1ジクロロ酢酸、モノクロロ酢酸等ハ
ロゲン置換された酢酸類、及びギ酸。
Examples of the oxygen-containing organic acids used in the method of the present invention include halogen-substituted acetic acids such as trichloroacetic acid vi1 dichloroacetic acid, monochloroacetic acid, and formic acid.

シュウ酸の如きカルボキシル基を有する化合物又は無水
酢酸等の該無水物、メタンスルホン酸、パラトルエンス
ルホン酸の如き硫酸基を有する化り物等が挙げられる。
Examples include compounds having a carboxyl group such as oxalic acid, such anhydrides such as acetic anhydride, and compounds having a sulfuric acid group such as methanesulfonic acid and para-toluenesulfonic acid.

吸着/作用させる含酸素有機酸の量は、成形物(例えば
紡糸直後の繊維)の重量を基準にして0.01〜3CO
(重fL)%の範囲内に選択されるが、特に0.1〜1
00〈重量)%が好ましい。
The amount of oxygen-containing organic acid to be adsorbed/acted is 0.01 to 3 CO based on the weight of the molded product (for example, fibers immediately after spinning).
(heavy fL)%, especially from 0.1 to 1
00% (by weight) is preferred.

吸着/作用の方法としては、上記酸の蒸気中に有機珪素
ポリマー成形物(例えば紡糸rfL後の繊維)を置く方
法、上記酸を溶解した溶液(例えば、水溶液等)中に有
機珪素ポリマー成形物を浸漬する方法、上記酸を含む処
理剤を有機珪素ポリマー成形物に塗布する方法等、任意
の手段を採用することができる。
Adsorption/action methods include a method of placing an organosilicon polymer molded article (for example, a fiber after spinning rfL) in the vapor of the above acid, and a method of placing an organosilicon polymer molded article in a solution (for example, an aqueous solution, etc.) in which the above acid is dissolved. Any method can be employed, such as a method of immersing the organic silicon polymer molded product, a method of applying a treatment agent containing the above acid to the organosilicon polymer molded product, and the like.

含酸素有機酸を吸着/作用させる雰囲気としては、不活
性ガス雰囲気、真空雰囲気が好ましい。
The atmosphere in which the oxygen-containing organic acid is adsorbed/acted on is preferably an inert gas atmosphere or a vacuum atmosphere.

このことは、かかる雰囲気では酸を吸着/作用させる時
に付随して生じる酸素の作用を減少せしめるためと理解
できる。
This can be understood to be because, in such an atmosphere, the action of oxygen accompanying the adsorption/action of acid is reduced.

このようにして含酸素有m酸を吸着/作用せしめた有機
珪素ポリマー成形物は、次いで非酸化性雰囲気中で、塩
基性物質を作用させる。
The organosilicon polymer molded article on which the oxygen-containing m-acid has been adsorbed and acted upon in this manner is then subjected to the action of a basic substance in a non-oxidizing atmosphere.

本発明に使用する塩基性物質としては、例えば、アンモ
ニア、水酸化ナトリウム9水酸化カリウム。
Examples of the basic substance used in the present invention include ammonia, sodium hydroxide, and potassium hexahydroxide.

メチルアミン、エチレンジアミン等があるが、就中アン
モニアが最も好ましい。
Examples include methylamine and ethylenediamine, among which ammonia is most preferred.

塩基性物質を作用させる雰囲気としては、非酸化性雰囲
気が好ましい、このような雰囲気は、使用する塩基性物
質がガス状で供給されるか、液状で供給されるかにより
実現方法が異なる。即ち、ガス状で供給される場合は、
該塩基性物質の気体のみ、もしくは、該塩基性物質の気
体と、窒素。
A non-oxidizing atmosphere is preferable as the atmosphere in which the basic substance is applied.The method for realizing such an atmosphere differs depending on whether the basic substance used is supplied in gaseous or liquid form. That is, when supplied in gaseous form,
Only the gas of the basic substance, or the gas of the basic substance and nitrogen.

水素、アルゴン、ヘリウム等の不活性ガスの混合気が使
用される。一方、液状で供給される場合は、通常該塩基
性物質の水溶液が使用されるが、かかる場合においては
、過剰の塩基性物質は水洗等で除去することが好ましく
、又、引続く乾燥工程も含めて、酸素の取込みを防ぐた
め、不活性ガス雰囲気下、もしくは低温下で操作するこ
とが好ましい。
A mixture of inert gases such as hydrogen, argon and helium is used. On the other hand, if the basic substance is supplied in liquid form, an aqueous solution of the basic substance is usually used, but in such a case, it is preferable to remove the excess basic substance by washing with water, etc. In order to prevent the incorporation of oxygen, it is preferable to operate under an inert gas atmosphere or at low temperatures.

塩基性物質を作用させる量は、前もって吸@/又は作用
させた上記有機酸の量により異なるが、該上記有a酸に
対し、充分過剰に作用させることが好ましい、一般に作
用した上記有機酸に対し等当量〜400当量の範囲が好
適に採用される。
The amount of the basic substance to be applied varies depending on the amount of the organic acid that has been adsorbed/acted on in advance, but it is preferable that the basic substance be applied in sufficient excess to the aerobic acid. A range of equivalents to 400 equivalents is preferably adopted.

本発明方法において、塩基性物質を作用させる温度には
、特に制限はない、すなわち、上記有機酸を吸着及び/
又は作用させた有機珪素ポリマーと塩基性物質の作用は
、極めて速やかに開始するからである。しかし、一般的
には操作性の観点より室温〜200℃まで実施される。
In the method of the present invention, there is no particular restriction on the temperature at which the basic substance is applied.
Alternatively, the action of the organic silicon polymer and the basic substance starts extremely quickly. However, from the viewpoint of operability, the temperature is generally from room temperature to 200°C.

このようにして含酸素有機酸、次いで塩基性物質を作用
させた有機珪素ポリマー成形物の融点は、元の(処理前
の)ポリマーに比べ著しく上昇し、該成形物は元のポリ
マーが、熱的に高次の重合・架橋を開始し、その融点が
速やかに上昇し始める温度、例えば350℃〜400℃
の温度に於ても、溶融しなくなる。すなわち、成形物の
形状を保持し、相互に融着することなく、無機質に転換
できる状態となり、不融化の目的は達せられる。又、本
発明者らの実験によれば、本発明に従って処理した有機
珪素ポリマーは、たとえ塩基性物質による処理が室温で
実施されても、トルエンのような元のポリマーに対する
良溶剤に対し、不溶化しており、本発明方法では、すで
に架橋結合が生成しているものと考えられる。
In this way, the melting point of the organosilicon polymer molded product treated with an oxygen-containing organic acid and then with a basic substance is significantly higher than that of the original (before treatment) polymer, and the molded product is Temperature at which high-order polymerization/crosslinking begins and the melting point begins to rise rapidly, e.g. 350°C to 400°C
It does not melt even at temperatures of That is, the shape of the molded product is maintained and the molded product is in a state where it can be converted into an inorganic substance without being fused to each other, thus achieving the purpose of infusibility. Additionally, according to experiments conducted by the present inventors, organosilicon polymers treated according to the present invention remain insolubilized in good solvents for the original polymer, such as toluene, even if the treatment with basic substances is carried out at room temperature. Therefore, it is considered that cross-linking has already been formed in the method of the present invention.

このような理由により、含酸素有機酸を吸着/作用せし
めた後、塩基性物質を作用せしめた有機珪素ポリマー成
形物は、従来必須であった酸素と熱による架橋不融化工
程を省略でき、そのままで高温焼成に供しシリコンカー
バイド系成形物にすることができる。
For these reasons, organosilicon polymer moldings that have been adsorbed/acted with oxygen-containing organic acids and then acted upon with basic substances can omit the cross-linking and infusibility process using oxygen and heat, which was previously essential, and can be used as is. By subjecting it to high-temperature firing, it can be made into silicon carbide-based molded products.

しかし、これを先ず、200〜800℃の不活性ガス(
窒素等)中で、1分〜3時間予備焼成(熱処理)した後
、800〜1400℃の不活性ガス(窒素。
However, this must first be carried out using an inert gas (
After preliminary firing (heat treatment) for 1 minute to 3 hours in an inert gas (nitrogen, etc.) at 800 to 1400°C.

アルゴン等)中で1分〜2時間焼成し、所望のシリコン
カーバイド系成形物(繊維等)にすることもできる。
It is also possible to make desired silicon carbide-based molded products (fibers, etc.) by baking in argon, etc.) for 1 minute to 2 hours.

〈発明の効果〉 かくして得られるシリコンカーバイド系成形物は、その
中に僅かの酸素しか含まないため、空気中での耐熱特性
及び機械物性が顕著に改善される。
<Effects of the Invention> Since the silicon carbide molded product thus obtained contains only a small amount of oxygen, its heat resistance properties and mechanical properties in air are significantly improved.

さらに、本発明の方法によれば、有機珪素ポリマーの成
形物を焼成に供するための不融化処理を簡略化でき、不
活性ガス中での予備焼成時間も短縮される。そして、得
られる成形物の強度、モジュラス等の物性が改善され、
しかも、同一ロット内での物性バラツキも減少する。
Further, according to the method of the present invention, the infusibility treatment for firing the organosilicon polymer molded article can be simplified, and the pre-baking time in an inert gas can also be shortened. Physical properties such as strength and modulus of the resulting molded product are improved,
Moreover, variations in physical properties within the same lot are also reduced.

また、先に提案したハロゲンを使する方法に比べても、
処理前の取扱い性、設備の腐蝕等の面で有利である。
Also, compared to the previously proposed method using halogen,
It is advantageous in terms of ease of handling before treatment, corrosion of equipment, etc.

従って、本発明の方法は、高品質のシリコンカーバイド
繊維、テープ、フィルム等を工業的に製造する方法とし
てきわめて有用である。
Therefore, the method of the present invention is extremely useful as a method for industrially producing high quality silicon carbide fibers, tapes, films, etc.

〈実施例〉 次に、本発明の実施例及び比較例を掲げさらに詳細に説
明するが、本発明はこれにより何ら限定されるものでは
ない。
<Examples> Next, Examples and Comparative Examples of the present invention will be described in more detail, but the present invention is not limited thereto.

実施例1 ジクロロジメチルシランとジクロロメチルフェニルシラ
ンの等モルを使い、トルエン溶媒中、ナトリウム分散触
媒を用いて110°Cで重合反応させて得られたポリシ
ラスチレン(軟化点86〜94℃)を400℃で30分
間不活性ガス(窒素)中で熱処理し、次いで5分間減圧
下で同温度で処理して、軟化点230〜240℃のポリ
カルボシラスチレン共重合体を得な、その平均分子量は
4600で、カルボシラン結合とシラスチレン結合との
割合は45155であった。
Example 1 Polysilastyrene (softening point 86-94°C) obtained by polymerizing equimolar amounts of dichlorodimethylsilane and dichloromethylphenylsilane at 110°C using a sodium dispersed catalyst in a toluene solvent was used. Heat-treated at 400°C for 30 minutes in an inert gas (nitrogen), and then treated at the same temperature under reduced pressure for 5 minutes to obtain a polycarbosilastyrene copolymer with a softening point of 230-240°C and an average molecular weight of was 4,600, and the ratio of carbosilane bonds to silastyrene bonds was 45,155.

この共重合体を280℃で600m/分にて溶融紡糸し
たポリカルボシラスチレン共重合体繊維を、該原糸重量
基準で10%のトリクロロ酢酸と共に耐圧容器に入れ、
0.2Torrまで真空に引き、これを高純度窒素でブ
レークする操作をくり返し、内部の酸素を完全に置換し
た後、窒素雰囲気とし、180℃で1時間トリクロロ酢
酸をポリカルボシラスチレン共重合体繊維に吸着/作用
せしめた。しかる後、該容器内を窒素で完全に置換した
後、アンモニアガスで置換し、180℃で1時間作用せ
しめた。しかる後、処理繊維をとり出し、10g/10
000de荷重下1200℃の窒素中で焼成し、シリコ
ンカーバイド系繊維に転換した。かくして得られたシリ
コンカーバイド繊維の糸径は5.2μmであり、強度は
330kg/−を示した。また該シリコンカーバイド繊
維を1200℃、1時間空気中にさらした後、強度保持
率を測定した結果、全く劣化を示さなかった。
A polycarbosilastyrene copolymer fiber obtained by melt-spinning this copolymer at 280° C. and 600 m/min is placed in a pressure container with 10% trichloroacetic acid based on the weight of the raw fiber,
After repeating the operation of drawing a vacuum to 0.2 Torr and breaking it with high-purity nitrogen to completely replace the internal oxygen, create a nitrogen atmosphere and apply trichloroacetic acid to polycarbosilastyrene copolymer fibers at 180°C for 1 hour. adsorbed/acted on. Thereafter, the inside of the container was completely purged with nitrogen, then replaced with ammonia gas, and allowed to react at 180° C. for 1 hour. After that, the treated fibers were taken out and 10g/10
The fibers were fired in nitrogen at 1200° C. under a load of 000 de, and converted into silicon carbide fibers. The silicon carbide fiber thus obtained had a thread diameter of 5.2 μm and a strength of 330 kg/−. Further, after exposing the silicon carbide fiber to air at 1200° C. for 1 hour, the strength retention rate was measured, and as a result, no deterioration was observed.

実施例2 実施例1に示しである合成法と同様の方法で合成したポ
リカルボシラスチレン共重合体を、280℃で600m
/分にて溶融紡糸し、得られたポリカルボシラスチレン
共重合体繊維を該原糸重量基準で20%の@酸と共に耐
圧容器に入れ、0.2Torrまで真空に引き、これを
高純度窒素でブレークする操作をくり返し、内部の酸素
を完全に置換した後、窒素雰囲気とし、180℃で1時
間@酸をポリカルボシラスチレン共重合体繊維に吸着/
作用せしめた。しかる後、該容器内を窒素で完全に、置
換した後アンモニアガスで置換しそのまま室温で1時間
作用せしめた。しかる後、処理繊維をとり出しtoo 
g /1oooode荷重下12GO℃の窒素中で焼成
しシリコンカーバイド繊維に転換せしめた。かくして得
られシリコンカーバイド繊維の糸径は5.2μmであり
強度は320kg/−を示した。また該シリコンカーバ
イド繊維を1200℃、1時間空気中にさらした後、強
度保持率を測定した結果、繊維は全く劣化を示さなかっ
た。
Example 2 A polycarbosilastyrene copolymer synthesized by a method similar to that shown in Example 1 was heated at 280°C for 600 m
The obtained polycarbosilastyrene copolymer fiber was melt-spun at a speed of 100% per minute, and the resulting polycarbosilastyrene copolymer fiber was placed in a pressure vessel with 20% @acid based on the weight of the raw yarn, evacuated to 0.2 Torr, and then heated with high-purity nitrogen. After repeating the breaking operation to completely replace the internal oxygen, a nitrogen atmosphere was created and the acid was adsorbed onto the polycarbosilastyrene copolymer fibers at 180°C for 1 hour.
It worked. Thereafter, the inside of the container was completely replaced with nitrogen, and then replaced with ammonia gas, and left to react at room temperature for 1 hour. After that, take out the treated fibers and
The fibers were fired in nitrogen at 12 GO C under a load of g/1ooooode to convert them into silicon carbide fibers. The silicon carbide fiber thus obtained had a thread diameter of 5.2 μm and a strength of 320 kg/-. Furthermore, after exposing the silicon carbide fibers to air at 1200° C. for 1 hour, the strength retention rate was measured, and as a result, the fibers showed no deterioration at all.

実施例3 実施例1に示しである合成法と同様の方法で合成したポ
リカルボシラスチレン共重合体を、280℃で600m
/分にて溶融紡糸し、得られたポリカルボシラスチレン
共重合体繊維を該原糸重量基準で10%のシュウ酸と共
に耐圧容器に入れ、0゜2TOrrまで真空に引き、こ
れを高純度窒素でブレークする操作をくり返し、内部の
酸素を完全に置換した後窒素雰囲気とし、180℃で1
時間シュウ酸をポリカルボシラスチレン共重合体繊維に
吸着/作用せしめた。しかる後、該容器内を窒素で完全
に置換した後アンモニアガスで置換しそのまま室温で1
時間作用せしめた。しかる後、処理繊維をとり出し10
0 t / 10000de荷重下、1200℃の窒素
中で焼成しシリコンカーバイド繊維に転換せしめた。か
くして得られシリコンカーバイド繊維の強度は336)
qr/−を示した。また該シリコンカーバイド繊維を1
200℃、1時間空気中にさらした後、強度保持率を測
定した結果、該繊維は全く劣化を示さなかった。
Example 3 A polycarbosilastyrene copolymer synthesized by a method similar to that shown in Example 1 was heated at 280°C for 600 m
The resulting polycarbosilastyrene copolymer fibers were placed in a pressure vessel together with 10% oxalic acid based on the weight of the raw fibers, evacuated to 0°2 TOrr, and then heated with high-purity nitrogen. Repeat the breaking operation to completely replace the oxygen inside, create a nitrogen atmosphere, and heat at 180℃ for 1 hour.
Oxalic acid was allowed to adsorb/act on polycarbosilastyrene copolymer fibers for a period of time. After that, the inside of the container was completely replaced with nitrogen, then replaced with ammonia gas, and left at room temperature for 1 hour.
I let time work. After that, take out the treated fiber 10
It was fired in nitrogen at 1200° C. under a load of 0 t/10000 de to convert it into silicon carbide fiber. The strength of the silicon carbide fiber thus obtained is 336)
It showed qr/-. In addition, the silicon carbide fiber is
After being exposed to air at 200° C. for 1 hour, strength retention was measured and the fibers showed no deterioration at all.

実施例4 ジクロロジメチルシランを、キシレン溶媒中ナトリウム
分散触媒を用いて110〜120℃で重合反応を行ない
白色粉末状のポリシランを得な、この原料を加圧下で撹
拌下にて、430℃で24時間加熱処理し、次いで減圧
下にて300℃で処理して低沸点物を除去してポリカル
ボシランを得た。この原料ポリマーを一度トルエン溶媒
に溶解させた後、r過によってトルエン不溶分を除去し
、さらに濾液からトルエンを減圧下で除いて異物を含ま
ないポリマーを得た。この精製ポリマーを280℃で3
00m/分にて溶融紡糸してポリカルボシラン繊維とし
た。この繊維を該原糸基準で30%のメタンスルホン酸
と共に耐圧容器に入れ、0.2Torrまで真空に引き
、これを高純度窒素でブレークする操作をくり返し、内
部の酸素を完全に置換した後窒素雰囲気とし、180℃
で1時間メタンスルホン酸をポリカルボシラスチレン共
重合体繊維に吸着/作用せしめた。しかる後、該容器内
を窒素で完全に置換した後、アンモニアガスで置換し、
そのまま、室温1時間作用せしめた。
Example 4 Dichlorodimethylsilane was polymerized at 110 to 120°C using a sodium dispersed catalyst in a xylene solvent to obtain a white powdery polysilane. The mixture was heat-treated for a period of time, and then treated at 300° C. under reduced pressure to remove low-boiling substances to obtain polycarbosilane. After this raw material polymer was once dissolved in a toluene solvent, toluene-insoluble matter was removed by r-filtration, and toluene was further removed from the filtrate under reduced pressure to obtain a polymer free of foreign matter. This purified polymer was heated at 280℃ for 3
The fibers were melt-spun at 00 m/min to obtain polycarbosilane fibers. This fiber was placed in a pressure container with 30% methanesulfonic acid based on the original fiber, and the vacuum was drawn to 0.2 Torr.The operation of breaking the fiber with high-purity nitrogen was repeated, and after completely replacing the oxygen inside, nitrogen Atmosphere: 180℃
Methanesulfonic acid was allowed to adsorb/act on the polycarbosilastyrene copolymer fibers for 1 hour. After that, the inside of the container is completely replaced with nitrogen, and then replaced with ammonia gas,
The mixture was allowed to act as it was at room temperature for 1 hour.

引続き、該容器内を窒素で置換し不活性雰囲気とした後
、室温より350℃まで昇温し、そのまま該温度で2時
間保ち予備焼成をおこなった。しかる後、処理繊維をと
り出し100 t / 10000de荷重下、窒素中
1200℃で焼成しシリコンカーバイド系繊維に転換せ
しめた。かくして得られたシリコンカーバイト系繊維の
糸径は7.0μmであり強度は310kg/−を示した
。また該シリコンカーバイト系繊維を1200℃、1時
間空気中にさらした後、強度を測定したところ、全く劣
化を示さなかった。
Subsequently, the inside of the container was replaced with nitrogen to create an inert atmosphere, and then the temperature was raised from room temperature to 350° C. and kept at that temperature for 2 hours to perform preliminary firing. Thereafter, the treated fibers were taken out and fired at 1200° C. in nitrogen under a load of 100 t/10000 de to convert them into silicon carbide fibers. The silicon carbide fiber thus obtained had a thread diameter of 7.0 μm and a strength of 310 kg/−. Moreover, when the strength of the silicon carbide fiber was measured after being exposed to air at 1200° C. for 1 hour, no deterioration was observed.

比較例1 実施例1に示した合成法と同様の方法で合成したポリカ
ルボシラスチレン共重合体を280℃で600m/分に
て溶融紡糸しポリカルボシラスチレン共重合体繊維を得
た。該繊維を空気中で120℃、3時間加熱処理した後
、引続き空気中で180℃にて3時間加熱処理した。し
かる後、該繊維を100g / 1”0O00de荷重
下、350℃にて2時間、窒素気流を通じた容器内で予
備焼成をおこなった。しかる後、処理繊維を1oo g
/10000de R重下、窒素中1200℃で焼成し
シリコンカーバイド繊維に転換した。かくして得られシ
リコンカーバイド繊維の糸径は8.8μmであり、強度
は200kg/−を示した。また該シリコンカーバイド
繊維を1200℃、1時間空気中にさらした後、強度を
測定したところ、強度保持率は40%であった。
Comparative Example 1 A polycarbosilastyrene copolymer synthesized by the same method as that shown in Example 1 was melt-spun at 280° C. and 600 m/min to obtain a polycarbosilastyrene copolymer fiber. The fibers were heat-treated in air at 120°C for 3 hours, and then subsequently heat-treated in air at 180°C for 3 hours. Thereafter, the fibers were pre-calcined under a load of 100g/1"0O00de at 350°C for 2 hours in a container with a nitrogen stream passed through them. Thereafter, the treated fibers were subjected to 100 g
The fibers were fired at 1200° C. in nitrogen under a pressure of 10,000 de R and converted into silicon carbide fibers. The silicon carbide fiber thus obtained had a thread diameter of 8.8 μm and a strength of 200 kg/−. Further, when the strength of the silicon carbide fiber was measured after being exposed to air at 1200° C. for 1 hour, the strength retention rate was 40%.

Claims (7)

【特許請求の範囲】[Claims] (1)有機珪素ポリマーを、繊維,テープ,フィルム,
シート,薄葉体等の形状に成形後、該有機珪素ポリマー
成形物に、該成形物の重量当り0.01〜300(重量
)%の含酸素有機酸を吸着及び/又は作用させ、次いで
塩基性物質を作用させ、必要により予備焼成した後、不
活性ガス雰囲気中で焼成を行うことを特徴とするシリコ
ンカーバイド系成形物の製造法。
(1) Organosilicon polymer can be used as fiber, tape, film, etc.
After molding into a sheet, thin film, etc., the organosilicon polymer molded product is adsorbed and/or acted upon with an oxygen-containing organic acid in an amount of 0.01 to 300% (by weight) based on the weight of the molded product, and then a basic 1. A method for producing a silicon carbide molded article, which comprises applying a substance, pre-calcining if necessary, and then firing in an inert gas atmosphere.
(2)有機珪素ポリマーがポリシラスチレン類を熱処理
又は/及び紫外線照射処理して形成したポリカルボシラ
スチレン共重合体である請求項(1)に記載の製造法。
(2) The production method according to claim (1), wherein the organosilicon polymer is a polycarbosilastyrene copolymer formed by heat treating and/or ultraviolet irradiation treatment of polysilastyrenes.
(3)含酸素有機酸が、メタンスルホン酸,トリクロロ
酢酸,ギ酸,シュウ酸,無水酢酸からなる群から選ばれ
た少くとも1種である請求項(1)又は(2)に記載の
製造法。
(3) The production method according to claim (1) or (2), wherein the oxygen-containing organic acid is at least one selected from the group consisting of methanesulfonic acid, trichloroacetic acid, formic acid, oxalic acid, and acetic anhydride. .
(4)含酸素有機酸を不活性雰囲気中で有機珪素ポリマ
ー成形物に吸着及び/又は作用させる請求項(1)〜(
3)のいずれかに記載の製造法。
(4) Claims (1) to (4) wherein the oxygen-containing organic acid is adsorbed and/or acted on the organosilicon polymer molded article in an inert atmosphere.
The manufacturing method according to any one of 3).
(5)塩基性物質が、アンモニアである請求項(1)〜
(4)のいずれかに記載の製造法。
(5) Claims (1) to 1, wherein the basic substance is ammonia.
The manufacturing method according to any one of (4).
(6)含酸素有機酸を吸着/又は作用せしめた有機珪素
ポリマー成形物に、塩基性物質を非酸化雰囲気中で作用
させる請求項(1)〜(5)のいずれかに記載の製造法
(6) The production method according to any one of claims (1) to (5), wherein the organosilicon polymer molded article adsorbed/or acted upon with an oxygen-containing organic acid is acted upon with a basic substance in a non-oxidizing atmosphere.
(7)有機珪素ポリマー成形物に含酸素有機酸を吸着及
び/又は作用させ、次いで塩基性物質を作用させた後、
不活性ガス中で200〜800℃の温度にて予備焼成し
、続いて不活性ガス中で800〜1400℃の温度にて
焼成する請求項(1)〜(6)のいずれかに記載の製造
法。
(7) After adsorbing and/or acting on the organosilicon polymer molded article with an oxygen-containing organic acid, and then allowing a basic substance to act on it,
The production according to any one of claims (1) to (6), wherein pre-calcination is performed in an inert gas at a temperature of 200 to 800°C, followed by firing in an inert gas at a temperature of 800 to 1400°C. Law.
JP1003846A 1989-01-12 1989-01-12 Production of silicon carbide molded product Pending JPH02184569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1003846A JPH02184569A (en) 1989-01-12 1989-01-12 Production of silicon carbide molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1003846A JPH02184569A (en) 1989-01-12 1989-01-12 Production of silicon carbide molded product

Publications (1)

Publication Number Publication Date
JPH02184569A true JPH02184569A (en) 1990-07-19

Family

ID=11568550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1003846A Pending JPH02184569A (en) 1989-01-12 1989-01-12 Production of silicon carbide molded product

Country Status (1)

Country Link
JP (1) JPH02184569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539460A (en) * 1991-08-07 1993-02-19 T S B:Kk Method for forming inorganic coating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539460A (en) * 1991-08-07 1993-02-19 T S B:Kk Method for forming inorganic coating film

Similar Documents

Publication Publication Date Title
US4904424A (en) Ceramic alloys from colloidal metal alloy suspensions
GB2319021A (en) Preparation of substantially polycrystalline silicon carbide fibres
US5171722A (en) SiC fibers having low oxygen content and methods of preparation
US5283044A (en) Super heat-resistant silicon carbide fibers from poly-carbosilane
US5242870A (en) SIC fibers having low oxygen content and methods of preparation
JPH02184569A (en) Production of silicon carbide molded product
JP2870659B2 (en) Manufacturing method of carbon molded product
JP2963021B2 (en) Method for producing silicon carbide fiber
JPH02188465A (en) Production of silicon carbide-based formed product
US4897229A (en) Process for producing a shaped silicon carbide-based ceramic article
US5091271A (en) Shaped silion carbide-eased ceramic article
US5049529A (en) Conversion of polycarbosilanes into silicon carbonitride ceramics
JPH013073A (en) Manufacturing method for silicon carbide molded products
JPH02243567A (en) Production of silicon carbide-based compact
JPH075370B2 (en) Silicon carbide molding manufacturing method
JP2904501B2 (en) Method for producing high-quality silicon-based ceramic fiber by irradiation
JPH01156510A (en) Production of silicon carbide fiber
JP2523147B2 (en) Method for producing inorganic fiber
JPS62256710A (en) Production of silicon carbide fiber and film
JPH0226868A (en) Procuction of silicon carbide molded material
US5064915A (en) Production of infusible polycarbosilanes convertible into silicon carbide ceramics
JP2514253B2 (en) Silicon carbide type molded product and its manufacturing method
Toreki et al. Polymer-Derived Silicon Carbide Fibers with Improved Thermomechanical Stability
JPH0384034A (en) Cross-linking of polysilaxane using wet channel for obtaining especially ceramic fiber
CA2030117A1 (en) Preparation of substantially polycrystalline silicon carbide fibers from methylpolysilanes