JPH02184540A - Production of optical fiber and apparatus therefor - Google Patents
Production of optical fiber and apparatus thereforInfo
- Publication number
- JPH02184540A JPH02184540A JP578289A JP578289A JPH02184540A JP H02184540 A JPH02184540 A JP H02184540A JP 578289 A JP578289 A JP 578289A JP 578289 A JP578289 A JP 578289A JP H02184540 A JPH02184540 A JP H02184540A
- Authority
- JP
- Japan
- Prior art keywords
- fluorine
- glass tube
- optical fiber
- quartz glass
- doped quartz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 27
- 239000011737 fluorine Substances 0.000 claims abstract description 27
- 239000011521 glass Substances 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 8
- 150000002367 halogens Chemical class 0.000 claims abstract description 8
- 238000001704 evaporation Methods 0.000 claims abstract description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 24
- 238000004804 winding Methods 0.000 claims description 5
- 238000009826 distribution Methods 0.000 abstract description 18
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 abstract 3
- 238000009792 diffusion process Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 17
- 239000007789 gas Substances 0.000 description 16
- 238000010586 diagram Methods 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 238000005491 wire drawing Methods 0.000 description 5
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 101150110330 CRAT gene Proteins 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/027—Fibres composed of different sorts of glass, e.g. glass optical fibres
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/12—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/12—Drawing solid optical fibre directly from a hollow preform
- C03B2205/16—Drawing solid optical fibre directly from a hollow preform the drawn fibre consisting of circularly symmetric core and clad
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〉
本発明は、光ファイバの製造方法および製造装置、すな
わち高品質な光ファイバを製造する方法および製造装置
に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for manufacturing an optical fiber, that is, a method and apparatus for manufacturing a high-quality optical fiber.
さらに詳しくは、フッ素添加石英ガラスクラット光ファ
イバであって、三角形状の屈折率分布を有するシングル
モード光ファイバの製造方法および製造装置に関する。More specifically, the present invention relates to a method and apparatus for manufacturing a single mode optical fiber that is a fluorine-doped silica glass crat optical fiber and has a triangular refractive index distribution.
(従来技術)
フッ素は、光ファイバの損失を増加させることなく、石
英ガラスの屈折率を低下させる、唯一の実用的な添加材
である。フッ素添加石英ガラスクラット純粋石英ガラス
コア光ファイバで、現在膜も損失の小さい光ファイバが
得られている。低損失1.5μm帯零分散シフト光ファ
イバとして有望な、三角形状の屈折率分布を有するフッ
素添加石英ガラスクラット光ファイバ母材の製造方法と
して、フッ素外部拡散法が、本発明者らにより提案され
ている(昭和61年特許願第291777号)。第2図
に、この方法による母材作製工程を示す。この方法は、
フッ素添加石英ガラス管を酸水素炎などにより加熱して
、ガラス管内表面よりフッ素を蒸発、拡散させ、管内表
面にフッ素濃度の小さい拡散層を生じせしめ、続いて、
管を中実化することにより、中央部に拡散層と同じ体積
の高屈折率部(コア)を有する光ファイバ母材を製造す
る方法である。この方法により作製した光ファイバ母材
の屈折率分布は、次式で与えられる。Prior Art Fluorine is the only practical additive that lowers the refractive index of silica glass without increasing optical fiber loss. Fluorine-doped silica glass clad pure silica glass core optical fibers are currently available with low film loss. The present inventors proposed a fluorine external diffusion method as a method for manufacturing a fluorine-doped silica glass clad optical fiber base material with a triangular refractive index distribution, which is promising as a low-loss 1.5 μm band zero-dispersion shifted optical fiber. (Patent Application No. 291777 of 1988). FIG. 2 shows the base material manufacturing process using this method. This method is
A fluoridated quartz glass tube is heated with an oxyhydrogen flame or the like to evaporate and diffuse fluorine from the inner surface of the glass tube, creating a diffusion layer with a low fluorine concentration on the inner surface of the tube.
This is a method of manufacturing an optical fiber preform having a high refractive index part (core) with the same volume as the diffusion layer in the center by solidifying the tube. The refractive index distribution of the optical fiber preform produced by this method is given by the following equation.
n(r)”no−Δn (1−etfc(y)+exp
(2yz+z2) ・erfc(y+z) )■
ただし、
x−i (1+(r/R0)2)1′2−1 ) R。n(r)"no-Δn (1-etfc(y)+exp
(2yz+z2) ・erfc(y+z) )■ However, x-i (1+(r/R0)2)1'2-1) R.
y−ガ(2(Dt)1′21
2−α(t/D)1/2
ここで、
no=純石英ガラスの屈折率
Δnニフッ素添加石英ガラス管の屈折率差Ro:フッ素
添加石英ガラス管の内半径(mm)D=フッ素の拡散定
数(cm2/5ec)t:拡散時間(sec)
α:比例定数
である。y-ga(2(Dt)1'21 2-α(t/D)1/2 where, no = refractive index of pure silica glass Δn refractive index difference of difluorine-doped silica glass tube Ro: fluorine-doped silica glass Inner radius of tube (mm) D = Diffusion constant of fluorine (cm2/5ec) t: Diffusion time (sec) α: Constant of proportionality.
■式より、母材の屈折率分布が、石英ガラス中における
フッ素の拡散定数りと拡散時間tおよびフッ素添加石英
ガラス管の内半径に依存することがわかる。From equation (2), it can be seen that the refractive index distribution of the base material depends on the diffusion constant of fluorine in the quartz glass, the diffusion time t, and the inner radius of the fluorine-doped quartz glass tube.
■式から数値計算により求めた、母材の屈折率分布を第
3図に示す。図より、光ファイバ母材の屈折率分布が三
角形状となることが明らかである。Figure 3 shows the refractive index distribution of the base material, which was determined by numerical calculation from the formula (2). From the figure, it is clear that the refractive index distribution of the optical fiber preform is triangular.
作製した光ファイバ母材を加熱線引きして、三角形状の
屈折率分布を有する光ファイバが得られる。The produced optical fiber preform is heated and drawn to obtain an optical fiber having a triangular refractive index distribution.
(発明の解決しようとする問題点〉
この方法では、加熱によりフッ素添加石英ガラス管の変
形が生じやすく、長手方向に均一な屈折率分布を実現す
るため、フッ素拡散処理がガラス軟化点(1600℃)
付近の低い温度で行なわれていた。このため、■所定の
屈折率分布形成に2時間以上の拡散処理が必要となり、
また、■フッ素拡散処理・中火化と線引きが別工程であ
るなめ、エネルギーコストや人件費の点で経済性に乏し
い欠点があった。(Problems to be Solved by the Invention) In this method, the fluorine-doped quartz glass tube tends to deform due to heating, and in order to achieve a uniform refractive index distribution in the longitudinal direction, the fluorine diffusion treatment is performed at the glass softening point (1600°C). )
It was carried out at a low temperature nearby. For this reason, ■ a diffusion process of 2 hours or more is required to form a predetermined refractive index distribution;
In addition, ■ Fluorine diffusion treatment, medium heat conversion, and wire drawing are separate processes, which has the disadvantage of being uneconomical in terms of energy costs and labor costs.
本発明は、上記の問題点に鑑みなされたものであり、三
角形状の屈折率分布を有する光ファイバを経済的に製造
する方法および装置を提供するものである。The present invention has been made in view of the above problems, and provides a method and apparatus for economically manufacturing an optical fiber having a triangular refractive index distribution.
(問題を解決するための手段〉
上記問題点を解決するため、本発明による光ファイバの
遣方法は、フッ素添加石英ガラス管を加熱し、ガラス管
内表面より含有フッ素を蒸発、拡散させながら、同時に
線引きすることを特徴とする。(Means for Solving the Problems) In order to solve the above problems, the optical fiber deployment method according to the present invention heats a fluorine-doped quartz glass tube, evaporates and diffuses the fluorine contained in the glass tube from the inner surface, and simultaneously Characterized by drawing a line.
本発明は、また上記製造方法を実施するための装置を提
供することを目的とするものであり、フッ素添加石英ガ
ラス管の内表面より含有フッ素を蒸発、拡散させるため
の加熱用電気炉と、前記電気炉にフッ素添加石英ガラス
管を送り込むためのフッ素添加石英ガラス管送り装置と
、前記電気炉で加熱されたフッ素添加石英ガラス管を線
引きするための光ファイバ巻取装置とを具備する光ファ
イバ製造装置であって、フッ素添加石英ガラス管内にフ
ッ素以外のハロゲン元素を含有する分子を含むガスを供
給するガス供給部、およびハロゲン含有分子を含むガス
を排気する排気部を備えることを特徴としている。Another object of the present invention is to provide an apparatus for carrying out the above manufacturing method, which includes: a heating electric furnace for evaporating and diffusing fluorine contained in the inner surface of a fluorine-doped quartz glass tube; An optical fiber comprising a fluorine-doped quartz glass tube feeding device for feeding the fluorine-doped quartz glass tube into the electric furnace, and an optical fiber winding device for drawing the fluorine-doped quartz glass tube heated in the electric furnace. The manufacturing apparatus is characterized by comprising a gas supply section that supplies a gas containing molecules containing a halogen element other than fluorine into a fluorine-doped quartz glass tube, and an exhaust section that exhausts the gas containing halogen-containing molecules. .
(作用) 本発明の光ファイバ製造方法を第1図に示す。(effect) The optical fiber manufacturing method of the present invention is shown in FIG.
本発明の方法は、2000℃以上の高温加熱により、短
時間でフッ素を蒸発拡散させ、同時に中実化および線引
きを行なうものである。The method of the present invention evaporates and diffuses fluorine in a short time by heating at a high temperature of 2000° C. or higher, and simultaneously performs solidification and wire drawing.
第4図に、フッ素添加石英ガラス中におけるフッ素の拡
散定数と絶対温度の逆数の関係を示す。FIG. 4 shows the relationship between the diffusion constant of fluorine and the reciprocal of absolute temperature in fluorine-doped silica glass.
拡散温度をガラス軟化点の1600℃から2000℃に
上昇させることにより、拡散定数は4 X 10− ”
cm2/secから5 X 10−9cm2/sec
まで100倍以上増大し、屈折率分布を形成するために
要する拡散時間は大幅に短縮される。このため、通常の
線引き工程で用いられる温度や均熱部通過時間の条件に
より、シングルモード光ファイバに所要の屈折率分布が
形成される。By increasing the diffusion temperature from the glass softening point of 1600°C to 2000°C, the diffusion constant becomes 4 × 10−”
cm2/sec to 5 X 10-9cm2/sec
100 times or more, and the diffusion time required to form the refractive index distribution is significantly shortened. Therefore, a desired refractive index distribution is formed in the single mode optical fiber depending on the temperature and temperature soaking section passage time conditions used in a normal drawing process.
本方法によれば、フッ素添加石英ガラス管の線引きと同
時に外部拡散処理および中実化を行なうため、ガラス管
の不均一な変形を生じることなく、高精度で均一な屈折
率分布を得ることができる。According to this method, since the external diffusion treatment and solidification are performed simultaneously with the drawing of the fluorine-doped quartz glass tube, it is possible to obtain a highly accurate and uniform refractive index distribution without causing uneven deformation of the glass tube. can.
また、線引きの高温でガラス管が軟化し、表面張力によ
り自然に中実化するので、フッ素添加石英ガラス管の加
熱による外部拡散処理工程および中実化工程を省略する
ことができる。Furthermore, since the glass tube softens at the high temperature of wire drawing and becomes solid naturally due to surface tension, it is possible to omit the external diffusion treatment step and solidification step by heating the fluorine-doped quartz glass tube.
本発明の製造方法によれば、光ファイバを製造する時に
フッ素含有石英ガラス管内にフッ素以外のハロゲン元素
を含有する分子を含むガスないしガス状体を導入し、加
熱線引き工程における雰囲気からOH基混入を防ぐこと
により、OH基に基づ<1.39μmの光吸収損失を低
減化でき、光ファイバの低損失化が可能となる。すなわ
ち、前述のようにフッ素の蒸発、拡散および中実化を同
時に行なう本発明において、OH基の除去は重要であり
、このようにフッ素含有石英ガラス管内に上述のような
ハロゲン含有ガスを流すことによって、実質的に使用可
能な光ファイバを製造可能になる。According to the manufacturing method of the present invention, when manufacturing an optical fiber, a gas or gaseous substance containing molecules containing a halogen element other than fluorine is introduced into a fluorine-containing quartz glass tube, and OH groups are mixed in from the atmosphere during the heating drawing process. By preventing this, optical absorption loss of <1.39 μm based on OH groups can be reduced, making it possible to reduce the loss of the optical fiber. That is, in the present invention, in which fluorine is evaporated, diffused, and solidified at the same time as described above, the removal of OH groups is important. This makes it possible to produce virtually usable optical fibers.
このようなフッ素以外のハロゲン元素を含有するガスと
しては、例えば塩素、塩化チオニル、臭素等を挙げるこ
とができる6例えば上記塩化チオニル、臭素は常温で液
体状であるなめ、不活性ガス、例えばヘリウムでバブリ
ングし、ガスないしガス状にして使用する。したがって
、本明細書く特許請求の範囲を含む)において、「ガス
」なる語はガスおよびガス状物質を含む意味で使用され
ている。Examples of gases containing halogen elements other than fluorine include chlorine, thionyl chloride, and bromine.6For example, the above-mentioned thionyl chloride and bromine are liquid at room temperature, and inert gases such as helium can be used. Bubble it with water and use it as a gas or gas. Therefore, herein (including the claims), the term "gas" is used to include gases and gaseous substances.
本発明の製造装置を用いることにより、安全かつ容易に
高品質な光ファイバを製造することができる。By using the manufacturing apparatus of the present invention, high-quality optical fibers can be manufactured safely and easily.
以下、実施例により詳細に説明する。Hereinafter, it will be explained in detail using examples.
(実施例)
本実施例で使用した光ファイバ製造装置を第5図に示す
。(Example) FIG. 5 shows an optical fiber manufacturing apparatus used in this example.
第5図より明らかなように、フッ素添加石英ガラス管1
を加熱用電気炉5に搬送するためのフッ素添加石英ガラ
ス管送り装W3を有しており、この送り装置3は前記フ
ッ素添加石英ガラス管1を支持するための支持用石英ガ
ラス管2を備えており、前記フッ素添加石英ガラス管1
を取付けるようになっている。このような加熱電気炉5
で加熱されたフッ素添加石英ガラス管1を線引きするた
めの装置(巻取装置)6が電気炉5の下方に設けられて
いる。また、製造装置上部には、前記フッ素添加石英ガ
ラス管1内にフッ素以外のハロゲン元素を含有する分子
を含むガスを供給するためのガス供給部4およびガスを
排気するための排気部7が備えられている。As is clear from Fig. 5, the fluorine-doped quartz glass tube 1
It has a fluorine-doped quartz glass tube feeding device W3 for conveying the fluorine-doped quartz glass tube 1 to the heating electric furnace 5, and this feeding device 3 includes a supporting quartz glass tube 2 for supporting the fluorine-doped quartz glass tube 1. The fluorine-doped quartz glass tube 1
It is designed to be installed. Such heating electric furnace 5
A device (winding device) 6 for drawing the heated fluorine-doped quartz glass tube 1 is provided below the electric furnace 5. Further, the upper part of the manufacturing apparatus is provided with a gas supply section 4 for supplying a gas containing molecules containing a halogen element other than fluorine into the fluorine-doped quartz glass tube 1, and an exhaust section 7 for discharging the gas. It is being
このような装置を使用し光ファイバを製造した。Optical fibers were manufactured using such equipment.
まず、ゾルゲル法により、フッ素添加石英ガラス管1(
純石英ガラスを基準とした比屈折率差0.7%、外径2
5mm、内径15mm、長さ200mm)を作製した。First, a fluorine-doped quartz glass tube 1 (
Relative refractive index difference 0.7% based on pure silica glass, outer diameter 2
5 mm, inner diameter 15 mm, and length 200 mm).
このガラス管の両端に支持用石英ガラス管2(外径25
mm、内径 15mm、長さ100100Oとダミー用
石英ガラス棒を接続し、線引きに供した。支持用石英ガ
ラス管2をフッ素添加石英ガラス管送り装置3に固定し
、支持用ガラス管の上端部よりヘリウムガスで希釈した
塩素ガスをガス供給部4により管内に導入し、ガラス管
内を完全にガス置換した後で、フッ素添加石英ガラス管
1をカーボン抵抗炉5により2000℃まで加熱、軟化
し、ダミー用石英ガラス棒を自重で落下させて、巻き取
り機6を使用し線引きを開始しな、線引きは、カーボン
抵抗炉(加熱用電気炉)5上部よりフッ素添加石英ガラ
ス管1を一定速度で炉に送り込みながら、炉下部より光
ファイバを巻取り機6を用いて巻取ることにより行ない
、外径125μmの光ファイバを得た。Supporting quartz glass tubes 2 (outer diameter 25 mm) are attached to both ends of this glass tube.
mm, inner diameter 15 mm, length 100100 O and a dummy quartz glass rod were connected and used for wire drawing. The support quartz glass tube 2 is fixed to the fluorine-doped quartz glass tube feeding device 3, and chlorine gas diluted with helium gas is introduced into the tube from the upper end of the support glass tube through the gas supply section 4 to completely fill the inside of the glass tube. After the gas has been replaced, the fluorine-doped quartz glass tube 1 is heated to 2000°C in the carbon resistance furnace 5 to soften it, the dummy quartz glass rod is dropped under its own weight, and wire drawing is started using the winder 6. The drawing is carried out by feeding the fluorine-doped quartz glass tube 1 into the furnace from the upper part of the carbon resistance furnace (heating electric furnace) 5 at a constant speed, and winding the optical fiber from the lower part of the furnace using the winder 6. An optical fiber with an outer diameter of 125 μm was obtained.
作製した光ファイバの屈折率分布を第6図に示す0図よ
り光ファイバが三角形状の屈折率分布を有することがわ
かる。コアクラッド間の比屈折率差Δは、0.55%で
あり、コア径2aは8.0μmであった0作製した光フ
ァイバの損失は、波長1.60μmにおいて0.3dB
Amであった。The refractive index distribution of the produced optical fiber is shown in FIG. 6, which shows that the optical fiber has a triangular refractive index distribution. The relative refractive index difference Δ between the core and claddings was 0.55%, and the core diameter 2a was 8.0 μm.The loss of the fabricated optical fiber was 0.3 dB at a wavelength of 1.60 μm.
It was Am.
第7図にOH基に起因する1、39μmの吸収損失とガ
ラス管内に導入した雰囲気の塩素流量比C12/(C1
2+He)の関係を示す、塩素流量比が増すと共に、1
.39μmの吸収損失は急激に小さくなることが明らか
となった。Figure 7 shows the absorption loss of 1.39 μm due to OH groups and the chlorine flow rate ratio C12/(C1
2+He), and as the chlorine flow rate ratio increases, 1
.. It has become clear that the absorption loss at 39 μm decreases rapidly.
また、塩素を使用しない場合、1.5μmの吸収損失は
1100dBA以上となり、実用上大きな欠点を生じた
。Moreover, when chlorine is not used, the absorption loss at 1.5 μm is 1100 dBA or more, which is a major drawback in practical use.
(発明の効果)
以上説明したように、線引き工程における高温加熱によ
り、同時にフッ素の蒸発拡散処理および中実化を行なう
ことにより、少ない工程数で短時間に高品質な光ファイ
バを製造できる。このため、外部拡散処理や中実化工程
にかかるエネルギーコストや人件費の大幅な節減が期待
できる。(Effects of the Invention) As explained above, high-quality optical fibers can be manufactured in a short time with a small number of steps by simultaneously performing fluorine evaporation and diffusion treatment and solidification by high-temperature heating in the drawing process. Therefore, significant savings in energy costs and labor costs associated with external diffusion treatment and solidification processes can be expected.
第1図は本発明の光ファイバ製造方法の工程を示した図
、第2図は従来のフッ素外部拡散法による光ファイバ製
造工程を示した図、第3図は数値計算により求めた光フ
ァイバ母材の屈折率分布を示した図、第4図はフッ素添
加石英ガラス中におけるフッ素の拡散定数を絶対温度の
逆数に対して示した図、第5図は実施例で使用した本発
明の光ファイバ製造装置を示した図、第6図は実施例で
作製した光ファイバの屈折率分布を示した図、第7図は
OH基に起因する1、39μmの吸収損失と雰囲気の塩
素流量比の関係を示した図である。
1・・・フッ素添加石英ガラス管、2・・・支持用石英
ガラス管、3・・・フッ素添加石英ガラス管送り装置、
4・・・ガス供給部、5・・・カーボン抵抗炉、6・・
・巻取り機。
第1図Figure 1 is a diagram showing the steps of the optical fiber manufacturing method of the present invention, Figure 2 is a diagram showing the optical fiber manufacturing process using the conventional fluorine external diffusion method, and Figure 3 is an optical fiber matrix obtained by numerical calculation. Figure 4 is a diagram showing the refractive index distribution of the material, Figure 4 is a diagram showing the diffusion constant of fluorine in fluorine-doped silica glass versus the reciprocal of absolute temperature, and Figure 5 is the optical fiber of the present invention used in Examples. Figure 6 is a diagram showing the manufacturing equipment, Figure 6 is a diagram showing the refractive index distribution of the optical fiber manufactured in the example, and Figure 7 is the relationship between the absorption loss of 1.39 μm due to OH groups and the chlorine flow rate ratio in the atmosphere. FIG. 1... Fluorine-doped quartz glass tube, 2... Supporting quartz glass tube, 3... Fluorine-doped quartz glass tube feeding device,
4... Gas supply section, 5... Carbon resistance furnace, 6...
- Winding machine. Figure 1
Claims (2)
面より含有フッ素を蒸発、拡散させながら、同時に線引
きすることをと特徴とする光ファイバの製造方法。(1) A method for producing an optical fiber, which comprises heating a fluorine-doped quartz glass tube to evaporate and diffuse fluorine from the inner surface of the glass tube, while simultaneously drawing the tube.
を蒸発、拡散させるための加熱用電気炉と、前記電気炉
にフッ素添加石英ガラス管を送り込むためのフッ素添加
石英ガラス管送り装置と、前記電気炉で加熱されたフッ
素添加石英ガラス管を線引きするための光ファイバ巻取
装置とを具備する光ファイバ製造装置であって、フッ素
添加石英ガラス管内にフッ素以外のハロゲン元素を含有
する分子を含むガスを供給するガス供給部、およびハロ
ゲン含有分子を含むガスを排気する排気部を備えること
を特徴とする光ファイバ製造装置。(2) a heating electric furnace for evaporating and diffusing fluorine contained from the inner surface of the fluorine-doped quartz glass tube; a fluorine-doped quartz glass tube feeding device for feeding the fluorine-doped quartz glass tube into the electric furnace; An optical fiber manufacturing device comprising an optical fiber winding device for drawing a fluorine-doped quartz glass tube heated in an electric furnace, wherein the fluorine-doped quartz glass tube contains molecules containing a halogen element other than fluorine. An optical fiber manufacturing apparatus comprising: a gas supply section that supplies gas; and an exhaust section that exhausts gas containing halogen-containing molecules.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP578289A JPH02184540A (en) | 1989-01-12 | 1989-01-12 | Production of optical fiber and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP578289A JPH02184540A (en) | 1989-01-12 | 1989-01-12 | Production of optical fiber and apparatus therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02184540A true JPH02184540A (en) | 1990-07-19 |
Family
ID=11620681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP578289A Pending JPH02184540A (en) | 1989-01-12 | 1989-01-12 | Production of optical fiber and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02184540A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004013163A (en) * | 2002-06-06 | 2004-01-15 | Draka Fibre Technology Bv | Single mode optical fiber and optical communication system |
JPWO2006049279A1 (en) * | 2004-11-05 | 2008-05-29 | 株式会社フジクラ | Optical fiber and transmission system and wavelength division multiplexing transmission system |
-
1989
- 1989-01-12 JP JP578289A patent/JPH02184540A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004013163A (en) * | 2002-06-06 | 2004-01-15 | Draka Fibre Technology Bv | Single mode optical fiber and optical communication system |
JP4568485B2 (en) * | 2002-06-06 | 2010-10-27 | ドゥラカ ファイバー テクノロジー ベー ヴェー | Single mode optical fiber and optical communication system |
JPWO2006049279A1 (en) * | 2004-11-05 | 2008-05-29 | 株式会社フジクラ | Optical fiber and transmission system and wavelength division multiplexing transmission system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6705126B2 (en) | Method for fabricating holey optical fiber | |
EP0547335B1 (en) | Method of making fluorine/boron doped silica tubes | |
JP3622816B2 (en) | Optical amplification fiber and manufacturing method thereof | |
JP4536805B2 (en) | Optical fiber preform manufacturing method and apparatus | |
JPH09171120A (en) | Optical fiber having resistance against attenuaton induced by hydrogen and manufacture thereof | |
KR20010053022A (en) | Method and apparatus for manufacturing a rare earth metal doped optical fiber preform | |
US4648891A (en) | Optical fiber | |
JPS61155225A (en) | Manufacture of optical wave guide tube | |
US4643751A (en) | Method for manufacturing optical waveguide | |
US4734117A (en) | Optical waveguide manufacture | |
KR0171889B1 (en) | Method for making optical fibers comprising fluorine-doped glass | |
JPH01153549A (en) | Method for manufacturing waveguide for light wave | |
JPH02184540A (en) | Production of optical fiber and apparatus therefor | |
JP2000335933A (en) | Method and apparatus for producing optical fiber | |
JPH0442340B2 (en) | ||
JPH06263468A (en) | Production of glass base material | |
JPH0559052B2 (en) | ||
JPH01286932A (en) | Production of optical fiber preform | |
JPH0656457A (en) | Production of fiber for transmitting ultraviolet light | |
JPH07330366A (en) | Manufacturing of preform for optical fiber | |
EP1337484A2 (en) | Method of manufacturing an optical fiber preform | |
JPH0818842B2 (en) | Method for manufacturing base material for optical fiber | |
JPS6131328A (en) | Optical fiber | |
JPS61191528A (en) | Thermal treatment of base material for doped quartz series porous glass | |
JPS62143835A (en) | Production of glass material for light transmission |