JPH02184244A - High efficiency generator - Google Patents

High efficiency generator

Info

Publication number
JPH02184244A
JPH02184244A JP33432888A JP33432888A JPH02184244A JP H02184244 A JPH02184244 A JP H02184244A JP 33432888 A JP33432888 A JP 33432888A JP 33432888 A JP33432888 A JP 33432888A JP H02184244 A JPH02184244 A JP H02184244A
Authority
JP
Japan
Prior art keywords
magnetic
magnets
cylinder
generator
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33432888A
Other languages
Japanese (ja)
Inventor
Tomotoshi Tokuno
徳納 知敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP33432888A priority Critical patent/JPH02184244A/en
Publication of JPH02184244A publication Critical patent/JPH02184244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To enable usage of a large diameter coil by supporting a rotary magnet comprising rotary magnets arranged with opposite polarities rotatably in a cylinder and arranging laminated iron plates on the inner face of the cylinder corresponding to the polarity of magnetic pole. CONSTITUTION:A rotary magnet comprises rotary magnets 1, 2 having same number of magnetic poles on the outer circumference and arranged with opposite polarities, and supported rotatably on the shaft 3 in a cylinder 4. Laminated iron plates 5 are arranged at positions on the inner face of the cylinder 4 corresponding to the poles of the rotary magnets 1, 2. Furthermore, laminated magnetic circuit cores 10, 11 are arranged at the outside of the cylinder 4 and coils 12, 13 are wound around the foot sections of the cores 10, 11. In operation, the polarity of the rotary magnet is switched alternately to the convergence poles of the rotary magnets 1, 2 and magnetic line of force alternates reciprocally in the magnetic circuit cores 10, 11. Consequently, AC voltage is induced in the coils 12, 13 and power is outputted from the generator.

Description

【発明の詳細な説明】 発電機は長い歴史にもかかわらず発電効率においては未
だ不満足があって、特に近来自然エネルギーの利用にお
いて蓄電池の必要上直流が要求されるとき、この低効率
が増幅されることになってこのエネルギー開発の大きな
障害となっていた。
[Detailed Description of the Invention] Despite the long history of generators, they are still unsatisfactory in terms of power generation efficiency. Especially in recent years, when direct current is required due to the need for storage batteries in the use of natural energy, this low efficiency has been amplified. This has become a major obstacle to energy development.

従来直流電力を得るとき直流発電機によるか、又は交流
発電機の交流整流で直流を得るか、のいづれでも発電効
率は50%以下と至って低効率であった。
Conventionally, when obtaining direct current power, either by using a direct current generator or by obtaining direct current by alternating current rectification of an alternating current generator, the power generation efficiency was as low as 50% or less.

直流発電機は発電コイルに起こる交流波の頂上(最大値
)部分だけを軸の整流子で端子に取り出す構造である、
又交流発電機で直流を得るには、発電した交流を別の整
流器で交流波の頂上部分だけを端子に取り出して直流と
することであって、いづれもその原理はコイル交流波の
頂上部分だけを集めることである、このように交流波の
頂上部分だけから電流を取り出して直流とすることで、
この直流電力は波の頂上部分の小区間だけの電流で直流
出力を賄かなっているこことになり、この小区間7こ流
れる電流は直流出力で計算した平均電流の数倍になって
いる、このためこの抵抗損失(以下銅損と称す)は電流
の2乗に比例して小区間でも著しく銅損が増大し、電圧
降下となって実用的な直流出力は交流発電機の交流出力
の3H程度に落ち込んでしまう、そして直流の発電効率
となれば前記のように50%以下とという驚くべき低い
ものとなってしまう、これは直流発電機で直流を得ると
きも理由は同一で又結果も同様である。
A DC generator has a structure in which only the peak (maximum value) portion of the AC wave occurring in the generator coil is extracted to the terminal by a commutator on the shaft.
In addition, in order to obtain direct current from an alternating current generator, the generated alternating current is passed through a separate rectifier to take out only the top portion of the alternating current wave to a terminal and convert it into direct current. In this way, by extracting the current only from the top of the AC wave and converting it into DC,
This means that the DC output is not covered by the current in only the small section at the top of the wave, and the current flowing in these 7 small sections is several times the average current calculated from the DC output. For this reason, this resistance loss (hereinafter referred to as copper loss) increases significantly even in small sections in proportion to the square of the current, resulting in a voltage drop and the practical DC output is 3H of the AC output of the AC generator. The efficiency of DC power generation is surprisingly low at less than 50% as mentioned above.The reason is the same when generating DC with a DC generator, and the result is also The same is true.

このように交流発電機の交流を直流に変換するとき、発
電機?こおいて著しい銅損が起こって効率低下の大きな
原因となっている。
When converting the alternating current of an alternator into direct current in this way, the generator? Significant copper loss occurs in this process, which is a major cause of reduced efficiency.

この銅損を減らさうと電気抵抗の小さい大径のコイル線
を使えば、従来の発電機ではコイルを巻く鉄芯がコイル
を囲っている構造のため、鉄芯枠が大きくなって鉄芯容
積を増し鉄芯渦流損失(以下鉄損と称す)が増大する、
又従来総ての発電機鉄芯はプレス打ち抜きで製作されて
いるが、鉄損の少ない高硅素鋼鈑は方向性と脆さでプレ
ス加工が出来ないため、鉄損の大きい低硅素鋼鈑が使は
れている、このように従来の総ての発電機は元々鉄損が
大きい低効率の原因があったものにまた鉄損が増大する
ことになって、コイル線を太くしても前記効率を改善す
る効果は得られなかった。
In order to reduce this copper loss, if a large-diameter coil wire with low electrical resistance is used, the iron core frame becomes larger and the volume of the iron core is reduced, since conventional generators have a structure in which the iron core around which the coil is wound surrounds the coil. Increased iron core eddy current loss (hereinafter referred to as iron loss) increases,
In addition, conventionally all generator cores have been manufactured by press punching, but since high silicon steel sheets with low iron loss cannot be pressed due to their orientation and brittleness, low silicon steel sheets with high iron loss have been used. In this way, all conventional generators that are used originally had a large iron loss, which was the cause of low efficiency, but the iron loss increased again, and even if the coil wire was made thicker, the above-mentioned No effect on improving efficiency was obtained.

又直流発電機や交流発電機の整流で、直流が目的の発電
では発電機の回転数に関係がないので、発電機を高速回
転とすること、また高速回転効果を出すために磁極数を
多くすること、等で発電機コイルの誘起電圧を高めてコ
イル巻数を減らし、銅損を減らすとともに、発電機を小
型化して機械的損失や鉄損も紘らす、等の方法で発電効
率の改善も試みられたものの、この方法では発電コイル
の交流サイクルを増加させることになり、鉄損をサイク
ルの2乗で増加させ、効率改善より効率低下の逆効果と
なる始末であった。
In addition, in the rectification of DC generators and AC generators, the number of rotations of the generator is irrelevant when generating DC power, so it is necessary to make the generator rotate at high speed, and to increase the number of magnetic poles to produce a high-speed rotation effect. Improving power generation efficiency by increasing the induced voltage in the generator coil, reducing the number of coil turns, reducing copper loss, and downsizing the generator to reduce mechanical loss and iron loss. was also attempted, but this method resulted in an increase in the alternating current cycles of the generator coil, increasing iron loss by the square of the cycle, which had the opposite effect of reducing efficiency rather than improving efficiency.

等々従来の発電機には交流、直流いづれを間はず多くの
低効率の原因が存在するが、従来の発電機構造では最早
や効率向Jユは不可能であった。
There are many causes of low efficiency in conventional generators, both AC and DC, but it is no longer possible to improve efficiency with the conventional generator structure.

本発明は従来の発電機における前記低効率の原因を除い
て、高効率の発電機を得る画期的発明である、以下実施
例によってその発明の詳細な説明する。
The present invention is an epoch-making invention for obtaining a highly efficient power generator by eliminating the causes of low efficiency in conventional power generators.The present invention will be described in detail below with reference to Examples.

第1図はこの発明発電機の側面断面図、第2図は正面図
であるが右半分は第1図P−Q線の断面を図示している
、第1図の1及び2は円柱形で周囲にN、!:Sの4極
がある永久磁石2個が1本の軸3に適当間隔で串差し状
に取り付けている、2個の磁石各々の磁極NとSは図の
ように互い違いに異極が同方向にあるように軸3に固定
されていて回転磁石をなし、この回転磁石は強化プラス
チック製円筒4内において回転させるように円筒4の両
方鏡板6と7の軸受け8と9で軸3を支持している、円
筒内面には図5のような積層鉄鈑が回転磁石の磁極に相
対応する大きさで、回転磁石1と2の各々磁極に対応し
た位置でそれぞれ円筒内面に作り込まれている、これは
回転磁石磁極面の磁力線を集束するための集束磁極であ
る、また円筒4の外側には図で10と11のようなカス
ガイ形の積層磁気回路鉄芯が円筒4の外側4方4tff
I所にあって、それぞれのカスガイ形の脚部が、第1図
及び第2図に示すように円筒内面の集束磁極の背面に磁
気的に接続し、回転磁石lと2の磁力線集束磁極で集束
した磁力線をこれに通して磁石lと2の異極を磁気的に
接続している、そしてこの各々のカスガイ形磁気回路の
脚部にはそれぞれ12と13のようにコイルが巻かれて
いる。
Fig. 1 is a side sectional view of the generator of this invention, Fig. 2 is a front view, and the right half shows the cross section taken along line P-Q in Fig. 1. 1 and 2 in Fig. 1 are cylindrical shapes. And N to those around me! :Two permanent magnets with four poles of S are attached to one shaft 3 in a skewer shape at appropriate intervals.The magnetic poles of each of the two magnets, N and S, are alternately different and have the same polarity as shown in the figure. The rotary magnet is fixed to the shaft 3 in the same direction as the shaft 3 and forms a rotating magnet, and this rotating magnet supports the shaft 3 by the bearings 8 and 9 of both end plates 6 and 7 of the cylinder 4 so as to be rotated within the cylinder 4 made of reinforced plastic. On the inner surface of the cylinder, laminated iron plates as shown in Fig. 5 are built into the inner surface of the cylinder, with a size corresponding to the magnetic poles of the rotating magnets, and at positions corresponding to the magnetic poles of rotating magnets 1 and 2. This is a focusing magnetic pole for focusing the lines of magnetic force on the magnetic pole surface of the rotating magnet.Also, on the outside of the cylinder 4, there are laminated magnetic circuit iron cores in the shape of a casing as shown at 10 and 11 in the figure. 4tff
At position I, each cassocket-shaped leg is magnetically connected to the back surface of the focusing magnetic pole on the inner surface of the cylinder as shown in FIGS. The different polarities of magnets 1 and 2 are connected magnetically by passing focused magnetic lines of force through this, and coils 12 and 13 are wound around the legs of each of these cascading magnetic circuits. .

以上がこの発明発電機の構造であるが、円筒4及びこれ
に取り付けられている磁気回路鉄芯、またコイル等の組
み立てには総て強力な接着剤によって強固一体に接着さ
れている。
The structure of the generator of the present invention has been described above, and the cylinder 4, the magnetic circuit iron core attached thereto, the coils, etc. are all firmly bonded together using a strong adhesive.

いまこの発電機軸の歯車14より回転磁石を運転すると
、磁石1と2に当たるそれぞれの集束磁極に回転磁石極
Nと8面が交互に切り替わって磁気回路鉄芯内を磁力線
が往復交番する、このため磁気回路鉄芯の脚部に巻かれ
た各々コイルに交流電圧が誘発されのであるが、これら
のコイルは適当に接続されて発電機の出力電力となって
交流電力を供給するのである。
Now, when the rotating magnet is operated by the gear 14 on the generator shaft, the rotating magnet pole N and 8 surfaces are alternately switched to the respective focusing magnetic poles corresponding to magnets 1 and 2, and the lines of magnetic force alternate back and forth within the magnetic circuit iron core. An alternating current voltage is induced in each coil wound around the legs of the magnetic circuit iron core, and these coils are suitably connected to supply alternating current power as the output power of the generator.

以下この発電機の効率良好なる理由を説明する。The reason why this generator has good efficiency will be explained below.

この発明の発電機は前記したような低効率の原因である
コイル銅損を極力小さくする大径のコイル線が使はれて
いる、これはこの発電機が従来発電機のような、コイル
巻き線容積が鉄芯で制限されている構造と違って太いコ
イル線が存分に使用される構造のため、従来発電機のよ
うな大きな銅損の欠点が本発明発電機の構造で解決され
ている。
The generator of this invention uses a large-diameter coil wire that minimizes coil copper loss, which is the cause of low efficiency as described above. Unlike a structure in which the wire volume is limited by an iron core, the structure uses thick coil wire to its full extent, so the disadvantage of large copper loss in conventional generators is solved with the structure of the generator of the present invention. There is.

又鉄芯は図の10と11のように極めて簡単な帯板積層
構造であって、又鉄芯容積か至って小さい、そしてプレ
ス打ち抜きの必要が全くない、そして高硅素鋼鈑が使用
出来ること等で鉄損が極く小さいこと、等で鉄芯による
効率低下が極めて少ない。
In addition, the iron core has an extremely simple laminated structure of strips as shown in Figures 10 and 11, the volume of the iron core is extremely small, there is no need for press punching, and high-silicon steel sheets can be used. The iron loss is extremely small, so there is very little efficiency loss due to the iron core.

又2個の磁石の異磁極間を磁気回路鉄芯で接続している
型は、磁石の起磁力2個が直列されていて起磁力が2倍
となっている構造であるが、これはコイル負荷電流によ
る減磁力と偏磁力に対して耐応力が2倍となることで、
発電電圧の変動を減少させて出力の安定性が向上して出
力増加となる。
In addition, the type in which the different magnetic poles of two magnets are connected by a magnetic circuit iron core has a structure in which the magnetomotive force of two magnets is connected in series, and the magnetomotive force is doubled. By doubling the stress resistance against demagnetizing force and biased magnetic force due to load current,
It reduces fluctuations in the generated voltage, improves output stability, and increases output.

等々本発明の交流発電機では前記のように、従来発電機
における効率低下の原因は総て除かれていて、この高効
率は発電機の大小を間はず変圧器効率に匹敵する90!
A以上を発揮する、またこの発電機による交流を整流器
で直流に変換するときには、直流出力としての効率は8
0%以上に達する高効率である、等省エネルギーに大き
く貢献する極めて有用な発明である。
As mentioned above, the AC generator of the present invention eliminates all of the causes of efficiency decline in conventional generators, and its high efficiency is comparable to transformer efficiency of 90!
When the alternating current generated by this generator is converted to direct current using a rectifier, the efficiency as a direct current output is 8.
It is an extremely useful invention that greatly contributes to energy saving, with high efficiency reaching 0% or more.

なは本発明の説明における実施例は単相交流発電機であ
るが、前記における円筒4の内面を120度の交流の位
相角で分割し、3組の磁気集束磁極、又磁気回路鉄芯、
及びコイルを付した3組みの単相交流発電部分を作り込
めば3相交流となること、又実施例における回転磁石を
電磁石とすること、又回転磁石2個の一方を電磁石、片
方を永久磁石とすること、又電気動力機械における可逆
性として発電機と電動機は、いづれも構造的の区別が存
在しないことで、本発明は電動機の構造においても特許
請求の範囲内とするものである。
Although the embodiment described in the description of the present invention is a single-phase alternating current generator, the inner surface of the cylinder 4 in the above is divided by an alternating current phase angle of 120 degrees, and three sets of magnetic focusing magnetic poles, a magnetic circuit iron core,
If three sets of single-phase AC power generation parts with coils are built, it becomes three-phase AC, and the rotating magnet in the example is an electromagnet, and one of the two rotating magnets is an electromagnet and the other is a permanent magnet. In addition, since there is no structural distinction between a generator and an electric motor due to reversibility in an electric power machine, the structure of the electric motor is also within the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例発電機の側面断面図を示し、第2
図は同正面図で、向かって右半分は第1図P−Q線の断
面を図示したものである。
FIG. 1 shows a side sectional view of a generator according to an embodiment of the present invention, and FIG.
The figure is a front view of the same, and the right half shows a cross section taken along line P-Q in FIG. 1.

Claims (1)

【特許請求の範囲】[Claims] 第一図及び第二図の1と2のように外周に同数の磁極を
持つ2個の回転型磁石を、軸3に適当な間隔で磁極方向
を第一図の磁石1と2の磁極NとSのように、互い違い
に軸に固定してなる回転磁石を、4のプラスチックまた
はセラミックスの円筒内で回転させるように円筒両方の
軸受けで支持し、又円筒4の内面には積層鉄鈑5を回転
磁石の磁極に合せて作り込むことで、回転磁石の磁力線
集束磁極を形成させ、磁石1と2の各々の磁力線収束磁
極の外側から10と11で示すような磁気回路鉄芯で、
磁石1と2に対応する集束磁極を磁気的に接続し、回転
磁石1と2の異極間の磁力線をこれに通し、回転磁石の
回転でこの磁力線方向を反復交番させるようにして、各
磁気回路に12と13で示すようなコイルをそれぞれ巻
いて発電させることを特徴とした高効率発電機。
Two rotating magnets with the same number of magnetic poles on the outer periphery as shown in Figures 1 and 2 in Figures 1 and 2 are placed on the shaft 3 with the magnetic pole direction set at an appropriate interval between the magnetic poles N of magnets 1 and 2 in Figure 1. and S, rotary magnets fixed to shafts alternately are supported by bearings on both sides of the plastic or ceramic cylinder 4 so as to rotate, and the inner surface of the cylinder 4 is equipped with a laminated iron plate 5. By making it in line with the magnetic pole of the rotating magnet, a magnetic line converging magnetic pole of the rotating magnet is formed, and from the outside of the magnetic line converging magnetic pole of each of magnets 1 and 2, a magnetic circuit iron core as shown by 10 and 11 is formed.
The focusing magnetic poles corresponding to magnets 1 and 2 are connected magnetically, and the lines of magnetic force between the different polarities of rotating magnets 1 and 2 are passed through this, and the direction of the lines of magnetic force is repeatedly alternated by the rotation of the rotating magnets. A high-efficiency generator characterized by generating electricity by winding coils 12 and 13 around the circuit.
JP33432888A 1988-12-29 1988-12-29 High efficiency generator Pending JPH02184244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33432888A JPH02184244A (en) 1988-12-29 1988-12-29 High efficiency generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33432888A JPH02184244A (en) 1988-12-29 1988-12-29 High efficiency generator

Publications (1)

Publication Number Publication Date
JPH02184244A true JPH02184244A (en) 1990-07-18

Family

ID=18276128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33432888A Pending JPH02184244A (en) 1988-12-29 1988-12-29 High efficiency generator

Country Status (1)

Country Link
JP (1) JPH02184244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237451A (en) * 1989-03-07 1990-09-20 Shohei Imamura Rotary machine
WO1996033546A1 (en) * 1995-04-19 1996-10-24 Yazaki, S.R.M. Co., Ltd. Induction generator with single pair of opposing magnetic poles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110063A (en) * 1980-12-24 1982-07-08 Tadashi Sato Power generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110063A (en) * 1980-12-24 1982-07-08 Tadashi Sato Power generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237451A (en) * 1989-03-07 1990-09-20 Shohei Imamura Rotary machine
WO1996033546A1 (en) * 1995-04-19 1996-10-24 Yazaki, S.R.M. Co., Ltd. Induction generator with single pair of opposing magnetic poles
US5892311A (en) * 1995-04-19 1999-04-06 Yazaki S.R.M. Co., Ltd. Induction generator having a pair of magnetic poles of the same polarity opposed to each other with respect to a rotation shaft
KR100339630B1 (en) * 1995-04-19 2002-10-04 시게아끼 하야사까 Single counter stimulation induction generator

Similar Documents

Publication Publication Date Title
Xu et al. Analysis of a new variable-speed singly salient reluctance motor utilizing only two transistor switches
EP4369570A1 (en) Harmonic magnetic field driving electric motor
CN111404290B (en) Concentrated winding transverse flux permanent magnet synchronous motor
CN112467951A (en) Double-stator alternate-pole brushless hybrid excitation motor
CN113949244B (en) Single-tooth concentrated winding few-harmonic axial flux motor
CN109599962A (en) A kind of double salient-pole electric machine of new split-phase form
CN111262411A (en) Double-harmonic winding brushless excitation direct-current generator with wide voltage regulation range
CN103633801A (en) Generator with stator consisting of magnetic poles and coils
JPH02184244A (en) High efficiency generator
CN112398302B (en) Mixed excitation synchronous motor with wide speed regulation range
JPH02214452A (en) 3-phase high efficiency generator
CN210669845U (en) Bipolar multi-winding permanent magnet power generation device body
Dobzhanskyi Comparison analysis of cylindrical and rectangular linear permanent magnet transverse-flux machines for wave energy applications
US3657583A (en) Miniature synchronous motors
CN208353185U (en) A kind of axial flux permanent magnet synchronous magnetic resistance motor
JP2607747Y2 (en) High efficiency generator
Masoumi et al. A comprehensive comparison between four different c-core hybrid reluctance motors
CN109245473A (en) A kind of three-phase motor
JP2546002Y2 (en) Three-phase high-efficiency generator
RU2089994C1 (en) Contactless compressing generator
CN214958923U (en) Electric generator
CN202737707U (en) Generator with magnetic pole and coil together serving as stator
AU2020101705A4 (en) Winding arrangement of DC motor without commutation device
Radulescu et al. Novel topologies of low-speed axial-flux permanent-magnet micro-wind generator
Wang et al. Design and Analysis of a High-Performance Dual-Stator Spoke-Type Linear Machine Using Phase-Group Concentrated-Coil Windings