JPH02181906A - X-ray transmitting film holding frame, x-ray mask blank and x-ray mask structure - Google Patents

X-ray transmitting film holding frame, x-ray mask blank and x-ray mask structure

Info

Publication number
JPH02181906A
JPH02181906A JP1001222A JP122289A JPH02181906A JP H02181906 A JPH02181906 A JP H02181906A JP 1001222 A JP1001222 A JP 1001222A JP 122289 A JP122289 A JP 122289A JP H02181906 A JPH02181906 A JP H02181906A
Authority
JP
Japan
Prior art keywords
ray
holding frame
ray mask
binder
ceramic sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1001222A
Other languages
Japanese (ja)
Other versions
JP2721530B2 (en
Inventor
Goji Miyaji
剛司 宮地
Yoshiaki Fukuda
福田 恵明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP122289A priority Critical patent/JP2721530B2/en
Publication of JPH02181906A publication Critical patent/JPH02181906A/en
Application granted granted Critical
Publication of JP2721530B2 publication Critical patent/JP2721530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent dust particles from being produced when fine powders are dropped or stripped off by a method wherein a holding frame is formed of a ceramic sintered substance whose surface has been treated so as to prevent the dust particles from being produced. CONSTITUTION:A holding frame used to hold an X-ray transmitting film is formed of a ceramic sintered substance whose surface has been treated so as to prevent dust particles from being produced. The surface of a ceramic sintered substance 3 which has been cut or polished is coated with and/or impregnated with an organic or inorganic binder 5. When the binder whose viscosity is comparatively low is used or it is used in comparatively large quantities, one part of gaps 7 at the inside of the ceramic sintered substance is impregnated with the binder. When the binder whose viscosity is comparatively high is used or it is coated in comparatively small quantities, the inside is not impregnated; the binder remains on the surface and forms a film 5. For example, alumina or the like can be enumerated as a ceramic which is used as a holding frame or a reinforcement body for a mask blank or an X-ray mask structure. An organic solvent solution of a moisture dispersed substance of an organic resin such as a polyimide resin or the like can be used as the organic binder; colloidal silica or the like can be used as the inorganic binder.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体製造装置、特にX線による露光を行う為
の露光装置で使用するX線透過膜保持枠、X線マスクブ
ランクス及びX線マスク構造体に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an X-ray transmitting film holding frame, an X-ray mask blank, and an X-ray mask used in semiconductor manufacturing equipment, particularly an exposure apparatus for performing X-ray exposure. Concerning structures.

(従来の技vR) 近年、半導体集h1回路の高密度化及び高速化に伴い、
集積回路のパターン線幅が約3年間で70%に縮小され
る傾向にある。
(Conventional technology vR) In recent years, with the increase in density and speed of semiconductor integrated H1 circuits,
The trend is for the pattern line width of integrated circuits to be reduced by 70% in about three years.

大容蛍メモリ素子(例えば4MORAM)の更なる集積
化により、18Mbit容量のもの等では0.5μmル
ールのデバイス設計が行われる様になってきた。この為
焼付装置も一層の高性能化が要求され、転写可能な最小
線幅が0.5μm以下という高性能が要求され始めて来
ている。その為露光光源波長としてXIa領域(7乃至
14人)の光を利用したステッパが開発されつつある。
With the further integration of large-capacity memory elements (for example, 4 MORAM), devices with a capacity of 18 Mbit and the like have come to be designed using the 0.5 μm rule. For this reason, printing devices are required to have even higher performance, and high performance such that the minimum line width that can be transferred is 0.5 μm or less is beginning to be required. Therefore, steppers using light in the XIa region (7 to 14) as the exposure light source wavelength are being developed.

これらX線露光装置に用いられるマスク構造体は、第1
図aに示す様に、X線透過材で出来たX線透過+1Q 
2とそれを緊張保持する保持枠3とからなっており、該
X線透過II!22上にはアライメントマーク等所望の
幾何学的配置をもって配列されたX線吸収体1が形成さ
れている。
The mask structures used in these X-ray exposure devices are
As shown in figure a, X-ray transparent +1Q made of X-ray transparent material
2 and a holding frame 3 that holds it under tension, and the X-ray transmission II! The X-ray absorbers 1 are formed on the X-ray absorber 22, which are arranged in a desired geometrical arrangement such as alignment marks.

xlI5A透過膜2の形成方法はその使用材質が有機薄
膜か無機薄膜かによって大別される。前者はX線の透過
率が高く可視光に対しても透明である様な材質が選ばわ
、そのヤング率、熱膨脹係数、表面粗さ等から、ポリイ
ミド、ポリアミド、マイ°ラー等のフィルムが好んで用
いられる。これらのX線透過膜2は保持枠3に接着剤4
によって緊張保持させられ、これらのX線透過膜2が十
分な平面度を有する形で固定される。
The method of forming the xlI5A permeable film 2 is roughly classified depending on whether the material used is an organic thin film or an inorganic thin film. For the former, a material is selected that has high transmittance for X-rays and is transparent to visible light. Films such as polyimide, polyamide, and mylar are preferred due to their Young's modulus, coefficient of thermal expansion, and surface roughness. It is used in These X-ray transparent membranes 2 are attached to the holding frame 3 with an adhesive 4.
These X-ray transparent membranes 2 are held in tension by the X-ray transmissive membranes 2 and fixed in a form with sufficient flatness.

一方、x1a透過膜2として無機材質を用いる場合は、
第2図に示す様に、シリコンウェハ6上に化学気相堆積
法等により2μm程度の硅素化合物、特に窒化硅素や炭
化硅素等の膜2が僅かに引っ張り応力をもつ様に形成さ
れる。次に膜2を堆積したシリコンウェハ6を5裏面か
ら必要な領域(X線を透過せしめる為の領域)のみエツ
チングにより除去すると、無機薄膜2がシリコンウェハ
6上に緊張保持された状態のマスクブランクスが得られ
る。しかしながらこのままの状態では基板6が薄い為、
強度が小さく取扱いにも実用にも不便である為、原状補
強体く保持枠)3を接着剤4により接着して用いるのが
普通である。
On the other hand, when using an inorganic material as the x1a permeable membrane 2,
As shown in FIG. 2, a film 2 of about 2 μm of silicon compound, particularly silicon nitride or silicon carbide, is formed on a silicon wafer 6 by chemical vapor deposition or the like so as to have a slight tensile stress. Next, when the silicon wafer 6 on which the film 2 has been deposited is removed by etching from the back side of 5 only the necessary area (the area for transmitting X-rays), a mask blank is created in which the inorganic thin film 2 is held under tension on the silicon wafer 6. is obtained. However, since the substrate 6 is thin in this state,
Since the strength is low and it is inconvenient in handling and practical use, it is common to use an original reinforcing body (holding frame) 3 bonded with an adhesive 4.

航記いずれの場合においても保持枠若しくは補強体は、
十分に強度が大きく熱的に安定で且つ軽いものが望まし
い。従来は石英ガラス、硼珪酸ガラス(パイレックス)
、ステンレス鋼等が用いられていたが、最近ではセラミ
ックス焼結体がト記条件をよく満たす為に使用される様
になった。
In either case, the holding frame or reinforcing body is
It is desirable to have sufficient strength, thermal stability, and light weight. Conventionally, quartz glass, borosilicate glass (Pyrex)
, stainless steel, etc. have been used, but recently ceramic sintered bodies have come to be used because they satisfy the above conditions well.

特に窒化アルミニウムと窒化硼素からなる焼結体(^I
N−BN)又は窒化硅素と窒化硼素からなる焼結体(S
t3N4−BN)等のセラミックスが切削加工が容易で
ある為好んで用いられている。
In particular, sintered bodies made of aluminum nitride and boron nitride (^I
N-BN) or a sintered body made of silicon nitride and boron nitride (S
Ceramics such as t3N4-BN) are preferably used because they are easy to cut.

(発明が解決しようとしている問題点)ところが、上記
の如きセラミックス材料は焼結前の原料である窒化アル
ミニウム、窒化硅素、窒化11!素等の微粉が、焼結後
も細かい状態のままで残っており、切削加工や研磨した
後にも微粉末の脱落や剥離が生じ、半導体プロセスで最
も好ましく暑1発塵源となり、その特性的優位性が必ず
しも生かされてはいない状態である。
(Problem to be Solved by the Invention) However, the above ceramic materials are made of aluminum nitride, silicon nitride, nitride 11!, which are raw materials before sintering. The fine powder remains in a fine state even after sintering, and even after cutting or polishing, the fine powder falls off or peels off, which is the most preferred source of dust in the semiconductor process, and its characteristics This is a situation where the company's superiority is not necessarily being taken advantage of.

従って本発明の目的は上記従来技術の問題点を解決し、
保持枠又は補強体として上記窒化アルミニウム、窒化硼
素、窒化硅素、炭化硅素等の如きセラミックスの焼結体
を用いた場合でも、発塵の問題が無い優れたX線透過膜
保持枠、X線マスクブランクス及びX線マスク構造体を
提供することである。
Therefore, an object of the present invention is to solve the problems of the prior art described above,
Excellent X-ray transparent membrane holding frame and X-ray mask that do not cause dust generation problems even when using ceramic sintered bodies such as aluminum nitride, boron nitride, silicon nitride, silicon carbide, etc. as the holding frame or reinforcing body. An object of the present invention is to provide a blank and an X-ray mask structure.

(問題点を解決する為の手段) 上記[J的は以下の本発明によって達成される。(Means for solving problems) The above objectives are achieved by the present invention as described below.

即ち、本発明は、X線透過膜を保持する為の保持枠、X
線透過膜を保持している保持枠からなるX線マスクブラ
ンクス又は所望パターンのX線吸収体と註吸収体を保持
するX線透過膜とこれらを保持する保持枠とからなるX
線マスク構造体において、」二記保持枠がその表面に発
塵防止処理が施されているセラミックス焼結体からなる
ことを特徴とするXfi透過膜保持枠、X線マスクブラ
ンクス及びX線マスク構造体である。
That is, the present invention provides a holding frame for holding an X-ray transparent membrane,
An X-ray mask blank consisting of a holding frame holding a radiation-transmitting film, or an X-ray mask blank consisting of a desired pattern of X-ray absorber and an
X-ray mask structure, X-ray mask blanks, and X-ray mask structure, characterized in that the holding frame is made of a ceramic sintered body whose surface is treated to prevent dust generation. It is the body.

(作  用) 本発明によれば、セラミックスからなる保持枠又は補強
体を発塵防止処理することにより、発塵防止処理に優れ
たX線透過11Q保持枠、X線マスクブランクス及びX
1ilマスク構造体を提供することが出来る。
(Function) According to the present invention, the X-ray transparent 11Q holding frame, X-ray mask blanks, and
1il mask structure can be provided.

(好ましい実施態様) 次に好ましい実施態様を挙げて本発明を更に詳しく説明
する。
(Preferred Embodiments) Next, the present invention will be described in more detail by citing preferred embodiments.

本発明のXi!ilマスク構造体の45成において使用
するX線透過膜2は、ベリリウム(Ilc)、チタン(
Ti)、硅素(Si)、硼素(B)等の単体又はそれら
の化合物等の無機物、ポリイミド、ポリアミド、ポリエ
ステル、パリレン等の有機物或いはこれらの複合1摸の
如く、従来X線透過j模として使用されているものはい
ずれも本発明で使用することが出来、これらのX線透過
1摸はX線透過量を可能な限り大きくする為に、無機物
フィルムの場合には0.5乃至5μm、有機物の場合に
は1乃至20μmの厚みであるのが好ましい。
Xi of the present invention! The X-ray transparent film 2 used in the formation of the il mask structure is made of beryllium (Ilc), titanium (
Inorganic substances such as Ti), silicon (Si), boron (B), etc. or their compounds, organic substances such as polyimide, polyamide, polyester, parylene, or a combination thereof, used as conventional X-ray transmission models. Any of these can be used in the present invention, and in order to maximize the amount of X-ray transmission, in the case of an inorganic film, 0.5 to 5 μm, and an organic film of 0.5 to 5 μm. In this case, the thickness is preferably 1 to 20 μm.

これらのXM透過膜の形成方法自体はいずれも従来公知
の方法でよく、例えば、XIId透A膜2がポリイミド
の様な有機物である場合には有機フィルムを、例えば、
金属、セラミックス、ガラスの様な適当な保持枠3に接
着剤4を用いて緊張固定する方法で形成しく第1図参照
)、又、XLi1透過11q2が無機物である場合には
メンブレン2の強度が不足するので、例えば、シリコン
ウェハ(保持枠)6上にX線透過膜2を成膜し、次いで
その裏面にエツチング保jfiJJQ(図示無し)(ポ
リイミドや窒化ケイ素膜等)を設け、30%苛性カリ水
溶液でエツチングすることにより、ウニ八6上に支持さ
れた無機メンブレン2を形成することが出来る。この場
合にはシリコンウェハ6の強度が不足するので金属、セ
ラミックス、ガラス等の補強体3を付設するのが一般的
である(第2図参照)。
The method of forming these XM permeable films may be any conventionally known method. For example, when the XIId permeable A film 2 is made of an organic material such as polyimide, the organic film may be formed by, for example,
It is formed by tensioning and fixing it to a suitable holding frame 3 such as metal, ceramics, or glass using an adhesive 4 (see Fig. 1).Also, when the XLi1 transmission 11q2 is an inorganic material, the strength of the membrane 2 For example, the X-ray transparent film 2 is formed on the silicon wafer (holding frame) 6, and then an etching protection layer (not shown) (polyimide, silicon nitride film, etc.) is provided on the back surface, and 30% caustic potassium is used. By etching with an aqueous solution, an inorganic membrane 2 supported on the sea urchin 8 can be formed. In this case, since the strength of the silicon wafer 6 is insufficient, it is common to add a reinforcing body 3 made of metal, ceramics, glass, etc. (see FIG. 2).

ト記X線透過rIQZ上に形成するX線吸収体lとして
は、一般に密度の高い物質、例えば、金、白金、タング
ステン、タンタル、銅、ニッケル及びそれらを含む化合
物の薄lll2(例えば、0.5乃至1μm程度の厚み
)の如く、従来のX線マスク構造体に使用されているx
&s吸収体はいずれも本発明において使用出来、特に限
定されない。
The X-ray absorber formed on the X-ray transmitting rIQZ is generally made of a thin layer of a material with high density, such as gold, platinum, tungsten, tantalum, copper, nickel, or a compound containing them (for example, 0. 5 to 1 μm), which is used in conventional X-ray mask structures.
&s absorbers can be used in the present invention and are not particularly limited.

この様なX線吸収体lは、例えば、上記X線透過[2上
にメッキ電極層を投砂、その上に単層又は多層のレジス
トをエレクトロンビーム描画によりパターニングし、例
えば、金をメッキしてX線吸収体である金パターンを形
成する。又、X線透過膜上にWやTa等を成膜し、単層
又は多層のレジストをエレクトロンビーム描画により形
成し、次いでWやTa層をプラズマエツチングしてX線
吸収体を形成することが出来る。又、X線吸収体はシリ
コンウェハのバックエツチングft1Tに形成してもよ
い。
Such an X-ray absorber 1 can be produced, for example, by depositing a plating electrode layer on the X-ray transmission layer 2, patterning a single layer or multilayer resist on it by electron beam writing, and plating, for example, gold. A gold pattern, which is an X-ray absorber, is formed. Furthermore, an X-ray absorber can be formed by forming a film of W, Ta, etc. on an X-ray transparent film, forming a single layer or multilayer resist by electron beam writing, and then plasma etching the W or Ta layer. I can do it. Alternatively, the X-ray absorber may be formed in the back etching ft1T of the silicon wafer.

X線透過膜と保持枠との接着又はシリコンウェハと補強
体との接着は、硬化時に収縮の少ない接着剤、例えば、
エポキシ系、ゴム系、アクリル系、ポリイミド系等の熱
硬化型、光硬化型、溶剤型等の接着剤の使用が好ましい
For adhesion between the X-ray transparent membrane and the holding frame or between the silicon wafer and the reinforcing body, an adhesive that shrinks little when cured, such as
It is preferable to use thermosetting adhesives such as epoxy, rubber, acrylic, and polyimide adhesives, photocuring adhesives, and solvent adhesives.

本発明は、上記の如きX線マスク構造体の構成において
、使用する保持枠(補強体も含む)をセラミックスから
成型及び焼結して形成し、切削加工後又は研磨後に該成
型体を9E塵防止処理することを特徴としている。
In the configuration of the X-ray mask structure as described above, the present invention involves forming the holding frame (including the reinforcing body) from ceramics by molding and sintering, and after cutting or polishing the molded body to 9E dust. It is characterized by preventive treatment.

本発明の保持枠、マスクブランクス又はX線マスク構造
体の保持枠又は補強体として使用するセラミックスとは
1例えば、アルミナ(^12(+3)。
The ceramic used as the holding frame, mask blank, or holding frame or reinforcing body of the X-ray mask structure of the present invention is 1, for example, alumina (^12 (+3)).

ジルコニア(ZrO2) 、 =r−ジュライト(2M
g0・2^I2O3・5SiO□)、サイアロン(Si
・^1・0・N)、炭化珪素(SiC) 、窒化アルミ
ニウム(AlN) 、窒化珪素(si3N4)、その他
5iC−7,rl)2、^120.−TiC等が挙げら
れる。又、切削加工が可能なセラミックス焼結体として
、AlN−〇N系、Si、N4−ON系、炭化珪素系(
S iC)等が挙げられる。
Zirconia (ZrO2), =r-durite (2M
g0・2^I2O3・5SiO□), Sialon (Si
・^1・0・N), silicon carbide (SiC), aluminum nitride (AlN), silicon nitride (si3N4), other 5iC-7, rl)2, ^120. -TiC and the like. In addition, as ceramic sintered bodies that can be cut, AlN-〇N-based, Si, N4-ON-based, and silicon carbide-based (
S iC), etc.

以上のセラミックスの中で、とりわけ本発明に好ましい
ものはそのヤング率が100GPa以上のセラミックス
である。更に好ましくはX線照射によって発生する熱に
よる歪を防ぐ為に、線膨張係数がtxto−’に一1以
下のセラミッスクスを用いる。
Among the above ceramics, ceramics having a Young's modulus of 100 GPa or more are particularly preferred for the present invention. More preferably, in order to prevent distortion due to heat generated by X-ray irradiation, ceramics having a linear expansion coefficient of txto-' of 11 or less is used.

本発明においては好ましいセラミックスの材料のヤング
率及び線膨張係数の値を下記に例示する。
In the present invention, the Young's modulus and linear expansion coefficient values of preferable ceramic materials are illustrated below.

ンク    GPa                
   に−1アルミナ(^bos)        3
70          7.Q  X 10−’ジル
ffニア(ZrO*)         150コージ
エライト(2MgO・2AIzOs・5Si02)サイ
ア0ン(Si−AI・0・N)   270炭化珪素(
SiC)   400 窒化アルミニウム(AIN)    280窒化珪素(
SiJJ  170〜300SiC−ZrB2    
     360^120+−TiC390〜 41〇 八1205−TiO,220 ^IN−BN160 SiJ4−ON          130、〜16G
5.8〜8.8  X 10−’ 本発明は上記例示のセラミックスに限定されず、同様な
物性を有するセラミックスはいずれも本発明で使用する
ことが出来る。
GPa
ni-1 alumina (^bos) 3
70 7. Q
SiC) 400 Aluminum nitride (AIN) 280 Silicon nitride (
SiJJ 170-300SiC-ZrB2
360^120+-TiC390~ 41〇81205-TiO,220^IN-BN160 SiJ4-ON 130,~16G
5.8 to 8.8 X 10-' The present invention is not limited to the above-mentioned ceramics, and any ceramics having similar physical properties can be used in the present invention.

以上のセラミックスは常法に従って所定の形状に成形及
び焼結し、所望の形状とすることが出来X 10−’ XIO”6 XIO−’ X 10−’ Xl0−@ Xl0−’ Xl0−’ Xl0−’ X 10−’ 10、OXl0−’ る。又、切削加工が可能なセラミックス焼結体く例えば
、八1N4N、 5izN4−BN、 5in)によれ
ば、常法に従って所定の形状に成形及び焼成し、引き続
き切削加工等によフて所望の寸法粒度とすることが出来
る。
The above ceramics can be molded into a predetermined shape and sintered according to a conventional method to obtain a desired shape. ' Then, the desired size and grain size can be obtained by cutting or the like.

尚、本発明で使用する保持枠及び補強体の形状はリング
状の如く、従来公知の形状と同様でよく、又、磁力チャ
ッキング性を与える為に、マスク保持枠又は補強体の表
面又は内部に磁性材を固定することも出来る。
The shape of the holding frame and reinforcing body used in the present invention may be the same as a conventionally known shape, such as a ring shape, and the surface or inside of the mask holding frame or reinforcing body may be It is also possible to fix a magnetic material to.

切削加工又は研磨処理後の発塵防止処理について説明す
る。
Dust prevention treatment after cutting or polishing will be explained.

発塵防止処理の好ましい方法は、有機又は無機バインダ
5の塗布及び/又は含浸による方法であり、例えば、第
1VAb又はCに図解的に示す様に、切削加工又は研磨
加工したセラミックス焼結体3の表面に有機バインダ又
は無機バインダを塗ノ「i及び/又は含浸する方法であ
る。バインダが比較的粘度の低い場合や使用量が比較的
多い場合にはセラミックス焼結体の内部の空隙7の一部
に迄バインダ5が含浸する。一方、バインダが比較的高
粘度又は塗布量が比較的少ない場合には内部迄含浸せず
表面に留まり被[5を形成する。又、バインダは焼結体
の表面に連続被膜を形成することは好ましい(第1図す
、c)が、これは必須ではなく例えば第1図dに示す様
に表面付近のセラミックス粒子を結合している限り、不
連続の被膜5であってもよい。
A preferred method for dust prevention treatment is a method by applying and/or impregnating an organic or inorganic binder 5. For example, as schematically shown in the first VAb or C, a ceramic sintered body 3 that has been cut or polished is This is a method of coating and/or impregnating an organic binder or an inorganic binder on the surface of the ceramic sintered body.If the binder has a relatively low viscosity or is used in a relatively large amount, the voids 7 inside the ceramic sintered body are The binder 5 is partially impregnated.On the other hand, if the binder has a relatively high viscosity or the amount applied is relatively small, the binder does not impregnate the inside and remains on the surface to form a coating [5. Although it is preferable to form a continuous film on the surface of the surface (Fig. 1, c), this is not essential. It may be the coating 5.

使用する有機のバインダとしては、例えば、ポリイミド
樹脂、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂
、尿素樹脂、メラミン樹脂、アルキド樹脂等の有機樹脂
の有機溶剤溶液や水分散体が使用出来、又、無機バイン
ダとしてはコロイダルシリカ等が使用出来る。
Examples of the organic binder that can be used include organic solvent solutions and water dispersions of organic resins such as polyimide resins, acrylic resins, epoxy resins, polyester resins, urea resins, melamine resins, and alkyd resins, and inorganic binders. As the material, colloidal silica or the like can be used.

バインダの塗布及び/又は含浸量は少なくとも第4図d
の状態が形成されればよく、例えば、固形分基準で0.
1乃至50 g / m″の割合で本発明の目的が十分
に達成出来る。
The amount of binder applied and/or impregnated should be at least as high as in Figure 4d.
It is only necessary that a state of 0.
The object of the present invention can be fully achieved at a ratio of 1 to 50 g/m''.

又、本発明の別の好ましい発塵防止処理としては、Ti
N、 Sit:%Si、N、、A1.03、TiC等の
セラミックによるコーティングや、ニッケルのカニゼン
メッキの如き金属メッキによる発塵防止処理が好適であ
る。こわらのセラミックコーティングや金属メッキであ
れば、低温被覆が可能であり11つピンホールもなく、
硬質で耐摩耗性に優れ、例えば、0.1乃至5μm程度
のJ7さの薄1漠5で充分な効果をあげることが出来る
Further, as another preferable dust generation prevention treatment of the present invention, Ti
N, Sit: % Si, N, , A1.03, coating with ceramic such as TiC, or metal plating such as nickel Kanigen plating is suitable for dust prevention treatment. With stiff ceramic coatings and metal plating, low temperature coating is possible and there are no pinholes.
It is hard and has excellent abrasion resistance, and a sufficient effect can be achieved with a thin J7 thickness of about 0.1 to 5 μm, for example.

(実施例) 次に実施例を挙げて本発明を更に具体的に説明する。(Example) Next, the present invention will be explained in more detail with reference to Examples.

実施例1 第1図は本実施例のX線マスク構造体の断面(a)及び
その保持枠3の拡大図(b乃至d)を図解的に示す図で
ある。
Example 1 FIG. 1 is a diagram schematically showing a cross section (a) of an X-ray mask structure of this example and enlarged views (b to d) of its holding frame 3.

図において、X線吸収体1はX線透過膜2の片面に所望
のパターンにて形成されている。吸収体1は約0.7m
mの金からなる。X線透過膜2は12μmの厚みのポリ
イミド薄膜と0.03μmの厚みのニッケル薄膜との2
層膜である。X線透過1漠2の周辺部は円環状の保持枠
3の上端面に保持され、平面性を保つために保持枠の傾
斜面でのみ接着剤4で接着されている。保持枠3はマシ
ナブルセラミックス(例えば、八lN−0N)で形成さ
れ、この表面にはエポキシ樹脂を約5g/rn’(固形
分)の割合で含浸して発塵防止処理層5が形成されてい
る。尚、保持枠3は内径が50mm、外径が100mm
、厚みが6mmの円環状である。
In the figure, an X-ray absorber 1 is formed on one side of an X-ray transparent film 2 in a desired pattern. Absorber 1 is approximately 0.7m
consisting of m gold. The X-ray transparent membrane 2 is made of a polyimide thin film with a thickness of 12 μm and a thin nickel film with a thickness of 0.03 μm.
It is a layered film. The peripheral portion of the X-ray transmission 1 and 2 is held on the upper end surface of an annular holding frame 3, and is bonded with adhesive 4 only on the inclined surface of the holding frame to maintain flatness. The holding frame 3 is made of machinable ceramics (for example, 81N-0N), and a dust prevention treatment layer 5 is formed on its surface by impregnating it with epoxy resin at a rate of about 5 g/rn' (solid content). ing. Furthermore, the holding frame 3 has an inner diameter of 50 mm and an outer diameter of 100 mm.
, is annular with a thickness of 6 mm.

実施例2 実施例1におけるエポキシ樹脂に代えてポリイミド樹脂
を使用し他は実施例1と同様にして発塵防止処理した本
発明のx&!iIマスク構造体をIJた。
Example 2 The x&! of the present invention was treated to prevent dust generation in the same manner as in Example 1 except that a polyimide resin was used in place of the epoxy resin in Example 1. The iI mask structure was IJ.

実施例3 実施例1におけるエポキシ樹脂に代えてポリエステル樹
脂を使用し他は実施例1と同様にして発塵防止処理した
本発明のX線マスク構造体を1:Pだ。
Example 3 A 1:P X-ray mask structure of the present invention was treated to prevent dust generation in the same manner as in Example 1 except that polyester resin was used instead of the epoxy resin in Example 1.

実施例4 第2図は本発明の他の実施例のX、V11マスク構造体
の断面を図解的に示す図である。
Embodiment 4 FIG. 2 is a diagram schematically showing a cross section of an X, V11 mask structure according to another embodiment of the present invention.

バックエツチングされたシリコーンウェハ(保持枠)6
の上に厚みが2μmのSi3N4からなるX線透過+1
!22が形成され、その上に厚み0.8μmのWからな
るxl&!it吸収体パターン1が形成されている。こ
の構造体に補強体3をエポキシ系接着剤(アルファ技研
社製、型番3500)4にて接着固定した。
Back-etched silicone wafer (holding frame) 6
X-ray transmission +1 made of Si3N4 with a thickness of 2 μm on top
! 22 is formed, and xl&! made of W with a thickness of 0.8 μm is formed thereon. An IT absorber pattern 1 is formed. A reinforcing body 3 was adhesively fixed to this structure using an epoxy adhesive (manufactured by Alpha Giken Co., Ltd., model number 3500) 4.

L記の補強体3はマシナブルセラミックス(例えばAI
N−BN)で形成され、この補強体の表面には下地材料
としてクロムを厚み061μm蒸着後、TiN 5がイ
オンブレーティング法により厚み3μmにコーティング
されている。
The reinforcing body 3 in L is made of machinable ceramics (for example, AI
After evaporating chromium as a base material to a thickness of 061 μm on the surface of this reinforcing body, TiN 5 was coated to a thickness of 3 μm using an ion blasting method.

L記の本発明のX線マスク構造体と発塵防止処理がなさ
れていないことを除いて同一のマスク構造体とを比較し
たところ1本発明によるものは著しく発塵性が低下して
いた。
When comparing the X-ray mask structure of the present invention described in Section L with the same mask structure except that no dust generation prevention treatment was performed, it was found that the one according to the present invention had significantly reduced dust generation.

(発明の効果) 以上説明した様に、セラミックスからなる保持枠又は補
強体を焼成後、発塵防止処理を行うことにより発塵防止
性に優れたX線透過膜保持枠、X線マスクブランクス及
びX線マスク構造体が提供されるという効果が得られる
(Effects of the Invention) As explained above, the X-ray transparent membrane holding frame, the X-ray mask blank, and the The advantage is that an X-ray mask structure is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明のX線マスク構造体の断面を
図解的に示す図である。 1:X線吸収体 2:X線透過膜 3、保持枠(補強体) 4:接着剤 5・発塵防+1−処理層 6:シリコンウェハ 7、空隙 第1図
FIGS. 1 and 2 are diagrams schematically showing a cross section of the X-ray mask structure of the present invention. 1: X-ray absorber 2: X-ray transparent membrane 3, holding frame (reinforcing body) 4: Adhesive 5/dust prevention +1-processing layer 6: Silicon wafer 7, void Figure 1

Claims (6)

【特許請求の範囲】[Claims] (1)X線透過膜を保持する為の保持枠において、該保
持枠がその表面に発塵防止処理が施されているセラミッ
クス焼結体からなることを特徴とするX線透過膜保持枠
(1) A holding frame for holding an X-ray transparent membrane, characterized in that the holding frame is made of a ceramic sintered body whose surface is treated to prevent dust generation.
(2)X線透過膜を保持している保持枠からなるX線マ
スクブランクスにおいて、該保持枠がその表面に発塵防
止処理が施されているセラミックス焼結体からなること
を特徴とするX線マスクブランクス。
(2) An X-ray mask blank consisting of a holding frame holding an X-ray transparent membrane, characterized in that the holding frame is made of a ceramic sintered body whose surface is treated to prevent dust generation. Line mask blanks.
(3)所望パターンのX線吸収体と該吸収体を保持する
X線透過膜とこれらを保持する保持枠とからなるX線マ
スク構造体において、該保持枠がその表面に発塵防止処
理が施されているセラミックス焼結体からなることを特
徴とするX線マスク構造体。
(3) In an X-ray mask structure consisting of an X-ray absorber with a desired pattern, an X-ray transmissive film that holds the absorber, and a holding frame that holds these, the holding frame has its surface treated to prevent dust generation. An X-ray mask structure comprising a ceramic sintered body.
(4)発塵防止処理が有機又は無機バインダの塗布及び
/又は含浸による請求項1乃至3に記載のX線透過膜保
持枠、X線マスクブランクス又はX線マスク構造体。
(4) The X-ray transmitting membrane holding frame, X-ray mask blank, or X-ray mask structure according to any one of claims 1 to 3, wherein the dust generation prevention treatment is performed by coating and/or impregnating an organic or inorganic binder.
(5)発塵防止処理がセラミックコーティング又は金属
メッキである請求項1乃至3に記載のX線透過膜保持枠
、X線マスクブランクス又はX線マスク構造体。
(5) The X-ray transparent membrane holding frame, X-ray mask blank, or X-ray mask structure according to any one of claims 1 to 3, wherein the dust generation prevention treatment is ceramic coating or metal plating.
(6)保持枠が補強体も含む請求項1乃至3に記載のX
線透過膜保持枠、X線マスクブランクス又はX線マスク
構造体。
(6) X according to claims 1 to 3, wherein the holding frame also includes a reinforcing body.
A radiation transmitting membrane holding frame, an X-ray mask blank, or an X-ray mask structure.
JP122289A 1989-01-09 1989-01-09 X-ray mask structure Expired - Fee Related JP2721530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP122289A JP2721530B2 (en) 1989-01-09 1989-01-09 X-ray mask structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP122289A JP2721530B2 (en) 1989-01-09 1989-01-09 X-ray mask structure

Publications (2)

Publication Number Publication Date
JPH02181906A true JPH02181906A (en) 1990-07-16
JP2721530B2 JP2721530B2 (en) 1998-03-04

Family

ID=11495441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP122289A Expired - Fee Related JP2721530B2 (en) 1989-01-09 1989-01-09 X-ray mask structure

Country Status (1)

Country Link
JP (1) JP2721530B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125930A (en) * 1987-11-11 1989-05-18 Fujitsu Ltd X-ray mask

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125930A (en) * 1987-11-11 1989-05-18 Fujitsu Ltd X-ray mask

Also Published As

Publication number Publication date
JP2721530B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
CN100549818C (en) The substrate that is used for special miniature photoetching
US4037111A (en) Mask structures for X-ray lithography
US6101237A (en) X-ray mask and X-ray exposure method using the same
US6180292B1 (en) Structure and manufacture of X-ray mask pellicle with washer-shaped member
US4623228A (en) Composite mirror substrate
US12044867B2 (en) Aerospace mirror manufacturing assembly
JP2610375B2 (en) Method for manufacturing multilayer ceramic substrate
JPH02181906A (en) X-ray transmitting film holding frame, x-ray mask blank and x-ray mask structure
US5717532A (en) Reflection-type compound optical elements
EP3295248A1 (en) Method for producing an euv module, euv module and euv lithography system
TW200932693A (en) Glass-ceramic and glass-ceramic/ceramic composite semiconductor manufacturing article support devices
JP2021523411A (en) Mirror support for composite optical mirror and its manufacturing method
US20010010292A1 (en) Container for framed pellicle
JPH0992602A (en) Mask structure and production thereof
JP2801610B2 (en) Lithography mask structure
US6366640B1 (en) X-ray mask blank, X-ray mask and method for manufacturing the same
US5733688A (en) Lithographic mask structure and method of producing the same comprising W and molybdenum alloy absorber
JPS6054671B2 (en) exposure mask
JP2006003376A (en) Optical reflection mirror
JP3600642B2 (en) Reflector and method of manufacturing the same
JPH02181907A (en) X-ray transmitting film holding frame, x-ray mask blank and x-ray mask structure
KR19980015311A (en) X-ray mask
JPS60122944A (en) Manufacture of mask for making pattern
JPS61140942A (en) Mask structure for lithography
JPH02168613A (en) X-ray transmitting film retaining frame, x-ray mask blanks, x-ray mask structure body, and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees