JPH02183535A - Multilayer interconnection forming method - Google Patents

Multilayer interconnection forming method

Info

Publication number
JPH02183535A
JPH02183535A JP201689A JP201689A JPH02183535A JP H02183535 A JPH02183535 A JP H02183535A JP 201689 A JP201689 A JP 201689A JP 201689 A JP201689 A JP 201689A JP H02183535 A JPH02183535 A JP H02183535A
Authority
JP
Japan
Prior art keywords
noble metal
layer
metal layer
lower wiring
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP201689A
Other languages
Japanese (ja)
Inventor
Yukiyasu Sugano
菅野 幸保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP201689A priority Critical patent/JPH02183535A/en
Publication of JPH02183535A publication Critical patent/JPH02183535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form a multilayer interconnection of small contact resistance with a high reliability by arranging a noble metal layer on a lower wiring layer composed of a aluminum, aluminum alloy, etc. CONSTITUTION:On a lower wiring layer 2 composed of aluminum, aluminum alloy, etc., a noble metal layer 1 such as plantinum, group element or gold is arranged by a method like sputtering. The thickness of the noble metal layer 1 is desirable to be in range of 50-300Angstrom . After the lower wiring layer 2 and the noble metal layer 1 are left as a desired wiring pattern and an interlayer film 5 is formed, a contact hole 6 is formed. Hence, an oxide layer is not formed on the surface of the noble metal layer 1 exposed on the bottom surface, and insulative compound like fluoride is not deposited in the selective CVD process of high melting point metal 7, because the noble metal layer does not react chemically to source gas. Thereby a multilayer interconnection of low contact resistance can be easily formed with high reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造法に関し、さらに詳しくは
多層配線の形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming multilayer wiring.

〔発明の概要〕[Summary of the invention]

本発明は、半導体装置の下層配線上の層間絶縁膜にコン
タクトホールを開口し、ここに高融点金属を埋め込む多
層配線形成法に関する。
The present invention relates to a method of forming a multilayer wiring in which a contact hole is opened in an interlayer insulating film on a lower wiring of a semiconductor device and a high melting point metal is filled in the contact hole.

〔従来の技術〕[Conventional technology]

半導体装置の高集積度化に伴い、多層配線技術の重要性
が高まっている。下層配線層と上層配線層とを電気的に
接続するためのコンタクトホールは、そのアスペクト比
、すなわち深さと直径の比率が1以上と大きくなってき
ており、このコンタクトホールへの導電性金属の埋め込
み方法は、タングステン等の高融点金属の選択CVD法
が有望な方法と考えられている。これは、タングステン
等の高融点金属の選択CVD法は、自己整合的に、シリ
コンまたは金属表面上にのみ、タングステン等の高融点
金属を選択的に成長させることが出来るからである。
BACKGROUND OF THE INVENTION As semiconductor devices become more highly integrated, multilayer wiring technology is becoming increasingly important. The aspect ratio, that is, the ratio of depth to diameter, of the contact hole for electrically connecting the lower wiring layer and the upper wiring layer is increasing to 1 or more, and it is necessary to fill the contact hole with conductive metal. A selective CVD method using a high melting point metal such as tungsten is considered to be a promising method. This is because the selective CVD method for high melting point metals such as tungsten can selectively grow high melting point metals such as tungsten only on silicon or metal surfaces in a self-aligned manner.

この方法をアルミニウムやアルミニウム合金等からなる
下層配線層上に適用する場合、下層配線層上にアルミニ
ウムの自然酸化膜(A1203)が工程の中途で残され
るという問題がある。また高融点金属のソースガスとし
て一般的な、例えば六フッ化タングステン(hp、)を
用いると、WF、とアルミニウムが反応して下層配線層
表面に三フッ化アルミニウム(AIFりが形成される。
When this method is applied to a lower wiring layer made of aluminum, an aluminum alloy, etc., there is a problem that a natural oxide film (A1203) of aluminum is left on the lower wiring layer during the process. Furthermore, when a common source gas for a high melting point metal, for example, tungsten hexafluoride (HP), is used, WF and aluminum react to form aluminum trifluoride (AIF) on the surface of the lower wiring layer.

Alhは常温では固体であり、しかも絶縁性のため、A
h03と並んでいずれもコンタクト抵抗値の増大の一因
となっていた。
Alh is solid at room temperature and is insulating, so A
Along with h03, both of these factors contributed to the increase in contact resistance.

そこで、例えば特開昭61−287149号公報におい
ては、アルミニウム等からなる下層配線層上にシリコン
層を設ける方法が開示されている。この従来技術を第2
図aないしeに基づいて説明する。
Therefore, for example, Japanese Patent Laid-Open No. 61-287149 discloses a method of providing a silicon layer on a lower wiring layer made of aluminum or the like. This conventional technology is used as a second
The explanation will be based on figures a to e.

まず、第2図aに示すごとく、半導体基板4上の絶縁膜
基板3上にアルミニウム等の下層配線層2を形成し、そ
の上にシリコン層9を数百人の厚さで設ける0次に第2
図すのごとく、フォトリソグラフィ工程およびエツチン
グ工程により、シリコン層9と下層配線層2とを所望の
配線パターンとして残す。次に第2図Cのように、層間
絶縁膜5を形成し、ここにコンタクトホール6を開口す
る。この際、該コンタクトホール6の底面にシリコン層
9が露出するようにする。引き続き第2図dに示すごと
く、畦、またはMoF、をソースガス、H2をキャリア
ガスとして、CVD法によりコンタクトホール6底面に
タングステンまたはモリブデンを選択的に析出および成
長させる。このとき、WF、またはMoF6との反応に
より、コンタクトホール6内のシリコン層9はすべて消
費されてしまい、下層配線層2とコンタクトホール内の
高融点金属7との間にシリコン層が残存しないように、
シリコン層の厚さを1000Å以下にしなければならな
い。
First, as shown in FIG. 2a, a lower wiring layer 2 such as aluminum is formed on an insulating film substrate 3 on a semiconductor substrate 4, and a silicon layer 9 is formed on it to a thickness of several hundred layers. Second
As shown in the figure, silicon layer 9 and lower wiring layer 2 are left as a desired wiring pattern by photolithography and etching steps. Next, as shown in FIG. 2C, an interlayer insulating film 5 is formed, and a contact hole 6 is opened therein. At this time, the silicon layer 9 is exposed at the bottom of the contact hole 6. Subsequently, as shown in FIG. 2d, tungsten or molybdenum is selectively deposited and grown on the bottom surface of the contact hole 6 by the CVD method using MoF as a source gas and H2 as a carrier gas. At this time, the silicon layer 9 in the contact hole 6 is completely consumed due to the reaction with WF or MoF6, so that no silicon layer remains between the lower wiring layer 2 and the high melting point metal 7 in the contact hole. To,
The thickness of the silicon layer must be less than 1000 Å.

さらに第2図eに示すように、その上にアルミニウムや
Al−5i等からなる上層配線層8が形成される。
Furthermore, as shown in FIG. 2e, an upper wiring layer 8 made of aluminum, Al-5i, or the like is formed thereon.

[発明が解決しようとする課題] 前述した従来技術においては、下層配線上のシリコン層
が、WF6またはMoF b等のソースガスによりすべ
て消費されてしまうと、アルミニウム等の下層配線層が
完全に露出する。この状態となると、アルミニウムとW
F、やMoF hガスとが反応して、生成物であるAl
F3がコンタクトホール底面に析出する。AlF3は絶
縁物であるので、結果としてこの従来技術によっては、
コンタクト抵抗値を低減することは困難であった。
[Problems to be Solved by the Invention] In the conventional technology described above, when the silicon layer on the lower wiring layer is completely consumed by the source gas such as WF6 or MoFb, the lower wiring layer such as aluminum is completely exposed. do. In this state, aluminum and W
F, and MoF react with h gas to form the product Al
F3 is deposited on the bottom of the contact hole. Since AlF3 is an insulator, this conventional technology results in
It has been difficult to reduce contact resistance.

従って、本発明の課題は、アルミニウムやアルミニウム
合金等からなる下層配線層上の層間絶縁膜にコンタクト
ホールを開口し、ここに高融点金属を埋め込んで多層配
線を形成するにあたり、下層配線層に絶縁物被膜の形成
がなく、コンタクト抵抗値の低い信頼性の高い多層配線
形成法を提供することである。
Therefore, an object of the present invention is to form a contact hole in an interlayer insulating film on a lower wiring layer made of aluminum, an aluminum alloy, etc., and fill it with a high melting point metal to form a multilayer wiring. It is an object of the present invention to provide a highly reliable multilayer wiring formation method that does not require the formation of a material film and has a low contact resistance value.

〔課題を解決するための手段〕[Means to solve the problem]

前記の課題を解決するため、本発明は、アルミニウムや
アルミニウム合金等からなる下層配線層上に、白金族元
素または金のごとき貴金属層を、スパッタリング等の方
法により設けることを特徴とするものである。貴金属層
の厚さは、50Å以上300Å以下が好ましい。
In order to solve the above problems, the present invention is characterized in that a noble metal layer such as a platinum group element or gold is provided on a lower wiring layer made of aluminum, aluminum alloy, etc. by a method such as sputtering. . The thickness of the noble metal layer is preferably 50 Å or more and 300 Å or less.

この後、従来の方法と同様にして、下層配線層および貴
金属層を所望の配線パターンとして残し、層間絶縁膜を
形2成した後コンタクトホールを開口する。次に選択C
VD法によりコンタクトホール、底面の貴金属層表面に
タングステン(讐)やモリブデン(Mo)、またはタン
タル(Ta)のごとき高融点金属層を析出および成長さ
せる。続けて上層配線層を形成することにより、コンタ
クト抵抗値の小さな多層配線を、信頼性高く形成するこ
とが可能である。
Thereafter, in the same manner as in the conventional method, the lower wiring layer and the noble metal layer are left as a desired wiring pattern, an interlayer insulating film is formed, and then a contact hole is opened. Next select C
A high melting point metal layer such as tungsten, molybdenum (Mo), or tantalum (Ta) is deposited and grown on the surface of the noble metal layer at the bottom of the contact hole by the VD method. By subsequently forming an upper wiring layer, it is possible to form a multilayer wiring with low contact resistance with high reliability.

〔作用〕[Effect]

白金属元素や金のごとき貴金属層は化学的に不活性であ
るが、下層配線層のバターニングに用いる反応性イオン
エツチング(RIE)工程において、スパッタリング効
果により除去することができる。
Although noble metal layers such as platinum elements and gold are chemically inert, they can be removed by sputtering effects during the reactive ion etching (RIE) process used to pattern the underlying wiring layers.

これは貴金属層の厚さが50Å以上300Å以下と充分
薄いためである。すなわち、下層配線層および貴金属層
のパターニングは、何ら支障な〈従来通りの方法で可能
である。
This is because the thickness of the noble metal layer is sufficiently thin at 50 Å or more and 300 Å or less. In other words, patterning of the lower wiring layer and the noble metal layer can be done by conventional methods without any problems.

コンタクトホールの開口により、底面に露出した貴金属
層は酸化に対して安定であるので、表面に酸化物層が形
成されることはない。
Since the noble metal layer exposed on the bottom surface due to the opening of the contact hole is stable against oxidation, no oxide layer is formed on the surface.

さらに、高融点金属の選択CVDを行う工程では、貴金
属層はソースガスとは化学的に反応しないので、フッ化
物のごとき絶縁性の化合物が析出することもない。
Furthermore, in the process of performing selective CVD of high melting point metals, the noble metal layer does not chemically react with the source gas, so that insulating compounds such as fluoride do not precipitate.

すなわち、下層配線層上の貴金属層上に、絶縁物を介さ
ず、直接に高融点金属を析出および成長させることがで
きる。
That is, the high melting point metal can be deposited and grown directly on the noble metal layer on the lower wiring layer without using an insulator.

これらの作用により、コンタクト抵抗値の小さな多層配
線を容易かつ信頼性高く形成することができる。なお、
貴金属層の厚さが50人に満たないと低抵抗値を得るこ
とが困難であり、一方、300人を超えると、配線のパ
ターニングの際に、スパッタリング効果により除去する
ことが困難となるので、貴金属層の厚さは50Å以上3
00Å以下の範囲が好ましい。
Due to these effects, multilayer interconnections with low contact resistance values can be easily and reliably formed. In addition,
If the thickness of the noble metal layer is less than 50 layers, it is difficult to obtain a low resistance value, while if it exceeds 300 layers, it becomes difficult to remove due to the sputtering effect during wiring patterning. The thickness of the noble metal layer is 50 Å or more3
A range of 00 Å or less is preferable.

(実施例〕 以下、本発明の具体的な実施例について、第1図aない
しeを参照しながら説明する。
(Embodiments) Hereinafter, specific embodiments of the present invention will be described with reference to FIGS. 1a to 1e.

まず、第1図aに示すように、シリコン等の半導体基板
4上に酸化シリコン(SiO□)等の絶縁膜基板3を形
成し、さらに例えばアルミニウムからなる下層配線層2
を4000人の厚さに、続いて例えば白金による貴金属
層1を100人の厚さにDCマグネトロンスパッタリン
グ法により形成する。
First, as shown in FIG. 1a, an insulating film substrate 3 such as silicon oxide (SiO□) is formed on a semiconductor substrate 4 such as silicon, and a lower wiring layer 2 made of aluminum, for example.
Then, a noble metal layer 1 made of, for example, platinum is formed to a thickness of 100 mm by DC magnetron sputtering.

次にフォトリソグラフィ工程とRIE工程とにより、貴
金属層1と下層配線層2をともにエツチングして第1図
すに示すように配線パターンを残す。
Next, by a photolithography process and an RIE process, both the noble metal layer 1 and the lower wiring layer 2 are etched, leaving a wiring pattern as shown in FIG.

続けて第1図Cに示すように、例えばPSG(Phos
pho−silicate glass)からなる眉間
絶縁膜5をCVD法により堆積し、次にフォトリソグラ
フィ工程、そしてCHFff等フッ素系ガスとアルゴン
ガスおよび酸素ガスの混合ガスによるRIE工程により
、下層配線パターン上にコンタクトホール6を開口する
Next, as shown in FIG. 1C, for example, PSG (Phos
A glabellar insulating film 5 made of (pho-silicate glass) is deposited by the CVD method, followed by a photolithography process and an RIE process using a mixed gas of fluorine gas such as CHFff, argon gas, and oxygen gas to form a contact on the lower wiring pattern. Open hole 6.

引き続き第1図dに図示するごとく、例えばタングステ
ンの選択CVDにより、高融点金属7をコンタクトホー
ル6底面に露出した貴金属層1上に選択的に析出および
成長させ、コンタクトホール6の中を埋め込む。タング
ステンの選択CVDは、例えばソースガスとしてWF、
をIO3CCM、キャリアガスとして5iHaを6 S
CCMおよびH2を1100O−ec流し、260°C
10,2Torrの減圧CVD法によった。
Subsequently, as shown in FIG. 1d, a high melting point metal 7 is selectively deposited and grown on the noble metal layer 1 exposed at the bottom of the contact hole 6 by selective CVD of, for example, tungsten, thereby filling the inside of the contact hole 6. Selective CVD of tungsten can be performed using, for example, WF as a source gas,
IO3CCM, 5iHa as carrier gas 6S
Flow CCM and H2 at 1100O-ec, 260°C
A low pressure CVD method at 10.2 Torr was used.

さらに、第1図eに示すように、高融点金属7および層
間絶縁膜5上に、例えばアルミニウムやアルミニウム合
金による上層配線層8を形成し、多層配線が完成される
Furthermore, as shown in FIG. 1e, an upper wiring layer 8 made of, for example, aluminum or an aluminum alloy is formed on the high melting point metal 7 and the interlayer insulating film 5, thereby completing the multilayer wiring.

以上、本発明の実施例につき詳述したが、貴金属N1の
材料としては、本実施例に用いた白金(P L)の他に
、ルテニウム(Ru)、ロジウム(Rh)、パラジウム
(Pd)、オスミウム(O3)およびイリジウム(Ir
)のごとき周期表第■族に族する白金族元素または第1
b族のAuまたはこれらの金属の合金を用いることが可
能であり、スパッタリングまたは真空蒸着等によって貴
金属層を形成すればよい。要はコンタクトホール開口の
RIE工程および高融点金属の選択CVD工程において
、酸化物やフッ化物のごとき絶縁物層を形成しない不活
性な金属であれば本発明の課題が達成される。
The embodiments of the present invention have been described in detail above, but in addition to platinum (PL) used in this embodiment, the materials for the noble metal N1 include ruthenium (Ru), rhodium (Rh), palladium (Pd), Osmium (O3) and Iridium (Ir)
) or the platinum group elements of group 1 of the periodic table, such as
It is possible to use Au of Group B or an alloy of these metals, and the noble metal layer may be formed by sputtering, vacuum deposition, or the like. In short, in the RIE process for opening contact holes and the selective CVD process for refractory metals, the objects of the present invention can be achieved using inert metals that do not form an insulating layer, such as oxides or fluorides.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればアルミニウムやア
ルミニウム合金等からなる下層配線層上に、眉間絶縁膜
とコンタクトホールを形成し、ここにタングステン等の
高融点化合物を埋め込む多層配線形成法において、アル
ミニウムやアルミニウム合金等からなる下層配線層上に
貴金属層を50Å以上300Å以下の厚さに設けること
により、コンタクト抵抗値の小さな多層配線を信頼性高
く形成することが可能となった。
As explained above, according to the present invention, in a multilayer wiring formation method in which a glabellar insulating film and a contact hole are formed on a lower wiring layer made of aluminum, aluminum alloy, etc., and a high melting point compound such as tungsten is embedded in the contact hole, By providing a noble metal layer with a thickness of 50 Å or more and 300 Å or less on a lower wiring layer made of aluminum, aluminum alloy, etc., it has become possible to form multilayer wiring with low contact resistance with high reliability.

これにより、従来の技術ではコンタクト抵抗値が大きく
、信頼性に乏しかった多層配線技術の弱点を解消するこ
とができ、高集積度半導体プロセスに寄与するところが
大きい。
This makes it possible to overcome the drawbacks of conventional multilayer wiring technology, which has high contact resistance and poor reliability, and greatly contributes to highly integrated semiconductor processes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例の多層配線構造を示す断面図
、第2図は従来の多層配線構造の一例を示す断面図であ
る。 1−・−・−一−−−−−−貴金属層 2−−−−−−−・・・−・−下層配線層3−・−・−
=−絶縁膜基板 4・・・−−−−−・−一−−−−半導体基板5−・−
・−・−一−−−層間絶縁膜 6−・−−−−−−一−−−−−−コンタクトホール7
・・−・・・−・−一一−〜−高融点金属8−・−・−
・・−上層配線層 9−−−−−−−−シリコン層 不発e月の実施イ列の多層1己劫す齢造を示−tgiU
i図第 1 図 本発明の実施例の多M配線構造配示す釘面図第1図 イ芝来の多層西乙線構造の一イη1]を示すrIT面図
第2区
FIG. 1 is a sectional view showing a multilayer wiring structure according to an embodiment of the present invention, and FIG. 2 is a sectional view showing an example of a conventional multilayer wiring structure. 1-・-・-1--------Noble metal layer 2-------------Lower wiring layer 3--・--
=-Insulating film substrate 4...---------1---Semiconductor substrate 5--
・−・−1−−−Interlayer insulating film 6−・−−−−−−1−−−−−Contact hole 7
・・−・−・−11−〜−High melting point metal 8−・−・−
...-Upper layer wiring layer 9-----Indicates the aging of the multi-layer 1 in the row A when the silicon layer fails to explode-tgiU
Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1.

Claims (1)

【特許請求の範囲】 基板上に下層配線層および層間絶縁膜を順次形成し、次
にコンタクトホールを開口した後、該コンタクトホール
内に高融点金属を埋め込む多層配線形成法であって、 前記下層配線層上に貴金属層を設けることを特徴とする
多層配線形成法。
[Scope of Claims] A multilayer wiring formation method in which a lower wiring layer and an interlayer insulating film are sequentially formed on a substrate, and then a contact hole is opened, and then a high melting point metal is embedded in the contact hole, the method comprising: A multilayer wiring formation method characterized by providing a noble metal layer on a wiring layer.
JP201689A 1989-01-10 1989-01-10 Multilayer interconnection forming method Pending JPH02183535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP201689A JPH02183535A (en) 1989-01-10 1989-01-10 Multilayer interconnection forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP201689A JPH02183535A (en) 1989-01-10 1989-01-10 Multilayer interconnection forming method

Publications (1)

Publication Number Publication Date
JPH02183535A true JPH02183535A (en) 1990-07-18

Family

ID=11517552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP201689A Pending JPH02183535A (en) 1989-01-10 1989-01-10 Multilayer interconnection forming method

Country Status (1)

Country Link
JP (1) JPH02183535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316314A (en) * 1995-05-18 1996-11-29 Matsushita Electron Corp Semiconductor device and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316314A (en) * 1995-05-18 1996-11-29 Matsushita Electron Corp Semiconductor device and its production

Similar Documents

Publication Publication Date Title
US5985763A (en) Method for producing barrier-less plug structures
US5656860A (en) Wiring structure for semiconductor device and fabrication method therefor
US5910020A (en) Method for fabricating a semiconductor device having a refractory metal pillar for electrical connection
US6464779B1 (en) Copper atomic layer chemical vapor desposition
CN1316590C (en) A method for depositing a metal layer on a semiconductor interconnect structure having a capping layer
US6143657A (en) Method of increasing the stability of a copper to copper interconnection process and structure manufactured thereby
US6001683A (en) Formation method of interconnection in semiconductor device
KR20020072996A (en) Method for forming a metal plug
JP2002075994A (en) Semiconductor device and its manufacturing method
EP1760771A1 (en) Semiconductor device and method for fabricating the same
US20020105405A1 (en) Method of fabricating silver inductor
US6274932B1 (en) Semiconductor device having metal interconnection comprising metal silicide and four conductive layers
EP0587400A2 (en) Manufacture of interconnections in semiconductor devices
JP2573621B2 (en) Method of manufacturing electrical interconnect
JPH07135186A (en) Manufacture of semiconductor device
JP4829389B2 (en) Method for forming wiring of semiconductor element
JPH02183535A (en) Multilayer interconnection forming method
US5247204A (en) Semiconductor device having multilayer interconnection structure
JP2737762B2 (en) Method for manufacturing semiconductor device
JPH1174484A (en) Method for contact of noble metal electrode with silicon, material and structure
JPH04340254A (en) Manufacture of semiconductor device
JPH05211237A (en) Manufacture of semiconductor device
JPH06291194A (en) Manufacture for semiconductor device
JPH08203899A (en) Fabrication of semiconductor device
JPH0272629A (en) Manufacture of semiconductor device