JPH02181708A - Two core type temperature detecting optical fiber - Google Patents

Two core type temperature detecting optical fiber

Info

Publication number
JPH02181708A
JPH02181708A JP1001492A JP149289A JPH02181708A JP H02181708 A JPH02181708 A JP H02181708A JP 1001492 A JP1001492 A JP 1001492A JP 149289 A JP149289 A JP 149289A JP H02181708 A JPH02181708 A JP H02181708A
Authority
JP
Japan
Prior art keywords
core
optical fiber
light
cores
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1001492A
Other languages
Japanese (ja)
Inventor
Masayuki Nishimoto
西本 征幸
Yoshikazu Matsuda
松田 美一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1001492A priority Critical patent/JPH02181708A/en
Publication of JPH02181708A publication Critical patent/JPH02181708A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02047Dual mode fibre

Abstract

PURPOSE:To allow not only the detection of temp. but the detection of the position of a temp. change as well by constituting at least either of two cores so as to have a polarization maintaining characteristic. CONSTITUTION:The 1st core 3 is formed as the elliptical core having the polarization maintaining characteristic and the optical fiber 1 is formed of this core together with the 2nd core 4. The polarization component in the Y-axis direction attains a coupled state and the incident light propagates back and forth in the cores 3, 4 and the polarization component in the X-axis direction propagates only in the core 3 without coupling, if the lengths of the major diameter and minor diameter of the core 3, the difference in the polarization maintaining characteristic between the cores 3, 4 and the clad 2 and the inter-core distance are adequately selected and if the minor diameter direction of the core 3 is designated as the Y-axis and the major diameter direction as the X-axis. The heating position can be detected as well by measuring the relation between the intensity of the backward scattered light of the incident pulse light on the core 3 and the time, when the fiber in this state is partly heated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバが布設されている周囲の温度変化及
びその温度変化の位置を検知できるようにした2コア型
温度検知光ファイバに関するもの(従来の技術) 電カケープル等の長尺な線状体の部分的な温度上昇を監
視する方法として、従来は第8図に示すような構造の2
コア型温度検知光ファイバが用いられていた。この2コ
ア型温度検知光ファイバAは、クラッドB内に同クラッ
ドBより屈折率の高い第1のコアCと、クラッドBより
屈折率の高い第2のコアDとが相互に隣接して並設され
ている。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a two-core temperature sensing optical fiber that is capable of detecting temperature changes in the environment around which the optical fiber is installed and the position of the temperature changes. Prior Art) As a method for monitoring the local temperature rise of a long linear body such as an electric cable, conventionally a two-way system with a structure as shown in Fig. 8 has been used.
A core-type temperature sensing optical fiber was used. This two-core temperature sensing optical fiber A has a cladding B in which a first core C having a higher refractive index than the cladding B and a second core D having a higher refractive index than the cladding B are arranged adjacent to each other. It is set up.

この2コア型温度検知光ファイバAでは、第1のコアC
及び第2のコアDとクラッドBとの屈折率差、第1のコ
アCと第2のコアDの外径、第1のコアCと第2のコツ
D間の距離を最適に選ぶことにより、第1のコアCと第
2のコアDとが光結合し、第1のコアCの一端より入射
した光Eが同コアCと第2のコツD間を第8図の10の
ように波状に往復しながら伝播される。
In this two-core temperature sensing optical fiber A, the first core C
By optimally selecting the refractive index difference between the second core D and the cladding B, the outer diameter of the first core C and the second core D, and the distance between the first core C and the second tip D. , the first core C and the second core D are optically coupled, and the light E entering from one end of the first core C passes between the core C and the second core D as shown in 10 in Fig. 8. It is propagated back and forth in a wave-like manner.

また、同光ファイバへの長さを、第1のコアCからの出
射光の強度が最大になるように、即ち、結合長(往復の
ピッチ)の整数倍に切断しておき、同光ファイバAの一
部が何等かの原因(第9図の場合はヒーターH)により
加熱されると、光の結合状態が第9図のIの部分で変化
して同図11の波状になり、光の一部Gが第2のコアD
に結合した状態で出射し、第1のコアCからの出射光F
の強度が減少する。従って第1のコアC及び第2のコア
Dからの出射光G、Fの増減を検知することにより、2
コア型温度検知光ファイバAの一部に加えられた加熱状
態を検知することができる。
In addition, the length of the optical fiber is cut so that the intensity of the light emitted from the first core C is maximized, that is, an integral multiple of the coupling length (round-trip pitch). When a part of A is heated by some cause (heater H in the case of Fig. 9), the coupling state of light changes at part I in Fig. 9, becoming wavy as shown in Fig. 11, and the light A part G of the second core D
The output light F from the first core C is emitted in a state of being coupled to
intensity decreases. Therefore, by detecting the increase/decrease in the emitted light G, F from the first core C and the second core D, 2
The heating state applied to a portion of the core type temperature sensing optical fiber A can be detected.

(従来技術の問題点) 前記のような構造の2コア型温度検知光ファイバは、温
度変化の有無を検知することはできるが温度変化した位
置(場所)を検知することはできないという難点があっ
た。
(Problems with the prior art) The two-core temperature sensing optical fiber having the structure described above has the disadvantage that although it can detect the presence or absence of a temperature change, it cannot detect the position (place) where the temperature has changed. Ta.

(発明の目的) 本発明の目的は、温度変化の有無はもちろんのこと、温
度変化の位置も検知可能な2コア型温度検知光ファイバ
を提供することにある。
(Objective of the Invention) An object of the present invention is to provide a two-core temperature sensing optical fiber that can detect not only the presence or absence of a temperature change but also the position of a temperature change.

(問題点を解決するための手段) 本発明の2コア型温度検知光ファイバは第1図、第2図
のように、光ファイバlのクラッド2内に第1のコア3
と第2のコア4とが相互に隣接して並設され、この2つ
のコア3,4の夫々の外径、相互の距離及び屈折率差が
使用する光の波長において光結合するように設定され、
光ファイバlの周囲の温度変化による2つのコア3.4
間の光結合の変化から、光ファイバlの周囲の温度を検
知できるようにした2コア型温度検知光ファイバにおい
て、前記2つのコア3.4のうちのいずれか一方(第1
図、第2図では第1のコア3)が偏波保持性を有する構
造のものであることを特徴とするものである。
(Means for Solving the Problems) As shown in FIGS. 1 and 2, the two-core temperature sensing optical fiber of the present invention has a first core 3 in the cladding 2 of the optical fiber l.
and a second core 4 are arranged adjacent to each other in parallel, and the respective outer diameters, mutual distances, and refractive index differences of these two cores 3 and 4 are set to optically couple at the wavelength of the light used. is,
Two cores due to temperature changes around the optical fiber 3.4
In a two-core temperature sensing optical fiber that can detect the temperature around the optical fiber l from changes in optical coupling between the two cores, one of the two cores (first
2, the first core 3) is characterized by having a polarization-maintaining structure.

(作用) 本発明の一実施例である第1図、第2図の2コア型温度
検知光ファイバは、第1のコア3を偏波保持性を有する
公知の楕円コアファイバとし、その短径方向を同コア3
の中心と第2のコア4の中心を結ぶ線と一致させたもの
である。この構造の2コア型温度検知光ファイバでは、
第1のコア3の長径長と短径長、第2のコア4の外径、
第1のコア3及び第2のコア4とクラッドlとの屈折率
差及び第1のコア3と第2のコア4間の距離を最適に選
び、第1図、第2図のように第1のコア3の短径方向を
Y軸、それと直角な長軸方向をX軸とすると、Y軸方向
の偏波成分光は結合状態となり、第1のコア3の一端か
ら入射された光Eは第1のコア3と第2のコア4間を第
2図の20の波状に往復して伝播するが、X軸方向の偏
波成分光は結合せず第2図の21のように第1のコア3
内だけを伝播する。
(Function) In the two-core temperature sensing optical fiber shown in FIGS. 1 and 2, which is an embodiment of the present invention, the first core 3 is a known elliptical core fiber having polarization maintaining property, and its short diameter Same direction as core 3
and the center of the second core 4. In this structure of two-core temperature sensing optical fiber,
The major axis length and minor axis length of the first core 3, the outer diameter of the second core 4,
The refractive index difference between the first core 3 and the second core 4 and the cladding l and the distance between the first core 3 and the second core 4 are optimally selected, and the If the short axis direction of the first core 3 is the Y axis, and the long axis direction perpendicular to that is the X axis, the polarized light components in the Y axis direction are in a coupled state, and the light E incident from one end of the first core 3 propagates back and forth between the first core 3 and the second core 4 in the form of waves 20 in FIG. 2, but the polarized component light in the 1 core 3
Propagate only within.

この状態の2′:Lア型温度検知光ファイバの一部が何
等かの原因(第3図の場合はヒーター5)により加熱さ
れると、その部分の熱膨張等により結合長が変化し、結
合光の伝播路は同図の22の波状に変化する。このため
第2図のように偏波結合した状態の2コア型温度検知光
ファイバの第1のコア3に、その入射端からパルス光E
を入射し、パルス光の消灯時に入射端に帰ってくる後方
散乱光の強度を測定すると、その強度と時間との関係は
第4図、第5図のようになる。
2': In this state, when a part of the LA-type temperature sensing optical fiber is heated by some cause (heater 5 in the case of Figure 3), the coupling length changes due to thermal expansion of that part, etc. The propagation path of the coupled light changes in the waveform 22 in the figure. Therefore, as shown in Fig. 2, the pulsed light E
When the intensity of the backscattered light that returns to the input end when the pulsed light is turned off is measured, the relationship between the intensity and time is as shown in FIGS. 4 and 5.

即ち、X軸方向では第1のコア3と第2のコア4間で光
結合しないため、第2図の2コア型温度検知光ファイバ
の一端より入射したパルス光EのX軸側波成分光は、第
2図の21のように第1のコア3をその光フアイバ固有
の伝送ロスを生じながら伝播する。その際、レーリー散
乱等の後方散乱光が生じ、この後方散乱光のX軸側波成
分光は、第1のコア3中を同ファイバ固有の伝送ロスを
生じながら同コア3の入射端へ逆伝播される。
That is, since there is no optical coupling between the first core 3 and the second core 4 in the X-axis direction, the X-axis sidewave component light of the pulsed light E incident from one end of the two-core temperature sensing optical fiber in FIG. The light beam propagates through the first core 3 as shown at 21 in FIG. 2 while causing a transmission loss inherent to the optical fiber. At this time, backscattered light such as Rayleigh scattering occurs, and the X-axis sidewave component light of this backscattered light travels back through the first core 3 to the input end of the core 3 while causing a transmission loss inherent to the fiber. Propagated.

これを図示されていないハーフミラ−等により受光器に
導き、その強度とパルス光入射時と受光時の時間との関
係を求めると第4図の23のようになる。即ち、入射端
に近い部分の後方散乱光は伝播路が短い為比較的減衰せ
ず、また短時間後に受光器に到着し、入射端に遠い部分
からの後方散乱光は伝播路が長い為比較的減衰し、また
長時間後に受光器に到着する。このため後方散乱光のX
軸側波成分光の第1のコア3からの出射強度と時間との
関係は、第4図の23のように右下りの略直線となる。
If this is guided to a light receiver by a half mirror (not shown) or the like, and the relationship between its intensity and the time of pulse light incidence and light reception is determined, the result will be as shown at 23 in FIG. In other words, the backscattered light from the part near the input end has a short propagation path, so it is relatively not attenuated, and it arrives at the receiver after a short time, while the backscattered light from the part far from the input end has a long propagation path, so it is relatively unattenuated. The light attenuates and reaches the receiver after a long period of time. Therefore, the backscattered light
The relationship between the output intensity of the axial sidewave component light from the first core 3 and time is a substantially straight line descending to the right, as shown by 23 in FIG.

一方、後方散乱光のY軸偏波成分光は、第1のコア3と
第2のコア4間を往復しつつ両光ファイバ3,4中を逆
伝播して入射端に戻る。このとき、入射端から結合長の
整数倍の位置からの後方散乱光の殆どは第1のコア3よ
り出射されるが、結合長の整数+0.5倍の位置からの
後方散乱光の大部分は第2のコア4より出射され、第1
のコア3からは殆ど出射されない、従って後方散乱光の
Y軸偏波成分光の第1のコア3からの出射強度と時間の
関係は第4図の24のような波状になる。従って、入射
パルス光のX軸偏波成分光に起因する後方散乱光の、第
1のコア3からの出射強度と時間との関係は第4図の2
3の直線と24の波形とを加えた同図の25の波状にな
る。
On the other hand, the Y-axis polarized component light of the backscattered light travels back and forth between the first core 3 and the second core 4, back propagates through both optical fibers 3 and 4, and returns to the input end. At this time, most of the backscattered light from a position that is an integral multiple of the coupling length from the input end is emitted from the first core 3, but most of the backscattered light from a position that is an integral number + 0.5 times the coupling length from the input end. is emitted from the second core 4, and
Therefore, the relationship between the intensity of the Y-axis polarized component light of the backscattered light emitted from the first core 3 and time is wave-like as shown at 24 in FIG. Therefore, the relationship between the output intensity of the backscattered light from the first core 3 due to the X-axis polarized component light of the incident pulsed light and time is 2 in FIG.
The wavy shape 25 in the figure is obtained by adding the straight line 3 and the waveform 24.

一方、入射パルス光のY軸偏波成分光は第2図の20の
ように第1のコア3と第2のコア4間を往復しつつ波状
に伝播する。その際生じる後方散乱光のうちY軸成分光
は、パルス光のY軸成分光と同一の伝播路を逆伝播して
入射端に到り、全てのY軸成分光が第1のコア3で受光
できる為、その強度と時間との関係は第5図の26のよ
うに右下りの略直線となる。
On the other hand, the Y-axis polarized component light of the incident pulsed light propagates in a waveform while reciprocating between the first core 3 and the second core 4 as shown at 20 in FIG. Of the backscattered light generated at this time, the Y-axis component light propagates back through the same propagation path as the Y-axis component light of the pulsed light and reaches the input end, so that all the Y-axis component light reaches the first core 3. Since light can be received, the relationship between its intensity and time is a substantially straight line descending to the right, as shown by 26 in FIG.

一方、後方散乱光のX軸成分光は第1のコア3内で生じ
たもののみが同コア3内を逆伝播して入射端に到る為、
その強度と時間との関係は第5図の27の波状になる。
On the other hand, since only the X-axis component light of the backscattered light generated within the first core 3 propagates back inside the core 3 and reaches the input end,
The relationship between the intensity and time is wave-like as shown in 27 in FIG.

従って入射パルス光のY軸成分光に起因する全ての後方
散乱光の第1のコア3からの出射強度と時間との関係は
第5図の26の直線と27の波とを加えた28のような
波状になる。
Therefore, the relationship between the output intensity of all backscattered light from the first core 3 due to the Y-axis component light of the incident pulsed light and time is 28, which is the sum of the 26 straight lines and 27 waves in FIG. It becomes wavy.

従って第1のコア3に無偏光のパルス光を入射したとき
に、第1のコア3に戻ってくる全ての後方散乱光強度と
時間の関係は、第4図の25の波と第5図の28の波と
を加えた第6図のような波になり、横軸(時間)が後方
散乱光の発生位置即ち入射端からの距離に比例する。
Therefore, when non-polarized pulsed light is incident on the first core 3, the relationship between the intensity and time of all the backscattered light that returns to the first core 3 is as follows: wave 25 in Figure 4 and wave 5 in Figure 5. The result is a wave as shown in FIG. 6, where the horizontal axis (time) is proportional to the generation position of the backscattered light, that is, the distance from the incident end.

この状態の2コア型温度検知光ファイバが何等かの原因
(第3図の場合はヒーター5)により加熱されると、加
熱された部分の第1のコア3と第2のコア4の結合長が
第3図の6のようにY軸成分光の伝播路が変化する。従
って入射端よりパルス光Eを入射したときの、第1のコ
ア3で受光する後方散乱光の強度と時間との関係は第7
図のようになり、加熱された部分の結合長の変化が同図
の31のように表れる。従って加熱の有無だけでなく、
加熱位置の同定も可能となる。
When the two-core temperature sensing optical fiber in this state is heated by some cause (heater 5 in the case of Fig. 3), the coupling length between the first core 3 and second core 4 in the heated part increases. However, as shown in 6 in FIG. 3, the propagation path of the Y-axis component light changes. Therefore, when the pulsed light E is input from the input end, the relationship between the intensity and time of the backscattered light received by the first core 3 is as follows.
As shown in the figure, the change in bond length of the heated portion appears as shown in 31 in the figure. Therefore, in addition to the presence or absence of heating,
It also becomes possible to identify the heating position.

(実施例) 第1図、第2図は本発明の2コア型温度検知光ファイバ
の一実施例である。この光ファイバは外径125umの
クラッド2のほぼ中央に、同クラッド2との屈折率差0
.45%、短径長0.87μm、長径長2.42μmの
楕円形の第1のコア3が配置され、同コア3の中心から
15μm離れた位置に中心が(るように第2のコア4が
配置され、同コア4はクラッド2との屈折率差0.45
%、外径0.87μmであり、クラッド2の周囲に紫外
線硬化型ウレタンアクリレート樹脂が厚さ90μmに被
覆された、長さ1000mのものである。
(Example) FIGS. 1 and 2 show an example of the two-core temperature sensing optical fiber of the present invention. This optical fiber is placed approximately in the center of the cladding 2 with an outer diameter of 125 um, with a refractive index difference of 0 between the cladding 2 and the cladding 2.
.. 45%, an elliptical first core 3 with a minor axis length of 0.87 μm and a major axis length of 2.42 μm is arranged, and the second core 4 is placed so that its center is 15 μm away from the center of the core 3. is arranged, and the core 4 has a refractive index difference of 0.45 with the cladding 2.
%, an outer diameter of 0.87 μm, a cladding 2 surrounded by an ultraviolet curable urethane acrylate resin coated to a thickness of 90 μm, and a length of 1000 m.

この2コア型温度検知光ファイバを室温に保持し、その
一部分を電気ヒータで120℃に加熱した。この状態の
2コア型温度検知光ファイバの第1のコア3の入射端に
、レーザーダイオードにより1.3umのパルス光を入
射し、第1のコア3の後方散乱光をハーフミラ−で受光
器に導き、その強度と時間の関係を求めたところ、12
0℃に加熱した部分に相当する時間の部分は第7図の3
1の部分のように山谷のピッチが変化し、加熱された部
分(位置)を検知することができた。
This two-core temperature sensing optical fiber was maintained at room temperature, and a portion of it was heated to 120° C. with an electric heater. A 1.3 um pulsed light is inputted from a laser diode into the input end of the first core 3 of the two-core temperature sensing optical fiber in this state, and the backscattered light from the first core 3 is sent to a receiver using a half mirror. When we calculated the relationship between the strength and time of the guidance, we found that 12
The time period corresponding to the part heated to 0℃ is 3 in Figure 7.
As shown in part 1, the pitch of the peaks and valleys changed, making it possible to detect the heated part (position).

比較例として第8図に示す従来構造の2コア型温度検知
光ファイバにおいて、外径125μmのクラッド2のほ
ぼ中央に、同クラッド2との屈折率差0.38%、外径
0.87μmの第1のコア3が配置され、同コア3の中
心から15μmliれた位置に中心がくるように第2の
コア4が配置され、同コア4はクラッド2との屈折率差
0.38%、外径0.87μmであり、クラッド2の周
囲に紫外線硬化型つIノタンアクリレート樹脂が厚さ9
0μmに被覆され、長さが1000mの2コア型温度温
度検知光ファイバを用意し、その全長を室温に保持した
ときと、そめ一部分を120℃に加熱したときの後方散
乱光の強度と時間の関係を実施例と同様に求めた。いず
れの場合も第1O図に示すような略直線となり、加熱部
分を検知することができなかった。
As a comparative example, in a conventional two-core temperature sensing optical fiber shown in FIG. The first core 3 is arranged, and the second core 4 is arranged so that its center is located 15 μmli away from the center of the first core 3, and the core 4 has a refractive index difference of 0.38% with the cladding 2. The outer diameter is 0.87 μm, and the UV-curing type I-notane acrylate resin is coated around the cladding 2 with a thickness of 9 μm.
A two-core temperature-sensing optical fiber coated with 0 μm and 1000 m in length was prepared, and the intensity and time of backscattered light were measured when the entire length was kept at room temperature and when a part of the fiber was heated to 120°C. The relationship was determined in the same manner as in the example. In either case, the curve was a substantially straight line as shown in FIG. 1O, and the heated portion could not be detected.

尚、図示した第1図、第2図の実施例は、楕円形偏波保
持型の第1のコア3の短軸方向を、第1のコア3と第2
のコア4の中心を結ぶ軸と一致させた構造の場合である
が、本発明では第1のコア3を図示した状態より90°
回転させた構造のものであってもよく、その場合も前記
実施例の場合と同様の効果が得られる。
In the illustrated embodiments of FIGS. 1 and 2, the short axis direction of the elliptical polarization-maintaining first core 3 is aligned with the first core 3 and the second core 3.
However, in the present invention, the first core 3 is aligned at an angle of 90° from the illustrated state.
It may also have a rotated structure, and in that case also the same effects as in the above embodiment can be obtained.

また、楕円形の第1のコア3と、円形の第2のコア4と
の位置関係は特に限定する必要がなく、円形の第2のコ
ア4がクラッド2のほぼ中央にある構造でもよい。
Further, the positional relationship between the elliptical first core 3 and the circular second core 4 does not need to be particularly limited, and a structure in which the circular second core 4 is located approximately in the center of the cladding 2 may be used.

また、パルス光を入射して後方散乱光を検出するコアも
、楕円形の第1のコア3に限定する必要はなく、円形の
第2のコア4であっても良い。
Furthermore, the core through which the pulsed light is incident and the backscattered light is detected need not be limited to the elliptical first core 3, and may be the circular second core 4.

(発明の効果) 本発明の2コア型温度検知光ファイバによれば、従来構
造の2コア型温度検知光ファイバと同様に温度検知がで
きるのは勿論、従来構造の同光ファイバでは不可能であ
った温度変化部の位置を検知することもできる。
(Effects of the Invention) According to the two-core temperature sensing optical fiber of the present invention, it is possible to perform temperature detection in the same way as the two-core temperature sensing optical fiber with the conventional structure, but it is also possible to detect temperature in a way that is not possible with the same optical fiber with the conventional structure. It is also possible to detect the location of the temperature change area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の2コア型温度検知光ファイバの断面図
、第2図は同光ファイバの光の伝播状態の説明図、第3
図は同光ファイバの高温検知時の光の伝播状態の説明図
、第4図は本発明の2コア型温度検知光ファイバの結合
しない偏波成分光の後方散乱光強度と時間との関係を示
す説明図、第5図は第2図の光結合時の偏波成分光の後
方散乱光強度と時間との関係を示す説明図、第6図は第
2図の第1のコアの後方散乱光強度と時間との関係を示
す説明図、第7図は第3図の第1のコアの後方散乱光強
度と時間との関係を示す説明図、第8図は従来の2コア
型温度検知光ファイバの説明図、第9図は同光ファイバ
の高温検知時の光の伝播状態の説明図、第1O図は同光
ファイバの加熱時の後方散乱光強度と時間との関係を示
す説明図である。 lは光ファイバ 2はクラッド 3は第1のコア 4は第2のコア
FIG. 1 is a cross-sectional view of the two-core temperature sensing optical fiber of the present invention, FIG. 2 is an explanatory diagram of the state of light propagation in the same optical fiber, and FIG.
The figure is an explanatory diagram of the light propagation state during high temperature detection in the same optical fiber, and Figure 4 shows the relationship between the backscattered light intensity and time of the uncoupled polarized component light of the two-core temperature sensing optical fiber of the present invention. 5 is an explanatory diagram showing the relationship between the backscattered light intensity of the polarized component light during optical coupling in FIG. 2 and time, and FIG. 6 is the backscattering of the first core in FIG. 2. An explanatory diagram showing the relationship between light intensity and time. Figure 7 is an explanatory diagram showing the relationship between the backscattered light intensity of the first core in Figure 3 and time. Figure 8 is a conventional two-core temperature detection diagram. An explanatory diagram of the optical fiber, Fig. 9 is an explanatory diagram of the propagation state of light when the optical fiber detects a high temperature, and Fig. 1O is an explanatory diagram showing the relationship between backscattered light intensity and time when the optical fiber is heated. It is. l is the optical fiber 2 is the cladding 3 is the first core 4 is the second core

Claims (1)

【特許請求の範囲】[Claims] 光ファイバ1のクラッド2内に第1のコア3と第2のコ
ア4とが相互に隣接して並設され、この2つのコア3、
4の夫々の外径、相互の距離及び屈折率差は使用する光
の波長において光結合するように設定され、光ファイバ
1の周囲の温度変化による2つのコア3、4間の光結合
の変化から、光ファイバ1の周囲の温度を検知できるよ
うにした2コア型温度検知光ファイバにおいて、前記2
つのコア3、4のうちいずれか一方が偏波保持性を有す
る構造のものであることを特徴とする2コア型温度検知
光ファイバ。
A first core 3 and a second core 4 are arranged adjacent to each other in a cladding 2 of an optical fiber 1, and these two cores 3,
The outer diameters, mutual distances, and refractive index differences of each of the cores 4 are set to optically couple at the wavelength of the light used, and changes in the optical coupling between the two cores 3 and 4 due to changes in the temperature around the optical fiber 1. In the two-core temperature sensing optical fiber that is capable of detecting the temperature around the optical fiber 1,
A two-core temperature sensing optical fiber characterized in that one of the two cores 3 and 4 has a polarization-maintaining structure.
JP1001492A 1989-01-07 1989-01-07 Two core type temperature detecting optical fiber Pending JPH02181708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001492A JPH02181708A (en) 1989-01-07 1989-01-07 Two core type temperature detecting optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001492A JPH02181708A (en) 1989-01-07 1989-01-07 Two core type temperature detecting optical fiber

Publications (1)

Publication Number Publication Date
JPH02181708A true JPH02181708A (en) 1990-07-16

Family

ID=11502952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001492A Pending JPH02181708A (en) 1989-01-07 1989-01-07 Two core type temperature detecting optical fiber

Country Status (1)

Country Link
JP (1) JPH02181708A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134533A (en) * 2011-12-02 2013-06-05 西安金和光学科技有限公司 Distributed optical fiber sensing device based on dual-channel and operation method thereof
JP2014517936A (en) * 2011-05-19 2014-07-24 インジェネリック・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Optical waveguide coupling device
JP2014228705A (en) * 2013-05-22 2014-12-08 三菱電線工業株式会社 Multi-core optical fiber and method for manufacturing the same
US9002149B2 (en) 2008-11-12 2015-04-07 Fotech Solutions Limited Distributed fibre optic sensing for event detection
JP2015099211A (en) * 2013-11-18 2015-05-28 株式会社フジクラ Multi-core fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9002149B2 (en) 2008-11-12 2015-04-07 Fotech Solutions Limited Distributed fibre optic sensing for event detection
JP2014517936A (en) * 2011-05-19 2014-07-24 インジェネリック・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Optical waveguide coupling device
CN103134533A (en) * 2011-12-02 2013-06-05 西安金和光学科技有限公司 Distributed optical fiber sensing device based on dual-channel and operation method thereof
WO2013079027A1 (en) * 2011-12-02 2013-06-06 西安金和光学科技有限公司 Distributed fibre sensing device based on dual channel and running method thereof
JP2014228705A (en) * 2013-05-22 2014-12-08 三菱電線工業株式会社 Multi-core optical fiber and method for manufacturing the same
JP2015099211A (en) * 2013-11-18 2015-05-28 株式会社フジクラ Multi-core fiber
US9470840B2 (en) 2013-11-18 2016-10-18 Fujikura Ltd. Multicore fiber

Similar Documents

Publication Publication Date Title
JP4801072B2 (en) Broadband optical fiber tap
US5500913A (en) Apparatus and method of fabricating directional fiber optic taps, sensors and other devices with variable angle output
US8724945B2 (en) High power fiber laser system with integrated termination block
JPS6351243B2 (en)
CN102844942A (en) Light intensity monitoring circuit and fiber laser system
JP2018163370A (en) Termination of optical fiber with low backreflection
GB2404017A (en) Double-ended distributed temperature sensing
AU649540B2 (en) Optical coupler/splitter with a filter
CA2424820A1 (en) Prismatic reflection optical waveguide device
JPH1054920A (en) Optical fiber tap and optical array device having this optical fiber tap
JPH02181708A (en) Two core type temperature detecting optical fiber
JP4916739B2 (en) Bending sensor
JP2000028848A (en) Dispersion waveguide tap
GB2169096A (en) Joining optical fibres using numerical aperture transformer
US20020114568A1 (en) Optical fiber termination collimator and process of manufacture
JP4108576B2 (en) Y-branch waveguide
JPH01289903A (en) Optical coupler and non-penetration type tap
KR102633654B1 (en) Fiber-optic Confocal Deformation Sensor and Strain Sensor Device Comprising The Same
JP2511999B2 (en) Liquid detection optical fiber and liquid detection system using the same
CN113375592B (en) Bending measurement device based on optical fiber mode dispersion
CN100480755C (en) Broadband fiber optic tap
Imam et al. Choosing a Better Delay Line Medium between Single-Mode and Multi-Mode Optical Fibers: the Effect of Bending
US6212316B1 (en) Stand-off matched index optical waveguide interface
Fiebrandt et al. Multimode interference device in a rounded rectangle-core fiber
US20160139337A1 (en) Dual-Ended Optical Fiber Pathway