JPH02183236A - Light timing extracting circuit - Google Patents

Light timing extracting circuit

Info

Publication number
JPH02183236A
JPH02183236A JP1002583A JP258389A JPH02183236A JP H02183236 A JPH02183236 A JP H02183236A JP 1002583 A JP1002583 A JP 1002583A JP 258389 A JP258389 A JP 258389A JP H02183236 A JPH02183236 A JP H02183236A
Authority
JP
Japan
Prior art keywords
light
signal light
input signal
semiconductor laser
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1002583A
Other languages
Japanese (ja)
Inventor
Masabumi Koga
正文 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1002583A priority Critical patent/JPH02183236A/en
Publication of JPH02183236A publication Critical patent/JPH02183236A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4006Injection locking

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To making the power of extracted light timing light sufficiently large and not dependent upon the power of input signal light by providing a progressive waveform semiconductor laser amplifier in a Fabry-Perot type resonator. CONSTITUTION:A single mode fiber 6a, a dielectric multilayered film 7a, a SELFOC lens 5a, a semiconductor laser amplifier 4, a SELFOC lens 5b, a dielectric multilayered film 7b, and a single mode fiber 6b are arranged in the course of input signal light 8 in order. Here, when ASK-modulated signal light 8 is inputted to the light timing extracting circuit, the semiconductor laser amplifier 4 causes implantation synchronization and a mode lock phenomenon and the Fabry-Perot resonator consisting of the dielectric multilayered films 7a - 7b functions as a resonator providing amplifying operation internally, so that the timing light 9 is extracted and outputted. Consequently, the output power of the timing light 9 is intense and does not depend upon the intensity of the input signal light 8.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、光信号を電気に変換することなく、光クロッ
ク成分を抽出する光タイミング抽出回路に関するしので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical timing extraction circuit that extracts an optical clock component without converting an optical signal into electricity.

「従来の技術」 従来、入力信号光のクロック成分を抽出する場合、その
−手段として、第7図に示ずFabry−Per。
``Prior Art'' Conventionally, when extracting a clock component of input signal light, Fabry-Per, not shown in FIG.

を形共振器1が用いられていた。このP abry −
P erot形共振器lの内側面は鏡面状に研磨されて
おり、外部から入射された入力信号光がこれらの鏡面で
繰り返し反射されることにより、共振器i内において共
振現象か起きる。ここで、入力信号光2はRZ (Re
turn to Z ero)符号により変調されてい
る。そして、F abry −P erot形共振器l
は入力信号光2の変調周波数に合わけて共振器長しが決
められている。このP abry −P erot共振
器1に入力信号光2を入力すると、そのクロック成分が
抽出され、タイミング光3として出ツノされる。
A shaped resonator 1 was used. This Pabry -
The inner surface of the Perot-type resonator l is mirror-polished, and input signal light incident from the outside is repeatedly reflected by these mirror surfaces, thereby causing a resonance phenomenon within the resonator i. Here, the input signal light 2 is RZ (Re
(turn to zero) code. And Fabry-Perot type resonator l
The resonator length is determined according to the modulation frequency of the input signal light 2. When input signal light 2 is input to this P ary -Perot resonator 1 , its clock component is extracted and output as timing light 3 .

「発明が解決しようとする課題、j ところで、上述したF abry −P erot形共
振器は、抽出されるタイミング光のパワーが、その後に
接続される光識別回路、または光/電気変換器を動作さ
せるのに十分なものでないという問題があうj二。さら
に、入力信号光2のレベル変動に応じてタイミング光3
のレベルら変動するという間m1および、入力信号光2
において“0”(ローレベル)が連続するとタイミング
光3のレベルが減少するという問題があった。
``Problems to be Solved by the Invention'' By the way, the Fabry-Perot type resonator described above uses the power of the extracted timing light to operate an optical identification circuit or an optical/electrical converter connected afterwards. There is a problem that the timing light 3 is not sufficient to control the input signal light 2 depending on the level fluctuation of the input signal light 2.
m1 and the input signal light 2 fluctuate from the level of
There is a problem in that when "0" (low level) continues in , the level of the timing light 3 decreases.

この発明は上述した事情に鑑みてなされたものであり、
入力信号光のレベル変動がある場合においてら、十分、
かつ、安定したレベルのタイミング光を抽出することが
できる光タイミング抽出回路を提供することを目的とす
る。
This invention was made in view of the above circumstances,
Even when there are level fluctuations in the input signal light,
Another object of the present invention is to provide an optical timing extraction circuit that can extract timing light at a stable level.

「課題を解決するための手段」 上記課題を解決するため、この発明は、A S K (
A mpuliLude S hift K eyin
g)変調された入力信号光から光クロック成分を抽出す
る光タイミング抽出回路において、 前記ASK変調された入力信号光の変調周波数と一致し
た共振周波数を有するFabry−Perot形共振器
と、 前記共振器内部に配置された端面無反射コートの進行波
形半導体レーザ増幅器と を具備することを特徴とする。
"Means for Solving the Problems" In order to solve the above problems, the present invention is based on the ASK (
A mpuliLude Shift K eyin
g) An optical timing extraction circuit that extracts an optical clock component from modulated input signal light, comprising: a Fabry-Perot type resonator having a resonant frequency that matches the modulation frequency of the ASK-modulated input signal light; and the resonator. It is characterized by comprising a traveling wave semiconductor laser amplifier with an end face anti-reflection coating disposed inside.

「作用」 上記構成によれば、F abry −P eroL形共
振器内部に介装された進行波形半導体レーザ増幅器では
、モードロック現象と同期引き込み現象が起こる。
"Operation" According to the above configuration, a mode-locking phenomenon and a synchronous pull-in phenomenon occur in the traveling wave semiconductor laser amplifier interposed inside the Fabry-Pero L-type resonator.

従って、P abry −P erot形共振器は内部
に増幅作用を有する共振器として機能し、該共振器への
入力光のクロック成分が抽出されて出力される。
Therefore, the Pabry-Perot type resonator functions as a resonator that has an amplification effect inside, and the clock component of the light input to the resonator is extracted and output.

「実施例」 以下、図面を参照して本発明の詳細な説明する。"Example" Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例による先タイミング抽出回路
の構成図である。同図において、4は進行波形半導体レ
ーザ増幅器(SLA)、5aおよび5bはセルフォック
レンズ、6aおよび6bはシングルモードファイバ、7
aおよび7bは反射率を高める誘電体多層膜である。こ
れらの要素は、入力信号光8の進路上に、シングルモー
ドファイバ6a→誘電体多層膜7a→セルフォックレン
ズ5a→半導体レーザ増幅器4→セルフォックレンズ5
b→誘電体多層膜7b→シングルモードファイバ61)
の順に並べて配置されている。そして、誘電体多層膜7
a〜7b間がF abry −P erot共振器を構
成している。ここで、誘電体多層膜7a−7b間距離り
によって共振周波数が決定され、本実施例では入力信号
光の変調周波数fmとの間にI+n= C/ L (C
は光速(2,99x 10 I1m/s))の関係が成
り立つように誘電体多層膜7aおよび7bが配置されて
いる。
FIG. 1 is a block diagram of a previous timing extraction circuit according to an embodiment of the present invention. In the figure, 4 is a traveling wave semiconductor laser amplifier (SLA), 5a and 5b are Selfoc lenses, 6a and 6b are single mode fibers, and 7
a and 7b are dielectric multilayer films that increase reflectance. These elements are arranged on the path of the input signal light 8 from the single mode fiber 6a to the dielectric multilayer film 7a to the Selfoc lens 5a to the semiconductor laser amplifier 4 to the Selfoc lens 5.
b → dielectric multilayer film 7b → single mode fiber 61)
They are arranged in the following order. Then, the dielectric multilayer film 7
The space between a and 7b constitutes a Fabry-Perot resonator. Here, the resonance frequency is determined by the distance between the dielectric multilayer films 7a and 7b, and in this embodiment, the distance between the modulation frequency fm of the input signal light and the modulation frequency fm is I+n=C/L (C
The dielectric multilayer films 7a and 7b are arranged so that the relationship of the speed of light (2,99× 10 I1 m/s) holds true.

この構成において半導体レーザ増幅器4に電流を注入す
ると、半導体レーザ増幅器4は発振状態となってCW 
(Cont 1nuous W ave ;連続波)光
を出力ずろ。この場合、半導体レーザ増幅器4の出力先
のスペクトルとしては、第2図に示すものが得られる。
In this configuration, when a current is injected into the semiconductor laser amplifier 4, the semiconductor laser amplifier 4 enters the oscillation state and CW
(Continuous Wave; Continuous Wave) Output shift of light. In this case, the spectrum shown in FIG. 2 is obtained as the output spectrum of the semiconductor laser amplifier 4.

同図に示すように、発振縦モードのモード間隔は、約f
n+GH2となる。ただし、注入キャリア密度に基づく
屈折率分散のため、このモード間隔は等間隔とはならな
い。また、縦モード間の位相関係もでたらめである。
As shown in the figure, the mode spacing of the oscillation longitudinal mode is approximately f
It becomes n+GH2. However, due to refractive index dispersion based on the injected carrier density, the mode spacing is not equal. Furthermore, the phase relationship between longitudinal modes is also random.

さて、この光タイミング抽出回路にASK変調された信
号光8を入力すると、半導体レーザ増幅器4においてモ
ードロック現象が生じる。以下、この現象について説明
する。
Now, when the ASK-modulated signal light 8 is input to this optical timing extraction circuit, a mode-locking phenomenon occurs in the semiconductor laser amplifier 4. This phenomenon will be explained below.

まず、周波数fmGHzでASK変調された信号光の光
の場(J(r、t)は、下記式(1)に従う。
First, the optical field (J(r, t)) of the signal light ASK-modulated at the frequency fmGHz follows the following equation (1).

%式%) )] )] ここで、A(r)は光の場の振幅、aは変調度、φは位
相、ω。=2π「mである。上記式(1)を見ると、光
のキャリア角周波数ωmに対し側帯波が生じるのがわか
る。この様子を第3図に示す。
% formula %))])] where A(r) is the amplitude of the optical field, a is the modulation degree, φ is the phase, ω. =2π"m. Looking at the above equation (1), it can be seen that a sideband wave is generated with respect to the carrier angular frequency ωm of light. This situation is shown in FIG.

二の側帯波を有する入力信号光8がシイグルモードファ
イバ6a、誘電体多層膜7aおよびセルフォックレンズ
5aを経て半導体レーザ4に入射される。この場合、光
の場の周波数r0が半導体レーザ4の発振縦モードI’
j(j= i −3、i −2、・・・)にほぼ一致す
ることが重要な条件となる。そして、この条件を満足し
た状態において、半導体レーザ増幅器4では注入同期現
象が生じ、fjはfoに引き込まれる。この場合の注入
同期幅については、例えば末末安晴著“半導体レーザと
引き集積回路”に詳細に記されている。同様の注入同期
現象は側帯周波数r0±fa+についても生じる。すな
わち、側帯波成分が増幅され、さらに隣のモードに側帯
波か生じて増幅されるという連鎖反応が生じる。このよ
うにして生じた同期現象は各縦モード間の位相をそろえ
、また周波数間隔を一定に保つ結果を導く。
Input signal light 8 having two sidebands is incident on semiconductor laser 4 through single-mode fiber 6a, dielectric multilayer film 7a, and SELFOC lens 5a. In this case, the frequency r0 of the optical field is the oscillation longitudinal mode I' of the semiconductor laser 4.
An important condition is that the values almost match j (j=i −3, i −2, . . . ). When this condition is satisfied, an injection locking phenomenon occurs in the semiconductor laser amplifier 4, and fj is pulled into fo. The injection locking width in this case is described in detail in, for example, "Semiconductor Lasers and Integrated Circuits" by Yasuharu Suesue. A similar injection locking phenomenon also occurs for sideband frequencies r0±fa+. That is, a chain reaction occurs in which the sideband component is amplified, and a sideband is further generated in the adjacent mode and amplified. The synchronization phenomenon thus generated leads to aligning the phases between the longitudinal modes and keeping the frequency intervals constant.

このようにモードロックされて出力される信号光9のパ
ワーは、注入電流か大きくなると入力信号光8のレベル
に依存しなくなる。第4図は文献”S、Kobayas
hi and T、kimura、IEEE J、Qu
antum Electron、、QE−17,5,P
P、681−689(1981)”から引用した半導体
レーザにおけろ出力パワーと注入電流の関係を示すデー
タである。この図において、横軸は発振しきい値で規格
化した注入電流、縦軸は光タイミング抽出回路の自走発
振パワーで規格化した出力パワーを示している。なお、
この図には、入カバワーをパラメータとして求めた理論
値か実線および破線で描かれている。この図を見ると、
注入電流を多くするほど、出力パワーが自走発振パワー
に近づくのがわかる。この自走発振パワーは数IIIW
のパワーとなる。
The power of the signal light 9 outputted after being mode-locked in this way becomes independent of the level of the input signal light 8 as the injection current increases. Figure 4 shows the literature “S, Kobayas
hi and T, kimura, IEEE J, Qu
antum Electron, QE-17,5,P
This is data showing the relationship between output power and injection current in a semiconductor laser, quoted from ``P., 681-689 (1981)''. In this figure, the horizontal axis is the injection current normalized to the oscillation threshold, and the vertical axis is the injection current normalized to the oscillation threshold. indicates the output power normalized by the free-running oscillation power of the optical timing extraction circuit.
In this figure, the theoretical values determined using the input power as a parameter are drawn with solid lines and broken lines. Looking at this diagram,
It can be seen that as the injected current increases, the output power approaches the free-running oscillation power. This free-running oscillation power is several IIIW
It becomes the power of

このように半導体レーザ増幅器4において注入量□期と
モードロック現象が起こるため誘電体多層膜7a〜7b
で構成されるF abry −P erot#振器は、
内部に増幅作用を有する共振器として機能する。
In this way, the mode-locking phenomenon occurs in the semiconductor laser amplifier 4 with the injection amount □ period, so the dielectric multilayer films 7a to 7b
The Fabry-Perot# shaker is composed of
It functions as a resonator with an internal amplification effect.

従って、第5図に示すように、速度fmGbit/sの
RZ符号でASK変調された信号光をこの光タイミング
抽出回路に入力信号光8として入力した場合、第6図に
示す周波数rI11のタイミング光9が抽出されて出力
されることになる。ここで、このタイミング光9の出力
パワーが数1IIWと強く、入力信号光8の強度に依存
しない。
Therefore, as shown in FIG. 5, when a signal light ASK-modulated with an RZ code with a speed fmGbit/s is input to this optical timing extraction circuit as an input signal light 8, the timing light with a frequency rI11 shown in FIG. 9 will be extracted and output. Here, the output power of this timing light 9 is as strong as several IIW and does not depend on the intensity of the input signal light 8.

なお、上述した実施例では入力信号光がASK変調され
ている場合について説明したが、入力信号光として正弦
波変調された信号光を注入し、半導体レーザの注入電流
を発振しきい値以下に設定すると、Fabry−Per
ot#、振縦モードが半導体レーザの広い利得分布全体
、すなわち、約6Tυz(50nm)にわたってモード
ロックを受けることとなる。従って、極短パルス(サブ
ピコ秒パルス)を生成することも可能となる。
In the above embodiment, the case where the input signal light is ASK modulated has been explained, but it is also possible to inject a sinusoidally modulated signal light as the input signal light and set the injection current of the semiconductor laser below the oscillation threshold. Then, Fabry-Per
The ot# and longitudinal modes are model-locked over the entire wide gain distribution of the semiconductor laser, that is, about 6 Tυz (50 nm). Therefore, it is also possible to generate extremely short pulses (sub-picosecond pulses).

「発明の効果」 以上説明したように、この発明によれば、ASK変調さ
れた入力信号光の変調周波数と一致した共振周波数を有
するPabry−Perot形共振器と、前記共振器内
部に配置された端面無反射コートの進行波形半導体レー
ザ増幅器とを設けたので、抽出された光タイミング光の
パワーが十分強く、また入力信号光パワーに依存しない
という利点が得られる。また、この発明によれば、極短
パルスを生成することができるから、極短パルス発生回
路としても用いることができろ。
"Effects of the Invention" As explained above, according to the present invention, there is provided a Pabry-Perot type resonator having a resonant frequency that matches the modulation frequency of the ASK-modulated input signal light; Since the traveling wave semiconductor laser amplifier with the end face anti-reflection coating is provided, the power of the extracted optical timing light is sufficiently strong and there is an advantage that it does not depend on the input signal light power. Further, according to the present invention, since extremely short pulses can be generated, it can also be used as an extremely short pulse generation circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による光タイミング抽出回
路の構成図、第2図は同実施例におけろ光タイミング抽
出回路からの発光スペクトルを示す図、第3図は同実施
例におけるASK変調された入力信号光の光スペクトル
を示す図、第4図は半導体レーザにおける出力光パワー
と入力信号光パワーとの関係を説明する図、第5図は同
実施例におけるrlZ符号で変調された入力信号光を示
す図、第6図は本光タイミング抽出回路で抽出されたタ
イミング光を示す図、第7図はFabry−Perot
共振器を用いた従来の光タイミング抽出回路である。 4・・・・・・進行波形半導体レーザ増幅器5 a、 
5 b・・・・・・セルフ中ツタレンズ6 a、 6 
b・・・・・・シングルモードファイバー’la、7b
・・・・・・高反射率誘電体多層膜第3図 第4図 射I脳’12帛Tし!入@光r/1市 弔5図 第6図 iイ、− 第7図 =、=
FIG. 1 is a configuration diagram of an optical timing extraction circuit according to an embodiment of the present invention, FIG. 2 is a diagram showing an emission spectrum from the optical timing extraction circuit in the same embodiment, and FIG. 3 is an ASK diagram in the same embodiment. FIG. 4 is a diagram showing the optical spectrum of the modulated input signal light, FIG. 4 is a diagram explaining the relationship between the output optical power and the input signal optical power in the semiconductor laser, and FIG. 5 is the diagram showing the optical spectrum of the modulated input signal light. Figure 6 shows the input signal light, Figure 6 shows the timing light extracted by the optical timing extraction circuit, Figure 7 shows the Fabry-Perot
This is a conventional optical timing extraction circuit using a resonator. 4... Traveling wave semiconductor laser amplifier 5a,
5 b...Selfie medium ivy lens 6 a, 6
b...Single mode fiber 'la, 7b
・・・・・・High reflectance dielectric multilayer film Figure 3 Figure 4 Figure I Brain '12 T! Enter @ Hikari r/1 City Funeral 5 Figure 6 i-i, - Figure 7 =, =

Claims (1)

【特許請求の範囲】 ASK変調された入力信号光から光クロック成分を抽出
する光タイミング抽出回路において、前記ASK変調さ
れた入力信号光の変調周波数と一致した共振周波数を有
するFabry−Perot形共振器と、 前記共振器内部に配置された端面無反射コートの進行波
形半導体レーザ増幅器と を具備することを特徴とする光タイミング抽出回路。
[Scope of Claims] In an optical timing extraction circuit that extracts an optical clock component from an ASK-modulated input signal light, a Fabry-Perot type resonator having a resonant frequency matching the modulation frequency of the ASK-modulated input signal light is provided. and a traveling wave semiconductor laser amplifier with an end face anti-reflection coating disposed inside the resonator.
JP1002583A 1989-01-09 1989-01-09 Light timing extracting circuit Pending JPH02183236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002583A JPH02183236A (en) 1989-01-09 1989-01-09 Light timing extracting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002583A JPH02183236A (en) 1989-01-09 1989-01-09 Light timing extracting circuit

Publications (1)

Publication Number Publication Date
JPH02183236A true JPH02183236A (en) 1990-07-17

Family

ID=11533394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002583A Pending JPH02183236A (en) 1989-01-09 1989-01-09 Light timing extracting circuit

Country Status (1)

Country Link
JP (1) JPH02183236A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602862A (en) * 1991-05-07 1997-02-11 British Telecommunications Public Limited Company Optical clock extraction
US5761228A (en) * 1995-12-15 1998-06-02 Nec Corporation Optical clock regenerator
US6078416A (en) * 1996-01-12 2000-06-20 Nec Corporation Optical regenerative repeater
KR20060127660A (en) * 2005-06-08 2006-12-13 한국전자통신연구원 Apparatus for clock extraction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602862A (en) * 1991-05-07 1997-02-11 British Telecommunications Public Limited Company Optical clock extraction
US5761228A (en) * 1995-12-15 1998-06-02 Nec Corporation Optical clock regenerator
US6078416A (en) * 1996-01-12 2000-06-20 Nec Corporation Optical regenerative repeater
KR20060127660A (en) * 2005-06-08 2006-12-13 한국전자통신연구원 Apparatus for clock extraction

Similar Documents

Publication Publication Date Title
US10454238B2 (en) Systems and methods for low noise frequency multiplication, division, and synchronization
Wu et al. High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser
Yao et al. Coupled optoelectronic oscillators for generating both RF signal and optical pulses
KR0149127B1 (en) A hybrid-type passively and actively mode-locked laser scheme
EP1493212A2 (en) Atomic clock based on an opto-electronic oscillator
US5926492A (en) Laser pulse oscillator
US5761228A (en) Optical clock regenerator
JPH08340154A (en) Generation of optical pulse and device
JP3772650B2 (en) Method and apparatus for driving mode-locked semiconductor laser
CN110970785B (en) Coherent swept-frequency light source with enhanced Fourier domain injection locking
JPH02183236A (en) Light timing extracting circuit
JPH09139536A (en) Laser pulse oscillator
CN114284839B (en) Active mode locking photoelectric oscillator based on injection locking technology
JPH0613981A (en) Optical timing extraction circuit
US5598425A (en) High stability ultra-short sources of electromagnetic radiation
CN210326460U (en) Frequency-tunable photoelectric oscillator of cascade active ring filter
JP2697640B2 (en) Optical clock generator
JPH08160475A (en) Superhigh-speed optical solinton pulse generating device
JP3092757B2 (en) Optical pulse laser frequency division synchronization signal generator
Ramirez et al. Optical linewidth and RF phase noise reduction of a chip-scale CPM laser using COEO multi-tone injection locking
Roos et al. Using an injection-locked diode laser to pump a cw Raman laser
JPH04163532A (en) Light clock extraction circuit
JP3239826B2 (en) Optical clock generator
JP2710517B2 (en) Ring laser type short optical pulse generator
JP3055735B2 (en) Passive mode-locked semiconductor laser device