JPH0218397A - Method for growing algaas crystal - Google Patents

Method for growing algaas crystal

Info

Publication number
JPH0218397A
JPH0218397A JP16729288A JP16729288A JPH0218397A JP H0218397 A JPH0218397 A JP H0218397A JP 16729288 A JP16729288 A JP 16729288A JP 16729288 A JP16729288 A JP 16729288A JP H0218397 A JPH0218397 A JP H0218397A
Authority
JP
Japan
Prior art keywords
vapor pressure
growth
crystal
composition
optimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16729288A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
潤一 西澤
Hiroyuki Fujishiro
博之 藤代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP16729288A priority Critical patent/JPH0218397A/en
Publication of JPH0218397A publication Critical patent/JPH0218397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To control deviation from a stoichiometric compsn. and to grow a high quality AlGaAs crystal when an AlxGa1-xAs crystal is grown by a liq. phase growth method, by specifying the vapor pressure of As applied in accordance with the value (x), i.e., the amt. of Al required. CONSTITUTION:When an AlxGa1-xAs crystal is grown by a liq. phase growth method, a lower vapor pressure of As than the optimum vapor pressure of As represented by the equation [where k is Boltzmann's constant and T is growth temp. (K)] is applied during growth in accordance with the increase of the value (x), i.e., the amt. of Al required.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液相成長によるAlえGa、、AS結晶成長
において、化学11目的組成からの偏差を最小にするた
めの結晶成長方法で、特に結晶成長中に印加するAs蒸
気圧の大きさに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a crystal growth method for minimizing deviation from a chemical 11 target composition in AlGa, AS crystal growth by liquid phase growth. In particular, it relates to the magnitude of As vapor pressure applied during crystal growth.

(従来の技術) 従来、GaAsを代表とする■−v族間化合物半導体に
おいては、V族元素の蒸気圧が高く、結晶成長中にもV
族元素が蒸発することによる化学量論的組成からの偏差
が、電気的、光学的、結晶学的特性に大きな影響を与え
、発光ダイオード、半導体レーザ等のオプトエレクトロ
ニクスデバイスの特性に影響していた。本発明者により
、Qa Asにおいて結晶成長中に最適なAs蒸気圧を
印加することにより、化学量論的組成からの偏差を小さ
くすることができることが明らかにされ、その最適As
蒸気圧は成長温度T (K>の時には、 (7orr)(kはボルツマン定数〕 と求められ、液相成長のみならず、Qa As融液成長
にも適用され、高品質なQa As結晶が得られている
。しかし発光ダイオード、半導体レーザ等のオプトエレ
クトロニクスデバイスは、Qa AsよりはむしろAI
)cGa、−、Asの多層成長を行なう場合が多いが、
各Al組成χに対する最適As蒸気圧がわからないため
にAl工Qa、−XAsの成長の際にはQa Asの最
適圧を印加したり、あるいはASの解離を最小限少なく
するために、カーボン製キャップをメルト槽にかぶせた
りして行なわれていたため、化学愚論的組成からの偏差
を極小にした成長は行なわれていなかった。
(Prior art) Conventionally, in the ■-V intergroup compound semiconductor represented by GaAs, the vapor pressure of the V group element is high, and even during crystal growth, V
Deviations from the stoichiometric composition due to evaporation of group elements have a significant impact on electrical, optical, and crystallographic properties, and have affected the properties of optoelectronic devices such as light-emitting diodes and semiconductor lasers. . The present inventor has revealed that the deviation from the stoichiometric composition can be reduced by applying the optimal As vapor pressure during crystal growth in QaAs, and the
The vapor pressure is calculated as (7orr) (k is Boltzmann's constant) when the growth temperature T (K> However, optoelectronic devices such as light emitting diodes and semiconductor lasers are based on AI rather than QaAs.
) cGa, -, As are often grown in multiple layers,
Since the optimum As vapor pressure for each Al composition χ is not known, it is necessary to apply the optimum pressure of QaAs during the growth of Al process Qa, -XAs, or to minimize the dissociation of AS using a carbon cap. Because this process was carried out by covering the melt tank with molten metal, it was not possible to achieve growth that minimized deviations from the chemical composition.

(発明の目的) 本発明は、上記従来技術の欠点を克服し、化学量論的組
成からの偏差を制御した高品質のAIえQa   As
結晶を得るための方法を提供することを目的とする。
(Objective of the Invention) The present invention overcomes the drawbacks of the above-mentioned prior art and provides high quality AIQAs with controlled deviations from the stoichiometric composition.
The purpose is to provide a method for obtaining crystals.

〔発明の概要〕[Summary of the invention]

本発明の第1の特徴は、実験的にAl工QaH−1A 
Sの最適As蒸気圧を決定した結果、Al組組成−大き
くなるにしたがい、Qa Asの最適As蒸気圧よりも
小さいAs蒸気圧を印加することで、化学量論的組成か
らの偏差に制御されたAI XGa 、−XAs結晶を
得ることができることにある。
The first feature of the present invention is that an aluminum alloy QaH-1A was experimentally tested.
As a result of determining the optimum As vapor pressure for S, as the Al group composition increases, the deviation from the stoichiometric composition can be controlled by applying an As vapor pressure smaller than the optimum As vapor pressure for Qa As. It is possible to obtain a crystal of AI XGa, -XAs.

本発明の第2の特徴は、発光ダイオード等のAl工Ga
t−χAs多層成長に対して、各成長層のAl組組成一
対応した最適As蒸気圧を独立に制御することで、化学
量論的組成からの偏差寺最小にしたAl工Qa、−エA
S多層成長層を液相成長スライドボード法において実現
できる点にある。
The second feature of the present invention is that Al-based Ga
For multi-layer growth of t-χAs, by independently controlling the Al group composition and the corresponding optimal As vapor pressure of each growth layer, the deviation from the stoichiometric composition is minimized.
The advantage is that the S multilayer growth layer can be realized using the liquid phase growth slide board method.

(発明の実施例〕 本発明の基礎となったGaASの最適As蒸気圧及びA
I :cGa l−X A’の最適As蒸気圧について
説明する。第1図は蒸気圧制m温度差液相成長法により
、G a A S s A I x−G at −xA
sを結晶成長するための@置図である。H2雰囲気中で
カーボンボート1が石英製反応管2の中に入れられ、電
気炉3により成長温度に達している。メルト槽4にはタ
ングステンヒータ5が巻かれ、外部から定電流源6によ
り電力を供給し、メルト7の上下に温度差を付ける。ス
ライダー8には基板9を入れるための溝が掘ってあり、
外部から石英製スライダー棒10を移動して、メルト7
の下部へ移動し、成長を行なう。この成長時に、金属A
s11を入れた石英製容器12からAs圧印加用パイプ
13をメルト槽4に挿入し、As蒸気圧をメルト7の上
部に印加する。金属AS11は、As圧印加用電気炉1
4により加熱し、金属AS11の温度を制御することに
より、Asの蒸気圧を制御する第2図<8 )に、Qa
 Asを成長する場合、成長温度Tを一定とし、印加A
s蒸気圧を変化させた場合の成長した結晶のエッチピッ
ト密度(EPD)及びイオン化不純物密度との関係を示
す。あるA8蒸気圧PAat  においてEPD及びイ
オン化不純物密度ともに極小値をとり、化学量論的組成
に近い結晶を作ることができる。
(Example of the invention) Optimum As vapor pressure and A of GaAS, which is the basis of the present invention
The optimum As vapor pressure of I:cGal-X A' will be explained. Figure 1 shows the results of the vapor pressure control m temperature difference liquid phase growth method.
This is a diagram for crystal growth of s. A carbon boat 1 is placed in a quartz reaction tube 2 in an H2 atmosphere, and the growth temperature is reached by an electric furnace 3. A tungsten heater 5 is wound around the melt tank 4, and electric power is supplied from the outside by a constant current source 6 to create a temperature difference between the top and bottom of the melt 7. A groove is dug in the slider 8 for inserting the board 9,
Move the quartz slider rod 10 from the outside and remove the melt 7.
Move to the bottom of the page and grow. During this growth, metal A
The pipe 13 for applying As pressure is inserted into the melt tank 4 from the quartz container 12 containing s11, and As vapor pressure is applied to the upper part of the melt 7. The metal AS11 is an electric furnace 1 for applying As pressure.
In FIG. 2 <8), the vapor pressure of As is controlled by heating the metal AS11 by
When growing As, the growth temperature T is kept constant and the applied A
The relationship between the etch pit density (EPD) and the ionized impurity density of the grown crystal when changing the s vapor pressure is shown. At a certain A8 vapor pressure PAat, both the EPD and the ionized impurity density take minimum values, making it possible to form crystals with close to stoichiometric composition.

本発明者により、成長温度Tと最適As蒸気圧p  0
9%の関係は、 P  Dpt−2,6X10’ exp (−り匹−e
 V)八%                    
  kT(Torr) と実験的に求められている。但し、kはボルツマン定数
である。
The present inventor has determined that the growth temperature T and the optimum As vapor pressure p 0
The 9% relationship is P Dpt-2,6X10' exp (-ri-e
V) 8%
It has been experimentally determined that kT (Torr). However, k is Boltzmann's constant.

例えば成長温度が750℃の場合、最適As蒸気圧は2
9 T orrである。
For example, when the growth temperature is 750°C, the optimal As vapor pressure is 2
It is 9 Torr.

AI−cQa、−えAsに対しても、化学愚論的組成の
制御された完全結晶を成長するには、蒸気圧制御法が不
可欠である。第1図の成長系を用いてAs蒸気圧制御し
てAl工Qa、−エAsの結晶成長を行ない、印加As
蒸気圧とA I :tQa、−、へs成長層のエッチビ
ット密度(EPD)及びイオン化不純物密度の関係を求
めた結果を第2図(b )、(C)に示す。第2図(b
)はAl組組成−0,3の場合、第2図(C)はAl組
成:c、−0,6の場合である。Qa Asoptap
% と同様に、あるAs蒸気圧P、PAいでそれAS2 ps ぞれ極小となっている。このことからPAa□PA、S
ptがA ’ D、a G aO,T A S及びA 
I O,6G aO,+ ASの最適As蒸気圧と考え
られ、化学量論的組成からの偏差の少ないAl工Qa、
−LAs結晶であると考えられる。
For AI-cQa,-As as well, a vapor pressure control method is essential in order to grow perfect crystals with controlled chemical compositions. Using the growth system shown in Fig. 1, the crystal growth of Al process Qa, -air As was carried out by controlling the As vapor pressure, and the applied As
The relationship between the vapor pressure and the etch bit density (EPD) and ionized impurity density of the A I :tQa, -, hes growth layer is shown in FIGS. 2(b) and 2(c). Figure 2 (b
) is the case where the Al group composition is -0,3, and FIG. 2(C) is the case where the Al composition is c, -0,6. Qa Asoptap
%, AS2 ps becomes minimum at certain As vapor pressures P and PA, respectively. From this, PAa□PA,S
pt is A' D, a G aO, T A S and A
I O, 6G aO, + Al alloy Qa, which is considered to be the optimal As vapor pressure for AS and has little deviation from the stoichiometric composition.
-It is considered to be a LAs crystal.

第2図(a )乃至(C)よりA l z G a H
−xAsのAl組成χが大きくなるにしたがって最適A
s蒸気圧は小さくなることが明らかになった。
From Figure 2 (a) to (C), A l z G a H
-x As the Al composition χ of As increases, the optimum A
It has become clear that the vapor pressure of s becomes smaller.

第3図には、本発明の他の実施例を示す。発光ダイオー
ド、半導体レーザ等のオプトエレクトロニクスデバイス
では、AlχGa、−丸Asの多層成長によりpn接合
を形成する。例えば660nm帯のA l x Qa 
1−x AS赤色発光ダイオードの場合、D” −Ga
 As基板上にp” −A’ 015 G aO,63
A ” l!!、n” −AI。、。G a 、3゜A
s1lを形成するシングルへテロ型あるいはo” −G
a As iu根板上p” −A I、7.Ga、3゜
As [pA ’ o、35 G ao、6s A S
m s n” A ’ 0.1oG a o4oA S
層を形成するダブルへテロ型が代表的な構造である。第
3図にシングルへテロ型のAlえQal−XA3発光ダ
イオード液相結晶成長装置を示す。カーボンボート20
には、メルト槽21.22が存在し、それぞれZnドー
プA l o、as G a、、ASI、TeドープA
 l 0.76 G a Oa(、A S層を成長する
ためのメルト23.24が仕込んである。温度差用ヒー
タ25.26によりメルトの上下に温度差を付け、スラ
イダー27に保持されているQa As基板28上に結
晶成長する。各メルト槽21.22には、片端に金属A
s29.30を入れたAs圧印加用パイプ31.32が
挿入されている。各メルトに印加するA’s蒸気圧は、
成長層のAl組成χで決められる最適AS蒸気圧を印加
するために、金属AS29.30は異なる温度TAs4
、TA5□のところに置かれる。あらかじめ電気炉の温
度分布を調べた上で、As圧印加用バイブ31.32の
長さを決定する。金属As29.30が置かれる場所の
温度は均熱領域とし、温度調節は各AS圧毎に独立に制
御してもよいし、1台の114で制御してもよい。
FIG. 3 shows another embodiment of the invention. In optoelectronic devices such as light emitting diodes and semiconductor lasers, pn junctions are formed by multilayer growth of AlχGa and -round As. For example, A l x Qa in the 660 nm band
For 1-x AS red light emitting diode, D”-Ga
p''-A' 015 GaO,63 on As substrate
A”l!!,n”-AI. ,. G a, 3゜A
Single heterozygous or o”-G forming s1l
a As iu on the root platep'' -A I, 7.Ga, 3°As [pA' o, 35 Gao, 6s A S
m s n” A ' 0.1oG ao4oA S
A typical structure is a double hetero type that forms layers. FIG. 3 shows a single hetero type Al-Qal-XA3 light emitting diode liquid phase crystal growth apparatus. carbon boat 20
There are melt tanks 21 and 22, respectively, containing Zn-doped A lo, as Ga, , ASI, and Te doped A.
l 0.76 G a Oa (, A Melt 23.24 for growing the S layer is prepared. A temperature difference is created between the top and bottom of the melt by a temperature difference heater 25.26, and the melt is held by a slider 27. Crystals grow on the Qa As substrate 28. Each melt tank 21, 22 has metal A at one end.
Pipe 31.32 for applying As pressure containing s29.30 is inserted. The A's vapor pressure applied to each melt is
In order to apply the optimum AS vapor pressure determined by the Al composition χ of the growth layer, the metal AS29.30 is heated at different temperatures TAs4.
, is placed at TA5□. After examining the temperature distribution of the electric furnace in advance, the lengths of the vibrators 31 and 32 for applying As pressure are determined. The temperature of the place where the metal As29.30 is placed is set as a uniform heating area, and the temperature adjustment may be controlled independently for each AS pressure, or may be controlled by one unit 114.

このように、結晶成長中に各Al組成χに対応する最適
AS蒸気圧を印加しながら成長することにより、化学量
論的組成の制御された発光ダイオードを製作することが
できる。
In this manner, by growing the crystal while applying the optimum AS vapor pressure corresponding to each Al composition χ, a light emitting diode with a controlled stoichiometric composition can be manufactured.

第3図は、液相成長法のうち、温度差法による級晶成長
について述べたが、徐冷法に対しても応用できることは
明らかである。
Although FIG. 3 describes class crystal growth by a temperature difference method among liquid phase growth methods, it is clear that the method can also be applied to a slow cooling method.

第4図には、印加AS蒸気圧と発光ダイオードの発光効
率の関係を示す。第2図において得られた最適As圧を
印加することにより発光効率を最大にすることができる
FIG. 4 shows the relationship between the applied AS vapor pressure and the luminous efficiency of the light emitting diode. By applying the optimum As pressure obtained in FIG. 2, the luminous efficiency can be maximized.

発光ダイオードのみならず、半導体レーザ等のAl工Q
a、−、Asデバイスに対して応用できることはもちろ
んである。
Aluminum processing Q for not only light emitting diodes but also semiconductor lasers, etc.
Of course, it can be applied to a,-,As devices.

〔発明の効果〕〔Effect of the invention〕

以上の様に、本発明によればAlえQa、−えAsに対
する最適As蒸気圧を印加することにより、化学量論的
組成からの偏差を最小にし、極めて完全結晶に近いAl
GaAs結晶を得ることができる。
As described above, according to the present invention, the deviation from the stoichiometric composition is minimized by applying the optimum As vapor pressure to Al Qa, - As, and Al
GaAs crystals can be obtained.

又、各メルト槽に各々のAI組成人に対して異なる最適
As蒸気圧を印加することにより極めて発光効率の高い
発光ダイオードを得ることができる。
Furthermore, by applying a different optimum As vapor pressure to each melt tank for each AI composition, a light emitting diode with extremely high luminous efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は蒸気圧vl III潟度差液相成長法によるA
 I x G a 1−エAS結晶成長装置図、第2図
は第1図の装置を用いて成長した結晶の印加As蒸気圧
と、エッチビット密度及びイオン化不純物密度の関係を
(a )Ga As、(b)Alo3Q a o、’r
 A S、(C)Al o、6 G a o、4 A 
Sの場合について示す図、第3図は各メルト槽に各々の
Al組成見に対して異なる最適△S圧を印加するAl工
Ga、−エAsシングルへテロ型発光ダイオード成長装
置図、第4図は第3図の装置を用いて製作した発光ダイ
オードの印加As蒸気圧と発光効率の関係を示す図であ
る。 1.20・・・成長用カーボンボート、2・・・石英製
反応管、3・・・成長ゾーン電気炉、4.21.22・
・・メルト槽、5.25.26・・・温度差用ヒータ、
6・・・定電流源、7.23.24・・・メルト、8.
27 ・・・スライダー、9.28・・・GaAs基板
、10・・・スライダー棒、11.29.30・・・金
属AS112・・・石英製容器、13.31.32・・
−All圧印加用パイプ、14・・・ASゾーン電気炉 嬉2■ 慈4−乙
Figure 1 shows vapor pressure vl
I x Ga 1-Air AS crystal growth apparatus diagram, Figure 2 shows the relationship between the applied As vapor pressure, etch bit density, and ionized impurity density of the crystal grown using the apparatus shown in Figure 1. (a) GaAs , (b) Alo3Q a o,'r
A S, (C) Al o, 6 Ga o, 4 A
Figure 3 is a diagram showing the case of Al, Ga, - Air, and As single hetero type light emitting diode growth apparatus in which different optimum ΔS pressures are applied to each melt tank for each Al composition. This figure shows the relationship between the applied As vapor pressure and the luminous efficiency of a light emitting diode manufactured using the apparatus shown in FIG. 3. 1.20... Carbon boat for growth, 2... Quartz reaction tube, 3... Growth zone electric furnace, 4.21.22.
...melt tank, 5.25.26...temperature difference heater,
6... Constant current source, 7.23.24... Melt, 8.
27...Slider, 9.28...GaAs substrate, 10...Slider rod, 11.29.30...Metal AS112...Quartz container, 13.31.32...
-All pressure application pipe, 14... AS zone electric furnace 2■ Ji 4-Otsu

Claims (2)

【特許請求の範囲】[Claims] (1)液相成長によるAl_χGa_1_−_χAsの
結晶成長において、Al組成χが大きくなるほど、Ga
Asの最適As蒸気圧P_A_s^o^p^t=2.6
×10^6exp{(−1.05/kT)eV}(To
rr)〔但しkはボルツマン定数、Tは成長温度 K〕よりも小さなAs蒸気圧を成長中に印 加することを特徴とするAl_χGa_1_−_χAs
結晶成長方法。
(1) In the crystal growth of Al_χGa_1_−_χAs by liquid phase growth, the larger the Al composition χ, the more Ga
Optimal As vapor pressure P_A_s^o^pt=2.6
×10^6exp {(-1.05/kT)eV}(To
rr) [where k is the Boltzmann constant and T is the growth temperature K] is applied during the growth of Al_χGa_1_−_χAs.
Crystal growth method.
(2)スライドボート法によるAl_χGa_1_−_
χAs多層成長において、各メルト槽に各成長層のAl
組成χにほぼ対応した最適As蒸気圧を印加することを
特徴とするAl_χGa_1_−_χAs結晶成長方法
(2) Al_χGa_1_-_ by slide boat method
In χAs multilayer growth, Al of each growth layer is placed in each melt bath.
A method for growing an Al_χGa_1_−_χAs crystal, characterized by applying an optimum As vapor pressure that substantially corresponds to the composition χ.
JP16729288A 1988-07-04 1988-07-04 Method for growing algaas crystal Pending JPH0218397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16729288A JPH0218397A (en) 1988-07-04 1988-07-04 Method for growing algaas crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16729288A JPH0218397A (en) 1988-07-04 1988-07-04 Method for growing algaas crystal

Publications (1)

Publication Number Publication Date
JPH0218397A true JPH0218397A (en) 1990-01-22

Family

ID=15847051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16729288A Pending JPH0218397A (en) 1988-07-04 1988-07-04 Method for growing algaas crystal

Country Status (1)

Country Link
JP (1) JPH0218397A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326280A (en) * 1976-08-24 1978-03-10 Handotai Kenkyu Shinkokai Crystal growth for mixed crystals of compund semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326280A (en) * 1976-08-24 1978-03-10 Handotai Kenkyu Shinkokai Crystal growth for mixed crystals of compund semiconductor

Similar Documents

Publication Publication Date Title
DE60037996T2 (en) Manufacturing method for a III-V nitride layer and for a substrate
CN100423297C (en) Method for manufacturing N0.3 family nitride substrate
US8129208B2 (en) n-Type conductive aluminum nitride semiconductor crystal and manufacturing method thereof
US5433791A (en) MBE apparatus with photo-cracker cell
JP3879173B2 (en) Compound semiconductor vapor deposition method
US7255742B2 (en) Method of manufacturing Group III nitride crystals, method of manufacturing semiconductor substrate, Group III nitride crystals, semiconductor substrate, and electronic device
JP2006335607A (en) Manufacturing method of aluminum-based group iii nitride crystal and crystal laminated substrate
KR100619655B1 (en) Method of manufacturing a nitride series ?-? group compound semiconductor
JPH0218397A (en) Method for growing algaas crystal
EP0609886B1 (en) Method and apparatus for preparing crystalline thin-films for solid-state lasers
US4629532A (en) Method of growing InGaAsP on InP substrate with corrugation
JP3097597B2 (en) Method of forming group III nitride semiconductor
JPH03196643A (en) Vapor phase epitaxy
JPH02254715A (en) Manufacture of compound semiconductor crystal layer
JPH0388324A (en) Method for forming compound semiconductor thin film
JPH0630339B2 (en) Method for producing GaAs single crystal
JP2603121B2 (en) Method of forming compound semiconductor thin film
JPS63186418A (en) Manufacture of compound semiconductor crystal layer
JPH07110799B2 (en) Crystal growth method for mixed crystal compound semiconductor
JPS61205696A (en) Vapor-phase crystal growth system for group iii-v compounds
JPH0357077B2 (en)
JPH08259397A (en) Production of znse single crystal and device for producing the same
JPS6037075B2 (en) GaAsP crystal growth method
JPH09286697A (en) Production of zinc selenide single crystal
JPS627692A (en) Selective growth method for semiconductor