JPH02183231A - Material for organic nonlinear optical element and organic nonlinear optical thin-film formed by using this material - Google Patents

Material for organic nonlinear optical element and organic nonlinear optical thin-film formed by using this material

Info

Publication number
JPH02183231A
JPH02183231A JP261089A JP261089A JPH02183231A JP H02183231 A JPH02183231 A JP H02183231A JP 261089 A JP261089 A JP 261089A JP 261089 A JP261089 A JP 261089A JP H02183231 A JPH02183231 A JP H02183231A
Authority
JP
Japan
Prior art keywords
alkyl group
group
optically active
nonlinear optical
formulas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP261089A
Other languages
Japanese (ja)
Other versions
JP2742697B2 (en
Inventor
Toru Maruno
透 丸野
Shoichi Hayashida
尚一 林田
Takeshi Sukegawa
助川 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1002610A priority Critical patent/JP2742697B2/en
Publication of JPH02183231A publication Critical patent/JPH02183231A/en
Application granted granted Critical
Publication of JP2742697B2 publication Critical patent/JP2742697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the material for the nonlinear optical element which is excellent in both nonlinearity and orientability by using specific compds. alone or in combination with other compds. CONSTITUTION:The compds. expressed by the formulas I to IV are used alone or in combination with the other compds. In the formulas I to IV, R denotes an alkyl group or alkyl group contg. fluorine; R* denotes an optically active alkyl group or optically active alkyl group contg. an ether bond or optically active alkyl group contg. a halogen atom; X, Y denote hydrogen, halogen, hydroxyl group, cyano group, nitro group, amino group, dimethyl amino group; j, k, l denote 0 or 1. The material for the nonlinear optical element which is excellent in both the optical nonlinearity and orientability is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機非線形光学素子用材料およびこれを用いて
作製した有機非線形光学薄膜に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a material for organic nonlinear optical elements and an organic nonlinear optical thin film produced using the same.

(従来の技術および問題点) オプトエレクトロニクスの分野では二次の有機非線形光
学材料の開発が盛んに行なわれている。
(Prior Art and Problems) In the field of optoelectronics, second-order organic nonlinear optical materials are being actively developed.

これらの材料のうち、例えば、長鎖系のニトロアゾベン
ゼンのようにバルクの結晶状態で中心対称性を有する化
合物は二次の光非線形性(SecondHarmoni
c Generation、 、SHG )を示さない
が、配向によって対称構造を崩すことにより光非線形性
を示すようになること(文献例: O,A、Aktsi
petrov、 N、N、Akhmediev、 E、
D、Mishina、 V、R,Novak、 JET
P Lett、、 37,207−209(1983)
)が知られている。
Among these materials, compounds that have central symmetry in the bulk crystalline state, such as long-chain nitroazobenzene, exhibit second-order optical nonlinearity (Second Harmoni).
c Generation, , SHG ), but by breaking the symmetric structure due to orientation, optical nonlinearity is exhibited (Literature example: O, A, Aktsi
petrov, N.N., Akhmediev, E.
D, Mishina, V, R, Novak, JET
P Lett, 37, 207-209 (1983)
)It has been known.

また、分子配向の秩序度が高いほど380強度が大きく
なることも知られている。すなわち、配向薄膜とするこ
とで非線形性の発現が期待できるばかりでなく、より大
きな380強度を得ることも可能となる。また、配向薄
膜では分子の不規則性に起因する透過光の散乱を小さく
できるため非線形光導波路とした場合の光損失を低減で
きるという特徴もある。このため、実用的な非線形光学
材料の実現に向けて、高配向薄膜が形成可能な材料の開
発が重要な課題となってきている。従来、光非線形性と
配向性の双方に優れる材料を得るため、すてに配向性に
優れることが知られている液晶材料の光非線形性が検討
されてきた。中でも、分子内にカイラル置換基を有する
強誘電性液晶およびその類似化合物は、中心対称性がな
いため非線形光学材料への展開が期待されている(文献
例:N。
It is also known that the higher the order of molecular orientation, the higher the 380 strength. That is, by forming an oriented thin film, not only can the expression of nonlinearity be expected, but also it is possible to obtain a larger 380 intensity. In addition, since the oriented thin film can reduce the scattering of transmitted light due to molecular irregularity, it also has the characteristic that it can reduce optical loss when used as a nonlinear optical waveguide. Therefore, in order to realize practical nonlinear optical materials, the development of materials that can form highly oriented thin films has become an important issue. Conventionally, in order to obtain materials that are excellent in both optical nonlinearity and orientation, the optical nonlinearity of liquid crystal materials, which are known to have excellent orientation, has been studied. Among them, ferroelectric liquid crystals and their similar compounds that have chiral substituents in their molecules are expected to be developed into nonlinear optical materials because they lack central symmetry (Reference example: N.

M、5htykov、 M−I−Barnik、 L、
ABeresnev、 L、M、B11nov、 Mo
1.Cryst、Liq、Cryst、、 124.3
79−390(1985)) 、これまでに報告されて
いる光非線形性を示す強誘電性液晶材料の主な例を第1
表に示す。しかし、第1表の液晶化合物は粉末法により
測定した結晶状態での光非線形性が測定限界以下であり
(第2表、IA、IB)、液晶セル中で電場を印加して
配向させた状態でもカ2′が10−”esu程度の小さ
な光非線形しか示さず、実用素子作製に供せるものでは
なかった。
M, 5htykov, M-I-Barnik, L,
ABeresnev, L, M, B11nov, Mo
1. Cryst, Liq, Cryst,, 124.3
79-390 (1985)), the main examples of ferroelectric liquid crystal materials exhibiting optical nonlinearity that have been reported so far are listed in the first section.
Shown in the table. However, the optical nonlinearity of the liquid crystal compounds shown in Table 1 in the crystal state measured by the powder method is below the measurement limit (Table 2, IA, IB), and the state of alignment by applying an electric field in the liquid crystal cell However, it exhibited only a small optical nonlinearity of about 10-''esu, and could not be used for producing practical devices.

第1表 第2表 (問題点を解決するための手段) 本発明者らは、光非線形と配向性の双方に優れる素子用
材料を見いだすため、液晶性を示す非線形光学材料につ
いての探索を行なった結果、本発明に到達した。
Table 1 Table 2 (Means for solving problems) In order to find a material for an element that is excellent in both optical nonlinearity and orientation, the present inventors conducted a search for nonlinear optical materials that exhibit liquid crystallinity. As a result, we have arrived at the present invention.

本発明は、下記一般式(I)、(II)、(III)お
よび(rV) (式中、Rはアルキル基またはフッ素を含むアルキル基
、R′″は光学活性アルキル基、もしくはエーテル結合
を含む光学活性アルキル基、もしくはハロゲン原子を含
む光学活性アルキル基、X、Yは水素、ハロゲン、水酸
基、シアノ基、ニトロ基、アミノ基、ジメチルアミノ基
、またはRCONH基(R。
The present invention relates to the following general formulas (I), (II), (III) and (rV) (wherein, R is an alkyl group or an alkyl group containing fluorine, and R''' is an optically active alkyl group or an ether bond). or an optically active alkyl group containing a halogen atom, X and Y are hydrogen, halogen, hydroxyl group, cyano group, nitro group, amino group, dimethylamino group, or RCONH group (R

はアルキル基)、j、に、lは0または1)で示される
化合物を単独で、もしくは他の化合物と混合して用いる
ことを特徴とする有機非線形光学素子用材料およびこれ
らを使用して作製した有機非線形光学薄膜である。
is an alkyl group), j, and l is 0 or 1), used alone or in combination with other compounds, and materials for organic nonlinear optical elements, and fabricated using the same. This is an organic nonlinear optical thin film.

本発明の一般式(I)〜(IV)で示した、液晶性を示
す非線形光学素子用材料としては、例えば、下記の構造
の化合物を具体例としてあげることができる。
Specific examples of the materials for nonlinear optical elements exhibiting liquid crystallinity represented by general formulas (I) to (IV) of the present invention include compounds having the following structures.

(以下余白) n=7.8,9,10,12. p=o山2,3,4,
5. m−2,3,6n−10,p−0,でm−2のと
き化合物ICn=7.8,9,10.12. p=o、
I 、2,3,4,5. m−2,3,6n−7,8,
9,10,I2. p=o、1,2,3,4,5. m
−2,3,6n−8,p−0,m−2のとき化合物ID
n=7.8,9,10,12. p=o山2,3,4,
5. mm2,3.6n=7.8,9,10,12. 
p−0山2,3,4,5. m−1,2,3,6n=7
.8,9,10.)2. p−0,1,2,3,4,5
,m−2,3,6n=7.8,9.to、12. p−
0,1,2,3,4,5,m=2.3.6n=7.8,
9,10,12. p−0,1,2,3,4,5,m−
2,3,6n=7.8,9,10,12. p=o、I
、2,3,4,5. m=2.3.6n=7.8,9,
10,12.p−0,1,2,3,4,5,m−1,2
,3,6nm7,8,9,10,12. pmO,1,
2,3,4,5,m−2,3,6nw7,8,9,10
,12. p=0山2,3,4,5. m−2,3,6
n−7,Il!、9JO,12,p−0,1,2,3,
4,5,m=2.3.6nm4,5,6,7,8,9,
11. p−0,1,2,3,4,5,m−2,3,6
n−7,8,9,10,12,p−0,1,2,3,4
,5,m=1.2,3.6n=7.8,9.IQ、!2
. p=o山2,3,4,5. m−1,2,3,6n
=7.8,940,12. p−0,1,2,3,4,
5,mm2,3.6n=7.8,9,10,12.p=
o山2,3,4,5.m−λ3.6n=7.8,9,1
0,12. pmo、1,2,3,4,5. m−2,
3,6物IF H n=7.8,9,10,12. p=o山2,3,4,
5. m−2,3,6n=7.8,9,10,12. 
p−0,1,2,3,4,5,m−2,3,6n”フ、
8,9,10,12.p−0,1,2,3,4,5,m
−2,3,6n=7.8,9,10,12. p−0,
1,2,3,4,5,m=2.3.6nm7,8,9,
10,12. p=0.1,2,3,4,5. m=2
.3.6n=7.8,9,10.+2. p=o山2,
3,4,5. m−2,3,6n=7.8,9.)0,
12. p=o、12,3,4,5. m−2,3,6
n=7.8,9,10,12. p=o、I、2,3,
4,5. m=2.3.6n=7.8,9,10,12
. p=o山2,3,4,5. m=2.3.6ただし
n−12,p=1.m−2は化合物10n=7.8,9
,10.+2. p−0,1,2,3,4,5,m−2
,3,6n−7,8,9,IQ、12.p=oj、2,
3,4,5.m−2,3,6n=7.8,9,10,1
2. p=o山2,3,4,5. m=2.3.6n−
7,8,9,10,12,p=0.!、2,3,4,5
. m=2.3.6n=7.8,9. +0.12. 
p=0山2,3,4,5. m−2,3,6n=6.7
,8,9.11. p−0山2,3,4,5. m−2
,3,6n−7,8,9,10,12,p=o山2,3
,4,5. m−1,2,3,6n=7.8,940.
+2. p=o、l、2,3,4,5. m=2.3.
6n=7.8,9,10,12. p−0II、2,3
,4,5. m−1,2,3,6n=7.8,9,10
,12. p−0,1,2,3,4,5,mm2,3.
6CH3CONH n−7,8,9,10,12,p=0.1,2,3,4
,5. m−2,3,6n=7.8,9,10,12.
 p=0.!、2,3,4,5. m−2,3,6n−
7,8,9,10,+2. p=0山2,3,4,5.
 m−2,3,6n=7.8,9,10,12. p=
0山2,3,4,5. m−2,3,6n=7.8,9
,10,12. p=0.!、2,3,4,5. m=
2.3.6nx7,8,9,10,12. pxO,1
,2,3,4,5,m−2,3,6ただしn−8,p−
1,m−2は化合物IHnx6,7,8,941. p
−0,1,2,3,4,5,m−2,3,6nm7.I
ll、9,10.+2. pmo、!、2,3,4,5
. m−1,2,3,6n=7.8,9,10,12.
 p=0.I、2,3,4,5. m=1.2,3.6
n=7.8,9,10,12. p−0,1,2,3,
4,5,m=2.3.6H2 n=7.8,9,10,12. p=0.1,2,3,
4,5. m=2.3.6p=7.8,9,10.12
. p−0,1,2,3,4,5,m−2,3,6n=
7J、9,10,12. p−0,1,2,3,4,5
,m−2,3,6n=7.8,9,10,12. pm
o、1,2,3,4,5. m−2,3,6n=7.8
,9,10,12. p−0,1,2,3,4,5,m
−2,3,6n=7.8,9.tO,12,p=0.1
,2,3,4,5. m4,3.6r n−6,7,8,9,11,p−0,1,2,3,4,
5,rn=2.3.6n=7.8,9,10,12. 
pmo、1,2,3,4,5. rn−2,3,6n=
7.8,9,10,12. p=o山2,3,4,5.
 m−2,3,6n=7.8,9,10,12. p−
Oj、2,3,4,5. m−2,3,6なお、本発明
の一般式(I)〜(IV)式で示される、液晶性を示す
非線形光学素子用材料の光学活性置換基はR一体、S一
体のどちらでもよいことは言うまでもない。
(Left below) n=7.8, 9, 10, 12. p=o mountain 2, 3, 4,
5. m-2,3,6n-10,p-0, and when m-2, compound ICn=7.8,9,10.12. p=o,
I, 2, 3, 4, 5. m-2,3,6n-7,8,
9,10,I2. p=o, 1, 2, 3, 4, 5. m
Compound ID when -2,3,6n-8,p-0,m-2
n=7.8, 9, 10, 12. p=o mountain 2, 3, 4,
5. mm2, 3.6n=7.8, 9, 10, 12.
p-0 mountain 2, 3, 4, 5. m-1, 2, 3, 6n=7
.. 8,9,10. )2. p-0, 1, 2, 3, 4, 5
, m-2,3,6n=7.8,9. to, 12. p-
0,1,2,3,4,5,m=2.3.6n=7.8,
9, 10, 12. p-0,1,2,3,4,5,m-
2, 3, 6n=7.8, 9, 10, 12. p=o,I
, 2, 3, 4, 5. m=2.3.6n=7.8,9,
10,12. p-0,1,2,3,4,5,m-1,2
,3,6nm7,8,9,10,12. pmO,1,
2,3,4,5,m-2,3,6nw7,8,9,10
,12. p=0 mountain 2, 3, 4, 5. m-2, 3, 6
n-7, Il! ,9JO,12,p-0,1,2,3,
4,5,m=2.3.6nm4,5,6,7,8,9,
11. p-0,1,2,3,4,5,m-2,3,6
n-7, 8, 9, 10, 12, p-0, 1, 2, 3, 4
,5,m=1.2,3.6n=7.8,9. IQ! 2
.. p=o mountain 2, 3, 4, 5. m-1, 2, 3, 6n
=7.8,940,12. p-0, 1, 2, 3, 4,
5, mm2, 3.6n=7.8, 9, 10, 12. p=
O mountain 2, 3, 4, 5. m-λ3.6n=7.8,9,1
0,12. pmo, 1, 2, 3, 4, 5. m-2,
3,6 IF H n=7.8,9,10,12. p=o mountain 2, 3, 4,
5. m-2, 3, 6n=7.8, 9, 10, 12.
p-0,1,2,3,4,5,m-2,3,6n'',
8, 9, 10, 12. p-0,1,2,3,4,5,m
-2,3,6n=7.8,9,10,12. p-0,
1,2,3,4,5,m=2.3.6nm7,8,9,
10,12. p=0.1, 2, 3, 4, 5. m=2
.. 3.6n=7.8,9,10. +2. p=o mountain 2,
3, 4, 5. m-2,3,6n=7.8,9. )0,
12. p=o, 12, 3, 4, 5. m-2, 3, 6
n=7.8, 9, 10, 12. p=o, I, 2, 3,
4,5. m=2.3.6n=7.8,9,10,12
.. p=o mountain 2, 3, 4, 5. m=2.3.6, but n-12, p=1. m-2 is the compound 10n=7.8,9
,10. +2. p-0,1,2,3,4,5,m-2
,3,6n-7,8,9,IQ,12. p=oj, 2,
3, 4, 5. m-2,3,6n=7.8,9,10,1
2. p=o mountain 2, 3, 4, 5. m=2.3.6n-
7, 8, 9, 10, 12, p=0. ! , 2, 3, 4, 5
.. m=2.3.6n=7.8,9. +0.12.
p=0 mountain 2, 3, 4, 5. m-2,3,6n=6.7
, 8, 9.11. p-0 mountain 2, 3, 4, 5. m-2
, 3, 6n-7, 8, 9, 10, 12, p=o mountain 2, 3
,4,5. m-1,2,3,6n=7.8,940.
+2. p=o, l, 2, 3, 4, 5. m=2.3.
6n=7.8, 9, 10, 12. p-0II, 2,3
,4,5. m-1, 2, 3, 6n=7.8, 9, 10
,12. p-0, 1, 2, 3, 4, 5, mm2, 3.
6CH3CONH n-7,8,9,10,12,p=0.1,2,3,4
,5. m-2, 3, 6n=7.8, 9, 10, 12.
p=0. ! , 2, 3, 4, 5. m-2,3,6n-
7, 8, 9, 10, +2. p=0 mountain 2, 3, 4, 5.
m-2, 3, 6n=7.8, 9, 10, 12. p=
0 mountain 2, 3, 4, 5. m-2,3,6n=7.8,9
, 10, 12. p=0. ! , 2, 3, 4, 5. m=
2.3.6nx7,8,9,10,12. pxO,1
, 2, 3, 4, 5, m-2, 3, 6 but n-8, p-
1,m-2 is the compound IHnx6,7,8,941. p
-0,1,2,3,4,5,m-2,3,6nm7. I
ll, 9, 10. +2. pmo,! , 2, 3, 4, 5
.. m-1, 2, 3, 6n=7.8, 9, 10, 12.
p=0. I, 2, 3, 4, 5. m=1.2, 3.6
n=7.8, 9, 10, 12. p-0,1,2,3,
4,5,m=2.3.6H2 n=7.8,9,10,12. p=0.1, 2, 3,
4,5. m=2.3.6p=7.8,9,10.12
.. p-0,1,2,3,4,5,m-2,3,6n=
7J, 9, 10, 12. p-0, 1, 2, 3, 4, 5
, m-2, 3, 6n=7.8, 9, 10, 12. pm
o, 1, 2, 3, 4, 5. m-2,3,6n=7.8
,9,10,12. p-0,1,2,3,4,5,m
-2,3,6n=7.8,9. tO,12,p=0.1
, 2, 3, 4, 5. m4, 3.6r n-6, 7, 8, 9, 11, p-0, 1, 2, 3, 4,
5,rn=2.3.6n=7.8,9,10,12.
pmo, 1, 2, 3, 4, 5. rn-2,3,6n=
7.8, 9, 10, 12. p=o mountain 2, 3, 4, 5.
m-2, 3, 6n=7.8, 9, 10, 12. p-
Oj, 2, 3, 4, 5. m-2,3,6 Note that the optically active substituent of the material for nonlinear optical elements exhibiting liquid crystallinity, represented by the general formulas (I) to (IV) of the present invention, may be either R-integrated or S-integrated. Needless to say.

(作用) 本発明の(1)〜(IV)式で示される化合物は液晶と
なる温度範囲を有するため(具体例:第2表)、従来液
晶セルに用いられてきたポリイミドラビング基板などの
上に配向薄膜を作製することが容易であり、化合物の誘
電異方性、自発分極を利用して電場配向させることも容
易である。また、従来検討された強誘電性液晶化合物に
比べて非常に大きなSHG相対強度を示すことから、本
発明の液晶性を有する非線形光学材料を蒸着や二枚の基
板′間への注入などの方法で薄膜とすることにより、容
易に配向性に優れる非線形光学薄膜を得ることができる
(Function) Since the compounds represented by formulas (1) to (IV) of the present invention have a temperature range in which they become liquid crystals (specific examples: Table 2), they can be It is easy to produce an oriented thin film, and it is also easy to align the compound in an electric field using the dielectric anisotropy and spontaneous polarization of the compound. In addition, since it exhibits a much larger SHG relative strength than conventionally studied ferroelectric liquid crystal compounds, the nonlinear optical material having liquid crystal properties of the present invention can be applied by methods such as vapor deposition or injection between two substrates. By forming a thin film using this method, a nonlinear optical thin film with excellent orientation can be easily obtained.

本発明の化合物と混合して使用する化合物は必ずしも光
非線形性を示す必要はないが、大きな光非線形性を示す
化合物を混合することによりさらに光非線形性の向上が
期待できる。一般に、大きな光非線形性を示す化合物は
配向薄膜を得ることが困難であるが、本発明の化合物と
混合することにより配向性も向上寄せることができる。
Although the compound used in combination with the compound of the present invention does not necessarily have to exhibit optical nonlinearity, further improvement in optical nonlinearity can be expected by mixing a compound that exhibits large optical nonlinearity. Generally, it is difficult to obtain an oriented thin film with a compound exhibiting large optical nonlinearity, but by mixing it with the compound of the present invention, the orientation can be improved.

このような目的で混合する化合物には、例えば、2−メ
チル−4−ニトロアニリン、2−アセチルアミノ−4−
ニトロジメチルアニリン等のニトロアニリン誘導体、N
、N ’−ジメチル尿素などの尿素誘導体、メチル−(
2,4−ジニトロフェニル)−アミノプロパネート、ロ
イシン−p−ニトロアニリドなどのアミノ酸誘導体、4
−ジメチルアミノ−4−スチルベンなどのスチルベン誘
導体、メロシアニンなどの複素環化合物とその分子塩な
どが挙げられる。
Compounds mixed for this purpose include, for example, 2-methyl-4-nitroaniline, 2-acetylamino-4-
Nitroaniline derivatives such as nitrodimethylaniline, N
, N'-dimethylurea and other urea derivatives, methyl-(
Amino acid derivatives such as 2,4-dinitrophenyl)-aminopropanate, leucine-p-nitroanilide, 4
Examples include stilbene derivatives such as -dimethylamino-4-stilbene, heterocyclic compounds such as merocyanine, and molecular salts thereof.

本発明における薄膜作製方法としては、例えば、スペー
サを介した2枚の基板間に一般式(1)〜(IV)で示
される化合物を封入し、必要に応じて電界を印加するな
どの後処理を行ない配向薄膜とする従来の液晶セルの作
製方法や、真空蒸着で基板上に一般式(I)〜(IV)
で示される化合物を堆積させる方法などがある。この場
合に用いる基板としては、例えば、ガラス表面を一定方
向にラビングした基板、ITO,SnOなどの透明電極
を持つガラスの表面を一定方向にラビングした基板、ポ
リイミド、ポリビニルアルコールなどの高分子膜をコー
ティングしたガラスの表面を一定方向にラビングした基
板、Sin、 SiOなどを斜蒸着しなガラス基板、K
Br、 NaC1、サファイアなどの単結晶、およびこ
れらを組み合わせた基板などが使用できる。
The method for producing a thin film in the present invention includes, for example, enclosing compounds represented by general formulas (1) to (IV) between two substrates via a spacer, and post-treatment such as applying an electric field as necessary. Conventional methods for manufacturing liquid crystal cells, in which an oriented thin film is formed by applying
There are methods such as depositing a compound shown in . Substrates used in this case include, for example, a substrate whose glass surface is rubbed in a certain direction, a substrate whose surface of glass with a transparent electrode such as ITO or SnO is rubbed in a certain direction, and a polymer film such as polyimide or polyvinyl alcohol. Substrates with coated glass surfaces rubbed in a certain direction, glass substrates with oblique evaporation of Sin, SiO, etc.
Single crystals such as Br, NaCl, and sapphire, and substrates combining these can be used.

以下、本発明を実施例によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例1) (1)〜(IV)式で表される化合物のうち代表的なも
のについて、粉末法により測定した二次非線形光学定数
の相対強度を第3表に示す、非線形光学定数測定時の基
準物質として尿素、光源には波長1.06μmのYAG
レーザを用いた。測定温度は室温である。また、第1表
のDOBAMBC,NOBAMBCの測定結果もあわせ
て第3表に示した。
(Example 1) Table 3 shows the relative intensities of the second-order nonlinear optical constants measured by the powder method for typical compounds represented by formulas (1) to (IV). Urea is used as the reference material, and YAG with a wavelength of 1.06 μm is used as the light source.
A laser was used. The measurement temperature is room temperature. Furthermore, the measurement results for DOBAMBC and NOBAMBC in Table 1 are also shown in Table 3.

第3表に示した液晶性化合物は何れも従来の強誘電性液
晶に比べて大きな光非線形性を示し、有機非線形光学素
子用材料として有効であることがわかる。
It can be seen that all of the liquid crystal compounds shown in Table 3 exhibit greater optical nonlinearity than conventional ferroelectric liquid crystals, and are effective as materials for organic nonlinear optical elements.

(実施例2) ITC)の透明電極付きガラス基板1の、電界印加用端
子3を有する透明電極2面をラビングし、2枚を10μ
mのスペーサ(ポリイミド膜)4を介して対向させた第
1図に示す構造の液晶セルを作製した。すなわち これに第2表の化合物IC〜IHを液晶注入部5に注入
して二次非線形光学定数、偏光度を測定した結果を第4
表に示す、ここで、二次非線形光学定数の測定時には波
長1.06μmのYAGレーザを光源として使用し、既
報(N、M、5htykov、 M、1.Barnik
(Example 2) Two surfaces of the transparent electrode having the electric field application terminal 3 of the glass substrate 1 with a transparent electrode manufactured by ITC were rubbed, and the two sheets were coated with a 10μ
A liquid crystal cell having the structure shown in FIG. 1 in which the liquid crystal cells were opposed to each other with a spacer (polyimide film) 4 of m in size interposed therebetween was fabricated. That is, the results of injecting the compounds IC to IH shown in Table 2 into the liquid crystal injection part 5 and measuring the second-order nonlinear optical constant and degree of polarization are shown in the fourth table.
Here, when measuring the second-order nonlinear optical constants, a YAG laser with a wavelength of 1.06 μm was used as a light source, as shown in the table.
.

L、A、Beresnev、 L、M、B11nov、
 Mo1.Cryst、Liq、CrysL、 124
゜379−390(1985))と同様の方法で測定を
行なった。
L, A, Beresnev, L, M, B11nov,
Mo1. Cryst, Liq, CrysL, 124
Measurements were carried out in the same manner as in 379-390 (1985)).

また、偏向度P(degree of polariz
ation)の測定は、透過光強度が測定可能な偏光顕
微鏡を使用し、偏光オルソスコープ観察において最も明
るくなる対角位での測光値工 、および最も暗くなる消
光位での婁 測光値(対角位より45°回転)■ を用いて(1)上 式により計算した。
In addition, the degree of deflection P (degree of polariz
ation) is measured using a polarizing microscope that can measure the intensity of transmitted light, and the photometric value at the diagonal position where it is the brightest in polarized orthoscope observation, and the photometric value at the extinction position where it is the darkest (diagonal Calculated using the above formula (1) using

P=(I  −I  )/(I  +I  ”)   
 (1)瀧よ一工 化合物IC〜IHは共に非線形光学定数が従来の検討例
に比べて非常に大きく、かつ、配向性も良好であること
がわかる。第3表の化合物を用いた場合にも同様の結果
が得られた。
P=(I−I)/(I+I”)
(1) It can be seen that both Taki Yoichiko compounds IC to IH have significantly larger nonlinear optical constants than those of conventionally studied examples, and also have good orientation. Similar results were obtained using the compounds in Table 3.

(実施例3) 粉末法により測定した光非線形性が尿素の22倍である
2−メチル−4−ニトロアニリン、および115倍の2
−アセチルアミノ−4−二トロジメチルアニリンと化合
物IC,IEとを重量比5:95で混合し、実施例1と
同様の方法で非線形光学定数および偏向度を測定した。
(Example 3) 2-Methyl-4-nitroaniline, whose optical nonlinearity measured by the powder method is 22 times that of urea, and 2-methyl-4-nitroaniline, whose optical nonlinearity is 115 times that of urea.
-Acetylamino-4-nitrodimethyaniline and compounds IC and IE were mixed at a weight ratio of 5:95, and the nonlinear optical constants and degree of polarization were measured in the same manner as in Example 1.

結果を第5表に示す。The results are shown in Table 5.

大きな光非線形性を持つ化合物との混合により、光非線
形性がさらに向上したことが明らかである。
It is clear that the optical nonlinearity was further improved by mixing with a compound having large optical nonlinearity.

(実施例4〉 ITOの透明電極付きガラス基板の透明電極面をラビン
グし、真空蒸着用基板とした。ラビングした面に真空蒸
着法で第3表の化合物1c〜IHおよびIRを蒸着して
二次非線形光学定数、偏光度を測定した結果を第6表に
示す。
(Example 4) The transparent electrode surface of an ITO glass substrate with a transparent electrode was rubbed to obtain a substrate for vacuum deposition. Compounds 1c to IH and IR shown in Table 3 were deposited on the rubbed surface by a vacuum deposition method. Table 6 shows the results of measuring the order nonlinear optical constants and degree of polarization.

化合物IC〜IH1]Rは真空蒸着法によっても薄膜形
成が可能で、大きな非線形光学定数を有する薄膜が得ら
れることがわかる。第3表の他の化合物を用いた場合に
も同様の結果が得られた。
It can be seen that the compounds IC to IH1]R can be formed into thin films by vacuum evaporation, and a thin film having large nonlinear optical constants can be obtained. Similar results were obtained using other compounds in Table 3.

(以下余白) 第3表(続き) 第3表 第3表(続き) 第3表(続き) 第3表(続き) 第3表(続き) 第4表 第6表 第5表 (発明の効果) 以上説明したように、本発明によれば、非線形性と配向
性の双方に優れる非線形光学材料および配向性に優れる
非線形光学薄膜を提供することができるため、オプトエ
レクトロニクス用として好適に使用できる。
(Leaving space below) Table 3 (continued) Table 3 Table 3 (continued) Table 3 (continued) Table 3 (continued) Table 3 (continued) Table 4 Table 6 Table 5 (Effects of the invention ) As explained above, according to the present invention, it is possible to provide a nonlinear optical material that is excellent in both nonlinearity and orientation, and a nonlinear optical thin film that is excellent in orientation, so that it can be suitably used for optoelectronics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いた液晶用セルの構造を示した図で
ある。 1・・・ガラス基板、 2・・・電界印加用の電極、3
・・・電界印加用端子、 4・・・表面をラビング処理
したポリイミド膜、 5・・・液晶注入部。
FIG. 1 is a diagram showing the structure of a liquid crystal cell used in the present invention. 1... Glass substrate, 2... Electrode for applying electric field, 3
... Terminal for applying electric field, 4 ... Polyimide film whose surface has been subjected to rubbing treatment, 5 ... Liquid crystal injection part.

Claims (8)

【特許請求の範囲】[Claims] (1)下記一般式( I ) ▲数式、化学式、表等があります▼  ( I ) (式中、Rはアルキル基またはフッ素を含むアルキル基
、R^*は光学活性アルキル基、もしくはエーテル結合
を含む光学活性アルキル基、もしくはハロゲン原子を含
む光学活性アルキル基、X,Yは水素、ハロゲン、水酸
基、シアノ基、ニトロ基、アミノ基、ジメチルアミノ基
、またはR_1CONH基(R_1はアルキル基)、j
,k,lは0または1)で示される化合物を単独で、も
しくは他の化合物と混合して用いることを特徴とする有
機非線形光学素子用材料。
(1) The following general formula (I) ▲Mathematical formulas, chemical formulas, tables, etc.▼ (I) (In the formula, R is an alkyl group or an alkyl group containing fluorine, and R^* is an optically active alkyl group or an ether bond. or an optically active alkyl group containing a halogen atom, X and Y are hydrogen, halogen, hydroxyl group, cyano group, nitro group, amino group, dimethylamino group, or R_1CONH group (R_1 is an alkyl group), j
, k, l are 0 or 1) is used alone or in combination with other compounds.
(2)下記一般式(II) ▲数式、化学式、表等があります▼  (II) (式中、Rはアルキル基またはフッ素を含むアルキル基
、R^*は光学活性アルキル基、もしくはエーテル結合
を含む光学活性アルキル基、もしくはハロゲン原子を含
む光学活性アルキル基、X,Yは水素、ハロゲン、水酸
基、シアノ基、ニトロ基、アミノ基、ジメチルアミノ基
、またはR_1CONH基(R_1はアルキル基)、j
,k,lは0または1)で示される化合物を単独で、も
しくは他の化合物と混合して用いることを特徴とする有
機非線形光学素子用材料。
(2) The following general formula (II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (II) (In the formula, R is an alkyl group or an alkyl group containing fluorine, and R^* is an optically active alkyl group or an ether bond. or an optically active alkyl group containing a halogen atom, X and Y are hydrogen, halogen, hydroxyl group, cyano group, nitro group, amino group, dimethylamino group, or R_1CONH group (R_1 is an alkyl group), j
, k, l are 0 or 1) is used alone or in combination with other compounds.
(3)下記一般式(III) ▲数式、化学式、表等があります▼  (式中、Rはアルキル基またはフッ素を含むアルキル
基、R^*は光学活性アルキル基、もしくはエーテル結
合を含む光学活性アルキル基、もしくはハロゲン原子を
含む光学活性アルキル基、X,Yは水素、ハロゲン、水
酸基、シアノ基、ニトロ基、アミノ基、ジメチルアミノ
基、またはR_1CONH基(R_1はアルキル基)、
j,k,lは0または1)で示される化合物を単独で、
もしくは他の化合物と混合して用いることを特徴とする
有機非線形光学素子用材料。
(3) General formula (III) below ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (In the formula, R is an alkyl group or an alkyl group containing fluorine, R^* is an optically active alkyl group, or an optically active group containing an ether bond. an alkyl group or an optically active alkyl group containing a halogen atom;
j, k, l are 0 or 1) alone,
Or a material for an organic nonlinear optical element, characterized in that it is used in combination with other compounds.
(4)下記一般式(IV) ▲数式、化学式、表等があります▼ (式中、Rはアルキル基またはフッ素を含むアルキル基
、R^*は光学活性アルキル基、もしくはエーテル結合
を含む光学活性アルキル基、もしくはハロゲン原子を含
む光学活性アルキル基、X,Yは水素、ハロゲン、水酸
基、シアノ基、ニトロ基、アミノ基、ジメチルアミノ基
、またはR_1CONH基(R_1はアルキル基)、j
,kは0または1)で示される化合物を単独で、もしく
は他の化合物と混合して用いることを特徴とする有機非
線形光学素子用材料。
(4) General formula (IV) below ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (In the formula, R is an alkyl group or an alkyl group containing fluorine, R^* is an optically active alkyl group, or an optically active group containing an ether bond. Alkyl group or optically active alkyl group containing a halogen atom, X and Y are hydrogen, halogen, hydroxyl group, cyano group, nitro group, amino group, dimethylamino group, or R_1CONH group (R_1 is an alkyl group), j
, k is 0 or 1) is used alone or in combination with other compounds.
(5)下記一般式(I) ▲数式、化学式、表等があります▼ (式中、Rはアルキル基またはフッ素を含むアルキル基
、R^*は光学活性アルキル基、もしくはエーテル結合
を含む光学活性アルキル基、もしくはハロゲン原子を含
む光学活性アルキル基、X,Yは水素、ハロゲン、水酸
基、シアノ基、ニトロ基、アミノ基、ジメチルアミノ基
、またはR_1CONH基(R_1はアルキル基)、j
,k,lは0または1)で示される化合物もし<はこの
化合物と他の化合物と混合した組成物を使用したことを
特徴とする有機非線形光学薄膜。
(5) The following general formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, R is an alkyl group or an alkyl group containing fluorine, R^* is an optically active alkyl group, or an optically active group containing an ether bond. Alkyl group or optically active alkyl group containing a halogen atom, X and Y are hydrogen, halogen, hydroxyl group, cyano group, nitro group, amino group, dimethylamino group, or R_1CONH group (R_1 is an alkyl group), j
, k, l are 0 or 1), and < is a composition in which this compound is mixed with another compound.
(6)下記一般式(II) ▲数式、化学式、表等があります▼  (式中、Rはアルキル基またはフッ素を含むアルキル
基、R^*は光学活性アルキル基、もしくはエーテル結
合を含む光学活性アルキル基、もしくはハロゲン原子を
含む光学活性アルキル基、X,Yは水素、ハロゲン、水
酸基、シアノ基、ニトロ基、アミノ基、ジメチルアミノ
基、またはR_1CONH基(R_1はアルキル基)、
j,k,lは0または1)で示される化合物もしくはこ
の化合物と他の化合物と混合した組成物を使用したこと
を特徴とする有機非線形光学蒲膜。
(6) General formula (II) below ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (In the formula, R is an alkyl group or an alkyl group containing fluorine, R^* is an optically active alkyl group, or an optically active group containing an ether bond. an alkyl group or an optically active alkyl group containing a halogen atom;
An organic nonlinear optical capsule characterized in that it uses a compound represented by (j, k, l are 0 or 1) or a composition in which this compound is mixed with another compound.
 (7)下記一般式(III) ▲数式、化学式、表等があります▼ (式中、Rはアルキル基またはフッ素を含むアルキル基
、R^*は光学活性アルキル基、もしくはエーテル結合
を含む光学活性アルキル基、もしくはハロゲン原子を含
む光学活性アルキル基、X,Yは水素、ハロゲン、水酸
基、シアノ基、ニトロ基、アミノ基、ジメチルアミノ基
、またはR_1CONH基(R_1はアルキル基)、j
,k,lは0または1)で示される化合物もしくはこの
化合物と他の化合物と混合した組成物を使用したことを
特徴とする有機非線形光学薄膜。
(7) General formula (III) below ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (In the formula, R is an alkyl group or an alkyl group containing fluorine, R^* is an optically active alkyl group, or an optically active group containing an ether bond. Alkyl group or optically active alkyl group containing a halogen atom, X and Y are hydrogen, halogen, hydroxyl group, cyano group, nitro group, amino group, dimethylamino group, or R_1CONH group (R_1 is an alkyl group), j
, k, l are 0 or 1) or a composition in which this compound is mixed with another compound.
(8)下記一般式(IV) ▲数式、化学式、表等があります▼ (式中、Rはアルキル基またはフッ素を含むアルキル基
、R^*は光学活性アルキル基、もしくはエーテル結合
を含む光学活性アルキル基、もしくはハロゲン原子を含
む光学活性アルキル基、X,Yは水素、ハロゲン、水酸
基、シアノ基、ニトロ基、アミノ基、ジメチルアミノ基
、またはR_1CONH基(R_1はアルキル基)、j
,k,lは0または1)で示される化合物もしくはこの
化合物と他の化合物と混合した組成物を使用したことを
特徴とする有機非線形光学薄膜。
(8) General formula (IV) below ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (In the formula, R is an alkyl group or an alkyl group containing fluorine, R^* is an optically active alkyl group, or an optically active group containing an ether bond. Alkyl group or optically active alkyl group containing a halogen atom, X and Y are hydrogen, halogen, hydroxyl group, cyano group, nitro group, amino group, dimethylamino group, or R_1CONH group (R_1 is an alkyl group), j
, k, l are 0 or 1) or a composition in which this compound is mixed with another compound.
JP1002610A 1989-01-09 1989-01-09 Material for organic nonlinear optical element and organic nonlinear optical thin film using the same Expired - Fee Related JP2742697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002610A JP2742697B2 (en) 1989-01-09 1989-01-09 Material for organic nonlinear optical element and organic nonlinear optical thin film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002610A JP2742697B2 (en) 1989-01-09 1989-01-09 Material for organic nonlinear optical element and organic nonlinear optical thin film using the same

Publications (2)

Publication Number Publication Date
JPH02183231A true JPH02183231A (en) 1990-07-17
JP2742697B2 JP2742697B2 (en) 1998-04-22

Family

ID=11534167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002610A Expired - Fee Related JP2742697B2 (en) 1989-01-09 1989-01-09 Material for organic nonlinear optical element and organic nonlinear optical thin film using the same

Country Status (1)

Country Link
JP (1) JP2742697B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992020058A2 (en) * 1991-04-24 1992-11-12 University Research Corporation Ferroelectric liquid crystals for nonlinear optics applications
GB2285810A (en) * 1994-01-10 1995-07-26 Secr Defence Smectic liquid crystal materials for electroclinic or nonlinear optic devices
US5453218A (en) * 1988-03-04 1995-09-26 Displaytech, Inc. Liquid crystal compounds containing chiral 2-halo-2 methyl alkoxy tails

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPTICS COMMUNICATIONS *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453218A (en) * 1988-03-04 1995-09-26 Displaytech, Inc. Liquid crystal compounds containing chiral 2-halo-2 methyl alkoxy tails
WO1992020058A2 (en) * 1991-04-24 1992-11-12 University Research Corporation Ferroelectric liquid crystals for nonlinear optics applications
WO1992020058A3 (en) * 1991-04-24 1993-03-04 Univ Research Corp Ferroelectric liquid crystals for nonlinear optics applications
US5637256A (en) * 1991-04-24 1997-06-10 University Research Corporation Ferroelectric liquid crystals for nonlinear optics applications
US5658493A (en) * 1991-04-24 1997-08-19 University Research Corporation Ferroelectric liquid crystals for nonlinear optics applications
GB2285810A (en) * 1994-01-10 1995-07-26 Secr Defence Smectic liquid crystal materials for electroclinic or nonlinear optic devices
US5891358A (en) * 1994-01-10 1999-04-06 Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britian & Northern Ireland Of Defence Evaluation & Research Agency Liquid crystal mixtures and devices
US6242636B1 (en) 1994-01-10 2001-06-05 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britian And Northern Ireland Of Defence Evaluation And Research Agency Liquid crystal compounds, mixtures and devices
US6278028B1 (en) 1994-01-10 2001-08-21 The Secretary Of State For In Defence In Her Brittanic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Liquid crystal compounds, mixtures and devices
US6337420B1 (en) 1994-01-10 2002-01-08 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Defence Evaluation Research Agency Liquid crystal compounds, mixtures and devices

Also Published As

Publication number Publication date
JP2742697B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
Pan et al. Electro‐optic properties of the organic salt 4‐N, N‐dimethylamino‐4′‐N′‐methyl‐stilbazolium tosylate
Sneh et al. High-speed continuously tunable liquid crystal filter for WDM networks
Liu et al. The measurement of second‐harmonic generation in novel ferroelectric liquid crystal materials
JPS61249019A (en) Liquid crystal element
US5825447A (en) Liquid crystal device with a bistable chiral smectic liquid crystal having a phase transition series lacking a cholesteric phase #16
Zaitsev et al. Domain structure in strontium tetraborate single crystal
Khoo et al. Supra optical nonlinearities (SON) of methyl red-and azobenzene liquid crystal-doped nematic liquid crystals
Umemura et al. Temperature-insensitive second-harmonic generation at 0.5321 µm in YCa4O (BO3) 3
Knopfle et al. Optical, nonlinear optical, and electrooptical properties of 4'-nitrobenzylidene-3-acetamino-4-methoxyaniline (mnba) crystals
Vasudevan et al. Unidirectional growth of L-lysine L-lysinium dichloride nitrate (L-LLDN) single crystals by the SR method
US5343327A (en) RbNbB2 O6 crystal and its nonlinear optical devices
JPH02183231A (en) Material for organic nonlinear optical element and organic nonlinear optical thin-film formed by using this material
Miedzinski et al. Optically induced changes of absorption in polymer-dispersed liquid crystals doped with inorganic nanocrystals
Tanaka et al. Highly anisotropic molecular thin films prepared by oriented growth on poly (tetrafluoroethylene) surfaces
Ozaki et al. Static and dynamic properties of optical second harmonic generation in ferroelectric liquid crystal
JP2698853B2 (en) Material for organic nonlinear optical element and organic nonlinear optical thin film using the same
Chinnasami et al. Temperature dependent refractive index, thermo-optic coefficient and birefringence of negative biaxial imidazolium L-tartrate non-linear optical crystal
GB2285810A (en) Smectic liquid crystal materials for electroclinic or nonlinear optic devices
Kamalesh et al. Growth of large size triphenylphosphine oxide 4-Nitrophenol (TP4N) single crystal by Sankaranarayanan–Ramasamy (SR) method for third order nonlinear optical applications
Kanimozhi et al. Effects of Alizarin green dye in the growth, optical, mechanical and dielectric properties of glycine crystals
US5397508A (en) 2-amino-5-nitropyridinium salts usable in non-linear optics and in electroptics and a process for preparing the same
JPH0743476B2 (en) Liquid crystal light modulator
Morel et al. Nonlinear absorption and optical limiting properties of the 2-amino-5-nitropyridinium dihydrogenophosphate hybrid crystal
US3957346A (en) Method for altering elliptically polarized light
US5015417A (en) Nonlinear optical devices for derivatives of stilbene and diphenylacetylene

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees