JPH02181987A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH02181987A
JPH02181987A JP182789A JP182789A JPH02181987A JP H02181987 A JPH02181987 A JP H02181987A JP 182789 A JP182789 A JP 182789A JP 182789 A JP182789 A JP 182789A JP H02181987 A JPH02181987 A JP H02181987A
Authority
JP
Japan
Prior art keywords
electrode
wire bonding
insulating film
semiconductor laser
dielectric insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP182789A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sasaki
善浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP182789A priority Critical patent/JPH02181987A/en
Publication of JPH02181987A publication Critical patent/JPH02181987A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower the electrostatic capacity of the electrode section of a semiconductor laser without sacrificing the workability and bonding strength of wire bonding so as to raise the cut-off frequency by forming at least part of the electrode on a dielectric insulating film to a comb-like or grating-like shape in which the electrode is divided into numerous electrode branches. CONSTITUTION:The electrode 5a of a contact section which is parallel with stripes for supplying an electric current has a width of 70mum and the electrode 5b of a wire bonding section connected with the electrode end of the contact section is composed of a plurality of electrode branches, each of which has e width of 10mum and length of 50mum, arranged in parallel with each other as teeth of a comb, with the comb being composed of nine teeth arranged at regular intervals of 10mum. Since the entire area of the wire bonding section is 8500mu, a plurality of wire bonding can be performed simultaneously without lowering the bonding strength even when gold wires of 30mum in diameter are used as lead wires.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to semiconductor lasers.

〔従来の技術〕[Conventional technology]

半導体レーザは、高速直接変調が可能な、光フアイバ通
信のキーデバイスとして高速動作の追求が行われてきた
。その為に緩和振動周波数fRと遮断周波数fCの向上
の努力が行われてきた。
High-speed operation of semiconductor lasers has been pursued as a key device for optical fiber communications, which is capable of high-speed direct modulation. For this reason, efforts have been made to improve the relaxation oscillation frequency fR and the cutoff frequency fC.

緩和振動周波数faの向上の為には、例えば、光が伝播
する領域に回折格子を備えた分布帰還半導体レーザでは
利得ピークが発振波長の長波長側になるようにして微分
利得係数を大きくすること等が試みられている。一方、
遮断周波数fcの向上には半導体層上に誘電体絶縁膜を
形成することにより半導体レーザの静電容量を低減する
ことが有効で、半導体層に接触した電流注入用の部分と
誘電体絶縁膜上のワイヤーボンディング用の部分以外の
金属を取り除いて静電容量を下げて1QGIIz以上の
高速直接変調が実現されている。更なる遮断周波数向上
の為に誘電体絶縁膜の膜厚を厚くして、静電容量を減ら
したり、電極にボンディングしたリードワイヤーのイン
ダクタンスによる効果を減らす様にワイヤを複数本用い
る等の手段がとられている。
In order to improve the relaxation oscillation frequency fa, for example, in a distributed feedback semiconductor laser equipped with a diffraction grating in the region through which light propagates, the differential gain coefficient must be increased so that the gain peak is on the long wavelength side of the oscillation wavelength. etc. are being attempted. on the other hand,
To improve the cutoff frequency fc, it is effective to reduce the capacitance of the semiconductor laser by forming a dielectric insulating film on the semiconductor layer. High-speed direct modulation of 1QGIIz or higher has been achieved by removing metal other than the wire bonding part and lowering the capacitance. In order to further improve the cutoff frequency, measures such as increasing the thickness of the dielectric insulating film to reduce capacitance and using multiple wires to reduce the effect of inductance of the lead wire bonded to the electrode are available. It is taken.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本件では特に遮断周波数向上に関する問題点について述
べる。遮断周波数で10GHz以上を余裕をもって実現
する為に、前述の様な手段がとられてきたが、これには
以下の様な問題があった。まず、誘電体絶縁膜の膜厚を
厚くすることで静電容量を低減しようとする方法では、
誘電体絶縁膜を厚くしていくと、誘電体と半導体の熱膨
張率の違いにより半導体に歪が生じてしまう。この歪は
、例えば、分布帰還型半導体レーザの様に導波路に構造
を有する半導体レーザにおいてはその影響が大きく、信
頼性に悪影響をもたらす。また、リードワイヤーのイン
ダクタンスの影響を下げる為のリードワイヤーの複数本
化では以下の問題が生じる。リードワイヤーを複数本化
する為には、ワイヤーボンディング部の電極面積がそれ
だけ大きくなることを意味する。ワイヤーボンディング
部の面積は電気的には可能な限り小さくすることができ
るが、力学的に十分なワイヤーボンディング強度を確保
する為と、ワイヤーボンディング作業の作業性を考慮す
ると、ワイヤーボンディング部には最低限の有効面積が
必要で、これが、電極部の静電容量をある程度以上下げ
られない理由となっていた。本発明の目的は、上述の観
点に従って、高信頼かつ高速動作が可能な半導体レーザ
を提供することにある。
In this case, we will particularly discuss the problems associated with improving the cutoff frequency. In order to achieve a cut-off frequency of 10 GHz or more with a margin, the above-mentioned measures have been taken, but these have had the following problems. First, in the method of reducing capacitance by increasing the thickness of the dielectric insulating film,
As the dielectric insulating film becomes thicker, distortion occurs in the semiconductor due to the difference in coefficient of thermal expansion between the dielectric and the semiconductor. This distortion has a large effect on a semiconductor laser having a waveguide structure, such as a distributed feedback semiconductor laser, and has an adverse effect on reliability. Furthermore, the following problems occur when multiple lead wires are used to reduce the influence of lead wire inductance. In order to use a plurality of lead wires, it means that the electrode area of the wire bonding portion increases accordingly. The area of the wire bonding part can be made as small as possible electrically, but in order to ensure mechanically sufficient wire bonding strength and considering the workability of the wire bonding work, the area of the wire bonding part must be made as small as possible. This requires a limited effective area, which is the reason why the capacitance of the electrode portion cannot be lowered beyond a certain level. An object of the present invention is to provide a semiconductor laser capable of highly reliable and high-speed operation according to the above-mentioned aspects.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、注入電流狭搾構造として、発光に与る活性層
を含む多層構造上に誘電体絶縁膜が形成された半導体レ
ーザにおいて、前記誘電体絶縁膜上に形成された電極部
分が少なくとも多数の電極柱に分割された形状、ないし
格子状の形状を有していることを特徴とする構成になっ
ている。
The present invention provides a semiconductor laser in which a dielectric insulating film is formed on a multilayer structure including an active layer that participates in light emission as an injection current narrowing structure, in which at least a large number of electrode portions are formed on the dielectric insulating film. The structure is characterized by having a shape divided into electrode columns or a grid-like shape.

〔作用〕[Effect]

半導体レーザ内部の半導体接合によって生じる静電容量
が、通常、電極部の金属−誘電体絶縁膜一半導体に生じ
る静電容量より小さいので、半導体レーザの静電容量は
電極部の静電容量で近似できる。この場合の静電容量は
、次式で表わされここで、εは誘電体絶縁膜の誘電率、
Sは電極金属が誘電体絶縁膜と接している面積、dは誘
電体絶縁膜の厚さである。また、遮断周波数f。は次式
で表わされる。
The capacitance generated by the semiconductor junction inside the semiconductor laser is usually smaller than the capacitance generated between the metal-dielectric insulating film and the semiconductor in the electrode section, so the capacitance of the semiconductor laser can be approximated by the capacitance of the electrode section. can. The capacitance in this case is expressed by the following formula, where ε is the permittivity of the dielectric insulating film,
S is the area where the electrode metal is in contact with the dielectric insulating film, and d is the thickness of the dielectric insulating film. Also, the cutoff frequency f. is expressed by the following equation.

ここで、Rは素子の微分抵抗である。従って、Sは低減
してCを低減すればfCを増大させることができる。
Here, R is the differential resistance of the element. Therefore, by reducing S and C, fC can be increased.

〔実施例〕〔Example〕

次に図面を用いて本発明をより詳細に説明する。第1図
は本発明の第1の実施例の斜視図である。1はlnP基
板で、この上にIjμm組成のInGaAsPから成る
活性層を内含する多層構造が形成されている。2は発光
部で、活性層とその近傍に広がっている。半導体レーザ
の大きさは共振器長300μm、幅300czm、厚さ
100μmであり、発光部は素子中央上から5μm程度
下にある。発光部のあるストライプ状のメサのメサトッ
プの幅は20μm、メサ両側の溝は幅20μm、深さ1
0μmである。3は多層構造の表面に設けた厚さ450
0人の誘電体絶縁膜であり、酸化シリコンから成ってい
る。メサ上部は電極と接触するコンタクト部4となって
おり、この部分の誘電体絶縁膜には幅10μmのストラ
イプ状の窓が設けである。5a、5bは、例えばクロム
、金、チタン−白金−金より成る電極である。電流注入
用のストライブに平行なコンタクト部の電極5aの幅は
70μm、コンタクト部の電極端部に接続しているワイ
ヤーボンディング部の電極5bは、幅10μm、長さ5
0μmの電極柱を複数平行に配列したくしの歯状になっ
ており、歯と歯の間隔は10μm、歯の本数は9本であ
る。ワイヤーボンディング部全体の面積は8500μm
2であり、リードワイヤに30μmφの金線を用いたと
しても複数本のワイヤーボンディングが可能であり、ボ
ンディング強度を損うことがない、第2図に第1の実施
例をヒートシンク6上にジャンクションアップで融着し
、30μmφの金線7を3本ボンディングした状態を示
す。
Next, the present invention will be explained in more detail using the drawings. FIG. 1 is a perspective view of a first embodiment of the invention. 1 is an lnP substrate, on which a multilayer structure including an active layer made of InGaAsP with a composition of Ij μm is formed. Reference numeral 2 denotes a light emitting section, which extends to the active layer and its vicinity. The size of the semiconductor laser is a cavity length of 300 μm, width of 300 czm, and thickness of 100 μm, and the light emitting part is located about 5 μm below the center of the device. The width of the mesa top of the striped mesa with the light emitting part is 20 μm, and the grooves on both sides of the mesa are 20 μm wide and 1 deep.
It is 0 μm. 3 is the thickness of 450 mm provided on the surface of the multilayer structure
It is a dielectric insulating film made of silicon oxide. The upper part of the mesa is a contact part 4 that comes into contact with the electrode, and a striped window with a width of 10 μm is provided in the dielectric insulating film in this part. 5a and 5b are electrodes made of, for example, chromium, gold, titanium-platinum-gold. The width of the electrode 5a of the contact part parallel to the current injection stripe is 70 μm, and the electrode 5b of the wire bonding part connected to the electrode end of the contact part has a width of 10 μm and a length of 5 μm.
It has a comb tooth shape in which a plurality of electrode columns of 0 μm are arranged in parallel, the spacing between the teeth is 10 μm, and the number of teeth is 9. The entire area of wire bonding part is 8500μm
2, even if a gold wire with a diameter of 30 μm is used as the lead wire, multiple wire bonding is possible and the bonding strength is not impaired. A close-up view shows the state in which three gold wires 7 of 30 μmφ are bonded.

上j邑Shangj-eup

Claims (1)

【特許請求の範囲】[Claims]  発光に与る活性層を内包する多層構造の表面に、窓を
有する誘電体絶縁膜が形成され、前記窓を介して半導体
層と接続した電極を前記誘電体絶縁膜上に備えた半導体
レーザにおいて、前記電極のうち前記誘電体絶縁膜上に
形成された電極部分が少なくとも部分的に多数の電極枝
に分割された形状、ないし格子状の形状を有しているこ
とを特徴とする半導体レーザ。
In a semiconductor laser, a dielectric insulating film having a window is formed on the surface of a multilayer structure including an active layer that participates in light emission, and an electrode is provided on the dielectric insulating film and connected to a semiconductor layer through the window. . A semiconductor laser, wherein a portion of the electrode formed on the dielectric insulating film has a shape in which the electrode portion is at least partially divided into a large number of electrode branches, or a lattice shape.
JP182789A 1989-01-06 1989-01-06 Semiconductor laser Pending JPH02181987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP182789A JPH02181987A (en) 1989-01-06 1989-01-06 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP182789A JPH02181987A (en) 1989-01-06 1989-01-06 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02181987A true JPH02181987A (en) 1990-07-16

Family

ID=11512393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP182789A Pending JPH02181987A (en) 1989-01-06 1989-01-06 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02181987A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048909A (en) * 2005-08-09 2007-02-22 Sanyo Electric Co Ltd Semiconductor laser device
JP2007180588A (en) * 2007-03-29 2007-07-12 Sanyo Electric Co Ltd Nitride semiconductor laser element
US7372077B2 (en) 2003-02-07 2008-05-13 Sanyo Electric Co., Ltd. Semiconductor device
JP2009194307A (en) * 2008-02-18 2009-08-27 Rohm Co Ltd Junction-up type optical semiconductor element
JP2012023065A (en) * 2010-07-12 2012-02-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor element
WO2023166545A1 (en) * 2022-03-01 2023-09-07 三菱電機株式会社 Semiconductor element and semiconductor element manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7372077B2 (en) 2003-02-07 2008-05-13 Sanyo Electric Co., Ltd. Semiconductor device
US7589357B2 (en) 2003-02-07 2009-09-15 Sanyo Electric Co., Ltd. Semiconductor device and method of fabricating the same
US8101465B2 (en) 2003-02-07 2012-01-24 Sanyo Electric Co., Ltd. Method of fabricating a semiconductor device with a back electrode
JP2007048909A (en) * 2005-08-09 2007-02-22 Sanyo Electric Co Ltd Semiconductor laser device
JP2007180588A (en) * 2007-03-29 2007-07-12 Sanyo Electric Co Ltd Nitride semiconductor laser element
JP2009194307A (en) * 2008-02-18 2009-08-27 Rohm Co Ltd Junction-up type optical semiconductor element
JP2012023065A (en) * 2010-07-12 2012-02-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor element
WO2023166545A1 (en) * 2022-03-01 2023-09-07 三菱電機株式会社 Semiconductor element and semiconductor element manufacturing method

Similar Documents

Publication Publication Date Title
US6873636B2 (en) Semiconductor laser and semiconductor laser module
US7058104B2 (en) Surface emitting semiconductor laser and method of fabricating the same
US8111727B2 (en) High power semiconductor opto-electronic device
JP2003332676A (en) Semiconductor optical device
KR101180166B1 (en) A semiconductor laser device
US4977570A (en) Semiconductor laser array with stripe electrodes having pads for wire bonding
JPH02181987A (en) Semiconductor laser
CN108879326B (en) VCSEL chip with horizontal structure, manufacturing method thereof and laser device
JP6790364B2 (en) Optical semiconductor device
US6316280B1 (en) Method of manufacturing semiconductor devices separated from a wafer
JPS6195594A (en) Laser diode
JPS5984577A (en) Semiconductor laser
JP2671317B2 (en) Semiconductor laser
JPH09162484A (en) Planar electrode semiconductor optical element and fabrication thereof
JP7421989B2 (en) Quantum cascade laser device and quantum cascade laser device
EP3970246B1 (en) Optical device with passive window
US20210305769A1 (en) Quantum cascade laser
JP3681460B2 (en) Semiconductor laser device, manufacturing method thereof, and semiconductor laser device
JPS63114190A (en) Distributed reflection type semiconductor laser and manufacture thereof
JP2023061866A (en) Ridge type semiconductor optical element
JP2592624B2 (en) Edge-type light-emitting diode array element
JPH03142985A (en) Optical semiconductor device
JP2014139996A (en) Semiconductor wafer, semiconductor wafer manufacturing method, semiconductor light-emitting element and light-emitting element manufacturing method
JPS60211993A (en) Semiconductor laser
JP2021190675A (en) Ridge type semiconductor optical element accumulating heater