JPH02184563A - Ceramics for living body and production thereof - Google Patents

Ceramics for living body and production thereof

Info

Publication number
JPH02184563A
JPH02184563A JP1003207A JP320789A JPH02184563A JP H02184563 A JPH02184563 A JP H02184563A JP 1003207 A JP1003207 A JP 1003207A JP 320789 A JP320789 A JP 320789A JP H02184563 A JPH02184563 A JP H02184563A
Authority
JP
Japan
Prior art keywords
hap
alumina
approximately
sol
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1003207A
Other languages
Japanese (ja)
Inventor
Ryuichi Ozaki
隆一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1003207A priority Critical patent/JPH02184563A/en
Publication of JPH02184563A publication Critical patent/JPH02184563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To contrive to provide a living body ceramics having improved mechanical strength and living body affinity by comprising a central portion consisting mainly of thick alumina and a surface portion consisting mainly of porous hydroxyapatite(HAP) in a state having continuously changed (alumina/HAP) ratios and porosities. CONSTITUTION:An alumina sol obtained by mixing aluminum isopropoxide with isopropanol is mixed with 0.05-0.2mum particle diameter HAP so as to give a composition having an alumina/HAP mol ratio of approximately 7/3 after gelled, and further mixed with a foaming agent such as N,N'-dinitroso pentamethylene tetramine in an amount of approximately 0.1wt.%. The mixture is subjected to a centrifugal separation process to give a constant concentration distribution wherein the concentrations of the HAP and foaming agent in the sol are inclined, followed by subjecting the centrifuged product to a heating, pH-adjusting or any other process to produce a wet gel. The wet gel is dried, heated to approximately 300 deg.C at a temperature-raising rate at approximately 20 deg.C/hr under vacuum, held in the states for approximately 8hr, subjected to a foaming treatment, to a water-desorbing and adsorbing treatment and subsequently to a sintering treatment of approximately 1200 deg.C for about 24hr to provide a ceramic for living bodies.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、医療分野で使用される生体セラミックス及び
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to bioceramics used in the medical field and a method for producing the same.

[従来の技術] 骨に欠損が生じたときには、患者自身の自家骨かヒトか
らの同種骨が移植される。もしも補うべき欠損部が大き
くて、自家骨だけでは不足す・るとか、適当な同種骨が
入手できない場合、人工骨が使われる。
[Prior Art] When a bone defect occurs, the patient's own autologous bone or human allogeneic bone is transplanted. If the defect to be replaced is large and autologous bone alone is insufficient, or if suitable allogeneic bone is not available, artificial bone is used.

この人工骨の素材は、はとんどがセラミックスである。The material of this artificial bone is mostly ceramics.

そして、その開発の初期には、生体に対して安全ではあ
るが、天然骨とは融合しない生体不活性材料が研究され
てきた。特にアルミナは、その優れた機械的強度により
、現在でも広く使用されている。
In the early stages of development, bioinert materials were studied that were safe for living organisms but did not fuse with natural bone. In particular, alumina is still widely used due to its excellent mechanical strength.

しかし、最近では、生体安全性をもつと同時に天然骨と
結合するような生体活性型の人工骨が開発されてきた。
However, recently, bioactive artificial bones that are biosafe and bond with natural bone have been developed.

代表的な生体ガラスとしては、Si O2−Ca O−
N a 20− P 205祭主体ガラスが挙げられる
が、機械的強度が低く、それだけでは実用化にならない
。このため、現在では機械的強度が高い、S i O2
−Ca O−M g O−P 20う系生体ガラスの研
究が進められている。
A typical biological glass is SiO2-CaO-
Na 20-P 205 glass is an example, but it has low mechanical strength and cannot be put to practical use by itself. For this reason, S i O2, which has high mechanical strength, is currently used.
-Ca O-M g O-P 20 Research on carious bioglass is progressing.

生体ガラスは通常、高温溶融法で作成される。Biological glasses are typically made using high temperature melting methods.

原料として、粉体状の酸化物、炭酸塩、水酸化物などを
調合し、これをルツボに入れて溶融炉中で1400(”
C)程度に加熱する。溶融後、この溶融液体を成形型に
流し込み、冷却し作成する。しかし、このガラス状態の
ままでは、人骨に比べて機械的強度が低いため、実用上
問題がある。
Powdered oxides, carbonates, hydroxides, etc. are mixed as raw materials, placed in a crucible, and melted in a melting furnace for 1400
C). After melting, the molten liquid is poured into a mold and cooled to create it. However, if it remains in this glass state, it has a lower mechanical strength than human bone, which poses a practical problem.

また、生体親和性及び機械的強度を向上させるため、こ
の作成したガラスを粉砕後、成形し結晶化濃度付近で焼
結して結晶性生体ガラスを得る試みが進められている。
In addition, in order to improve biocompatibility and mechanical strength, attempts are being made to obtain crystalline biological glass by crushing the produced glass, shaping it, and sintering it at around the crystallization concentration.

このとき、ガラス中にアパタイトやウオラストナイトの
結晶が析出し、これが生体親和性や機械的強度を向上さ
せている。
At this time, apatite and wollastonite crystals are precipitated in the glass, which improves biocompatibility and mechanical strength.

[発明が解決しようとする課題] 一般に、生体ガラスを実際に骨組織に使用する場合、皮
質骨の3倍近い機械的強度が必要とされる。皮質骨の曲
げ強度は約170 (MN/m2)であり、生体ガラス
に必要とされる曲げ強度は約500(MN/m2)  
になり、これは現在の生体ガラスの3倍以上の値である
。また、生体親和性を上げるためには、多孔質体にして
新生骨を気孔内に生成させる方法がある。しかし多孔質
体にすると機械的強度はさらに低下するため、実際上使
用できないという問題点を有している。
[Problems to be Solved by the Invention] Generally, when biological glass is actually used for bone tissue, mechanical strength nearly three times that of cortical bone is required. The bending strength of cortical bone is approximately 170 (MN/m2), and the bending strength required for biological glass is approximately 500 (MN/m2).
This is more than three times the value of current biological glass. In addition, in order to increase biocompatibility, there is a method of forming a porous body and generating new bone within the pores. However, if it is made into a porous material, the mechanical strength is further reduced, so it has the problem that it cannot be used in practice.

本発明はこのような問題点を解決するものであり、その
目的とするところは、機械的強度と生体親和性に優れた
多孔質の生体セラミックス及びその製造方法を提供する
ことにある。
The present invention is intended to solve these problems, and its purpose is to provide porous bioceramics with excellent mechanical strength and biocompatibility, and a method for producing the same.

[課題を解決するための手段] 本発明の生体セラミックスは、中心部はアルミナを主体
とする組成からなり、表面部はHAPを主体とする組成
からなり、且つこのアルミナとHAPの比率及び気孔率
が連続的に変化することを特徴とする。
[Means for Solving the Problems] The bioceramic of the present invention has a composition mainly composed of alumina in the center and a composition mainly composed of HAP in the surface part, and the ratio of alumina and HAP and the porosity are It is characterized by the fact that it changes continuously.

また本発明の製造方法によれば、アルミナのゾル中にR
AP及び発泡剤の微粉末を添加・混合した後、遠心分離
法によりゾル中のHAP及び発泡剤濃度を傾斜化させ、
一定の濃度分布を持った段階でゲル化、焼結することを
特徴とする。
Further, according to the production method of the present invention, R is added to the alumina sol.
After adding and mixing fine powders of AP and blowing agent, the concentration of HAP and blowing agent in the sol is graded by centrifugation.
It is characterized by gelation and sintering at a stage with a certain concentration distribution.

[作用] 本発明の生体セラミックスは、中心部が機械的強度の優
れた緻密なアルミナを主成分とし、生体組織と接触する
表面部は、生体親和性の高いHAPの多孔質体を主成分
とするため、機械的強度と生体親和性の2つの特性を有
することができる。
[Function] The bioceramic of the present invention has a central part mainly composed of dense alumina with excellent mechanical strength, and a surface part that comes into contact with living tissues mainly contains a porous material of HAP, which has high biocompatibility. Therefore, it can have two properties: mechanical strength and biocompatibility.

さらに、アルミナとRAPの2成分が連続的に変化する
ため、界面が存在せず、界面上で生じる応力破壊などの
特性の低下がない。
Furthermore, since the two components of alumina and RAP change continuously, there is no interface and there is no deterioration in properties such as stress fracture occurring on the interface.

また、本発明の製造方法によれば、アルミナのゾル中に
HAP粉末を添加、遠心分離法でこの粉末の濃度を傾斜
化させ、ゲル化、焼結することにより、この2成分及び
気孔率をセラミックス中で連続的に変化させることがで
きる。
Furthermore, according to the production method of the present invention, HAP powder is added to the alumina sol, the concentration of this powder is graded by centrifugation, and the two components and the porosity are reduced by gelling and sintering. It can be changed continuously in ceramics.

[実施例] アルミニウムイソプロポキシドとイソプロパツールの混
合液を酸性下で加水分解し、ゾルを作成する。このゾル
に0.05〜0.2(μm)の粒子径のHAP微粉末を
添加し、さらに発泡剤とじてN、N’−ジニトロソペン
タメチレンテトラミンを0.1(重量%)添加・分散さ
せ、所定の容器に入れる。この時のHAPの添加量は、
ゲル化後の組成がモル比で、アルミナ/HAP=7/3
となるように調整した。その後、この容器を一定の回転
速度で回転させ、HAP及び発泡剤の微粉末が一定の濃
度分布を示した段階で、加熱・pH調整等の手段により
ゲル化を行わせる。次に、このウェットゲルを容器から
取りだし、2週間乾燥させた後、真空中、20(”C/
時間)の昇温速度で300(”C)に加熱、同濃度で8
時間保持し発泡処理及び脱吸着水処理を行った後、30
(’C/時間の昇温速度で600(”C)に加熱、同濃
度で6時間保持、さらに30(℃/時間)の昇温速度で
1200(’C)に加熱し、同濃度で24時間保持し焼
結を行う。
[Example] A mixed solution of aluminum isopropoxide and isopropanol is hydrolyzed under acidic conditions to create a sol. To this sol, HAP fine powder with a particle size of 0.05 to 0.2 (μm) is added, and 0.1 (wt%) of N,N'-dinitrosopentamethylenetetramine is added and dispersed as a blowing agent. and place it in the designated container. The amount of HAP added at this time is
The composition after gelation is a molar ratio of alumina/HAP=7/3
It was adjusted so that Thereafter, this container is rotated at a constant rotational speed, and when the fine powder of HAP and blowing agent shows a constant concentration distribution, gelation is performed by means such as heating and pH adjustment. Next, this wet gel was taken out from the container, dried for two weeks, and then dried at 20 ("C/
Heated to 300 ("C) at a temperature increase rate of 8 hours), and at the same concentration
After holding for a time and performing foaming treatment and desorption water treatment, 30
(Heat to 600 ('C) at a heating rate of 'C/hour, hold at the same concentration for 6 hours, further heat to 1200 ('C) at a heating rate of 30 (℃/hour), and hold at the same concentration for 24 hours. Hold for a while and perform sintering.

得られた焼結体の形状は、φ10Xt30(im)とφ
40Xt8(mm)の2種類からなる。前者について、
その曲げ強度と人骨との結合強さを測定し、その結果を
第1表に示す。表中の従来例1から従来例4は、各々、
アルミナ、HAP、5iO2−Ca O−N a 20
− P 205祭主体ガラス、Si02− Ca O−
M g O−P 205系結晶化生体カラスについて測
定した値である。なお、人骨との結合強さは、8週間経
過後の値である。
The shape of the obtained sintered body is φ10Xt30 (im) and φ
There are two types: 40Xt8 (mm). Regarding the former,
The bending strength and bond strength with human bone were measured, and the results are shown in Table 1. Conventional examples 1 to 4 in the table are each
Alumina, HAP, 5iO2-Ca O-N a 20
- P 205 festival main glass, Si02- Ca O-
This is a value measured for M g O-P 205 series crystallized living crow. Note that the bonding strength with human bone is the value after 8 weeks.

第1表 第1表より、本発明の生体セラミックスは、アルミナ並
の機械的強度と結晶化生体ガラスの生体親和性を兼ね備
えており、生体中での長期の使用に耐えることが可能と
考えられる。
Table 1 From Table 1, the bioceramic of the present invention has both the mechanical strength of alumina and the biocompatibility of crystallized bioglass, and is considered to be capable of withstanding long-term use in living organisms. .

残りの試料について、中心部から外周部に向けて8等分
し、各々の試料の組成分析と気孔率の測定を行い、その
結果を第1図に示す。
The remaining sample was divided into eight equal parts from the center to the outer periphery, and the composition and porosity of each sample were analyzed and the results are shown in FIG.

中心付近ではほぼアルミナの組成からなっているが、外
周部になるにつれてHAPの組成が連続的に増えてくる
The composition near the center is mostly alumina, but the HAP composition increases continuously toward the outer periphery.

通常、このように複数の組成からなるセラミックスを同
時に焼結する場合、収縮率や熱W張係数などの違いによ
り、接合面に大きな応力が加わり破損することが多い。
Normally, when ceramics having a plurality of compositions are sintered at the same time, large stress is often applied to the bonded surfaces, resulting in damage due to differences in shrinkage rates, thermal W tensile coefficients, etc.

しかし、本発明ではゾル−ゲル法を用いるため、ゾルの
段階で組成の傾斜化を容易に行うことが可能になる。こ
のため、焼結体中でアルミナとHAPの組成分布を連続
的に変化させることにより、いわゆる接合面を無くし応
力を緩和することができるため、2種類のセラミクスの
特性を併せ持った生体セラミックスの製造が可能になっ
た。
However, since the present invention uses a sol-gel method, it becomes possible to easily gradient the composition at the sol stage. Therefore, by continuously changing the composition distribution of alumina and HAP in the sintered body, it is possible to eliminate so-called bonding surfaces and relieve stress, thereby producing bioceramics that have the characteristics of two types of ceramics. is now possible.

また、中心部はアルミナを主成分とする緻密な構造から
なっており、表面部は気孔率の高い多孔性のHAPから
なっているため1、通常の多孔質セラミックスに比べて
極めて高い機械的強度を有することができ、且つ生体親
和性も良好である。
In addition, the center part has a dense structure mainly composed of alumina, and the surface part is made of porous HAP with high porosity.1, it has extremely high mechanical strength compared to ordinary porous ceramics. and has good biocompatibility.

製造方法にゾル−ゲル法を使用しており、HAPの添加
量、粉末の粒度分布そして遠心分離時の回転速度などを
変えれば、容易に組成分布を変更することができるため
、要求される性能に応じた生体セラミックスを、簡単に
作ることができる。
The sol-gel method is used as the manufacturing method, and the composition distribution can be easily changed by changing the amount of HAP added, the particle size distribution of the powder, and the rotation speed during centrifugation, thereby achieving the required performance. You can easily create bioceramics that suit your needs.

さらに、ゾル−ゲル法は形状の自由度が大きく、ゲルを
作る容器の形状を選定すれば、焼結終了時で求める最終
形状に近い形にまで制御することができる。このため、
二次加工が不要となり、大幅な低コスト化も実現できる
Furthermore, the sol-gel method has a large degree of freedom in shape, and by selecting the shape of the container in which the gel is made, it can be controlled to a shape close to the final shape desired at the end of sintering. For this reason,
There is no need for secondary processing, and significant cost reductions can be achieved.

この多孔質生体セラミックス及び製造方法は、アルミナ
とHAPの系だけに留まらず、さらに機械的強度の高い
材料、或は生体親和性に優れた材料の組み合わせも可能
である。
This porous bioceramic and its manufacturing method are not limited to alumina and HAP systems, and can also be combined with materials with higher mechanical strength or materials with excellent biocompatibility.

[発明の効果] 以上述べたように、本発明によれば、機械的強度の優れ
たアルミナと生体親和性のあるHAPの比率及び気孔率
を連続的に変化させることにより、機械的強度と生体親
和性の2つの特性を併せ持つ生体セラミックスを提供で
きるという効果を有する。
[Effects of the Invention] As described above, according to the present invention, mechanical strength and biocompatibility are improved by continuously changing the ratio and porosity of alumina, which has excellent mechanical strength, and HAP, which has biocompatibility. This has the effect of providing bioceramics that have two properties of affinity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の生体セラミックスの組成分布及び気
孔率分布を示す図。 図中のサンプル番号は、組成分析を行なった試料の位置
を表し、1は中心部を示し、8は外周部を示す。 以上 出願人 セイコーエプソン株式会社 代理人 弁理土鈴本官三部(他1名)
FIG. 1 is a diagram showing the composition distribution and porosity distribution of the bioceramic of the present invention. The sample numbers in the figure represent the positions of the samples where the composition analysis was performed, with 1 indicating the center and 8 indicating the outer periphery. Applicant: Seiko Epson Co., Ltd. Agent Patent Attorney Tosuzu, 3rd Department (1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)中心部は緻密なアルミナを主体とする組成からな
り、表面部は多孔質のハイドロキシアパタイト(以下H
APと略す)を主体とする組成からなり、且つこのアル
ミナとHAPの比率及び気孔率が連続的に変化すること
を特徴とする生体セラミックス。
(1) The center is composed mainly of dense alumina, and the surface is porous hydroxyapatite (hereinafter referred to as H
A bioceramic having a composition mainly composed of HAP (abbreviated as AP), and characterized in that the ratio of alumina to HAP and the porosity change continuously.
(2)アルミナのゾル中にHAP及び発泡剤の微粉末を
添加・混合した後、遠心分離法によりゾル中のHAP及
び発泡剤濃度を傾斜化させ、一定の濃度分布を持った段
階でゲル化、発泡処理及び焼結することを特徴とする請
求項1記載の生体セラミックスの製造方法。
(2) After adding and mixing fine powders of HAP and blowing agent into the alumina sol, the concentration of HAP and blowing agent in the sol is graded by centrifugation, and gelation occurs when a certain concentration distribution is achieved. 2. The method for producing bioceramics according to claim 1, further comprising the steps of: , foaming treatment, and sintering.
JP1003207A 1989-01-10 1989-01-10 Ceramics for living body and production thereof Pending JPH02184563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1003207A JPH02184563A (en) 1989-01-10 1989-01-10 Ceramics for living body and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1003207A JPH02184563A (en) 1989-01-10 1989-01-10 Ceramics for living body and production thereof

Publications (1)

Publication Number Publication Date
JPH02184563A true JPH02184563A (en) 1990-07-19

Family

ID=11550996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1003207A Pending JPH02184563A (en) 1989-01-10 1989-01-10 Ceramics for living body and production thereof

Country Status (1)

Country Link
JP (1) JPH02184563A (en)

Similar Documents

Publication Publication Date Title
US4652534A (en) High-strength glass ceramic containing apatite crystals and a large quantity of wollastonite crystals and process for producing same
US20100015244A1 (en) Nano/Macroporous Bioactive Glasses Made by Melt-Quench Methods
JPS63270061A (en) Surface modification of inorganic bio-compatible material
JPS6272540A (en) Alkaliless crystallized glass for organism and its production
KR20040010200A (en) CaO-SiO2-BASED BIOACTIVE GLASS AND SINTERED CALCIUM PHOSPHATE GLASS USING SAME
Zhang et al. Nucleation, crystallization and biological activity of Na2O-CaO-P2O5-SiO2 bioactive glass
CN109534681B (en) Preparation method of lithium disilicate composite bioglass ceramic
Jinga et al. Sol–gel-derived mineral scaffolds within SiO 2–P 2 O 5–CaO–MgO–ZnO–CaF 2 system
CN107601902B (en) Rubidium-containing bioglass ceramic and preparation method thereof
JPH02184563A (en) Ceramics for living body and production thereof
EP3339257B1 (en) Method of producing medical material for replacing lost portions of hard tissue, and medical material produced through same
RU2743834C1 (en) Method for producing porous bioceramic wollastonite
JPH0555150B2 (en)
Niedzielski et al. An in vivo study of the new generation of bioactive glass-ceramics as a bone substitute
JPH02185257A (en) Bioceramics and production thereof
CN112299722A (en) Bioactive glass for dental operation filler and preparation method thereof
RU2765471C1 (en) Method for producing bioglass doped with zirconium dioxide
JP2934090B2 (en) Biological implant material
US20240025800A1 (en) Glass-ceramic composite material
JPH01115360A (en) Inorganic living body material and preparation thereof
JPH02185244A (en) Porous artificial bone
JPH02175629A (en) Porous bio-compatible glass and production thereof
RU2132702C1 (en) Osteoplastic glass ceramic composition material for making porous implants as granules and method of their making
JPH0191865A (en) Inorganic biomaterial and its manufacture
KR960006855B1 (en) Biomaterial for implant using glass-ceramics with bioactivity as well as biocompatibility and the manufacturing method