JPH0218137A - Controlling method for automatic defroster - Google Patents

Controlling method for automatic defroster

Info

Publication number
JPH0218137A
JPH0218137A JP63167077A JP16707788A JPH0218137A JP H0218137 A JPH0218137 A JP H0218137A JP 63167077 A JP63167077 A JP 63167077A JP 16707788 A JP16707788 A JP 16707788A JP H0218137 A JPH0218137 A JP H0218137A
Authority
JP
Japan
Prior art keywords
value
dew condensation
defroster
condensation sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63167077A
Other languages
Japanese (ja)
Inventor
Hikari Tanaka
光 田中
Eiki Noro
栄樹 野呂
Toru Tanabe
徹 田辺
Osamu Matsumoto
治 松本
Masamitsu Ichikawa
市川 政実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Stanley Electric Co Ltd
Original Assignee
Honda Motor Co Ltd
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Stanley Electric Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP63167077A priority Critical patent/JPH0218137A/en
Publication of JPH0218137A publication Critical patent/JPH0218137A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To properly control a defroster always independently of changes in the number of passengers, air-conditioning, season, etc. by driving the defroster when the output of dew condensation sensors reached either of a specific operational value or upper limit value after exceeding a specific threshold limit value. CONSTITUTION:Dew condensation on the front and rear windshields 1, 3 is removed by controlling, with a control part 5, the front and rear defroster driving parts 6 and 7, based on each output of the front and rear dew condensation sensors, 2 and 4, which are respectively installed on the front and rear windshields 1, 3 of an automobile. At the control part 5, then, an operational value is set with the initial value of each dew condensation sensor, 2 and 4, as a reference value when the electric source was turned on. The saturated humidity of each dew condensation sensor, 2 and 4, is set as the upper limit value while an output value of each dew condensation sensor, 2 and 4, corresponding to the lowest humidity required for the generation of dew condensation is set as the lower limit value. Each defroster driving part, 6 and 7, is operated when the output of each dew condensation sensor 2 and 4, reached either of the operational value or the upper limit value after exceeding the lower limit value.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は自動車のフロントガラスおよびリヤガラスに防
曇装置として設けられるデフロスタおよび熱線の自動駆
動方法に関するものである。
The present invention relates to a method for automatically driving a defroster and a heat wire provided as an anti-fog device on the windshield and rear glass of an automobile.

【従来の技術】[Conventional technology]

従来のこの種のオートデフロスタと称されている自動防
曇装置には例えば結露センサの抵抗値の変化によりリヤ
ガラスに配設された熱線に電源を投入あるいは停止させ
るものが知られている。
A conventional automatic defrosting device called an auto defroster is known to turn on or off power to a heating wire disposed on a rear window based on a change in the resistance value of a dew condensation sensor, for example.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、前記した従来のものは乗員の多少による
車室内湿度の変化、暖冷房装置による車室内気温の変化
、あるいは季節変化、降雨など天候変化による車室外環
境の変化など、自動車に生ずる複雑な環境変化が考慮さ
れていないものであり、上記した全ての変化に対応する
ことができず、この理由により未だ結露が解消されない
状態でデフロスタの駆動が解除されたり、あるいは結露
が発生してないにも係わらずデフロスタが駆動されると
云う不都合を生ずるものとなり、この不都合を解消する
ものの開発が課題とされるものであった。
However, the above-mentioned conventional methods are not compatible with the complex environment that occurs in a car, such as changes in the humidity inside the car due to the number of occupants, changes in the temperature inside the car due to heating and cooling equipment, and changes in the outside environment due to weather changes such as seasonal changes and rainfall. Changes are not taken into account, and it is not possible to respond to all the changes mentioned above.For this reason, the defroster drive may be canceled before the condensation has been removed, or even when no condensation has occurred. This results in the inconvenience that the defroster is driven regardless of the condition, and the development of a solution to this inconvenience has been a challenge.

【課題を解決するための手段】[Means to solve the problem]

本発明は前記した従来の課題を解決するための具体的手
段として、自動車のウィンドガラスに配設された結露セ
ンサと、該結露センサからの信号を演算処理する制御部
と、該制御部からの信号によりデフロスタを駆動する駆
動部とで成り、前記制御部は、前記結露センサの運転開
始に伴う電源投入時の初期値を基準値として演算し動作
値を設定すると共に、前記結露センサの湿度飽和値を下
限界値とし、前記ウィンドガラスの結露発生に要する最
低湿度に対応する前記結露センサの出力値を下限界値と
して保持し、前記結露センサからの出力が前記下限界値
を越え前記動作値あるいは前記下限界値の何れかに達し
たときには前記駆動部に動作信号を発し、前記デフロス
タを駆動することを特徴とするオートデフロスタの制御
方法、および結露状態の解消を前記デフロスタの動作の
開始からの経過時間あるいは該経過時間を係数とする前
記結露センサの出力値として停止値を設定し、前記結露
センサの出力値が前記停止値に達したときには前記駆動
部に停止信号を発して前記デフロスタを停止させること
を特徴とするオートデフロスタの制御方法を提供するこ
とで、前記従来の課題を解決するものである。
As a specific means for solving the conventional problems described above, the present invention includes a dew condensation sensor disposed on a windshield of an automobile, a control section for processing signals from the dew condensation sensor, and a control section for processing signals from the condensation sensor. and a drive unit that drives the defroster based on a signal, and the control unit calculates an initial value at power-on when the condensation sensor starts operating as a reference value and sets an operating value, and also controls humidity saturation of the dew condensation sensor. value as a lower limit value, the output value of the dew condensation sensor corresponding to the lowest humidity required for condensation to occur on the window glass is held as the lower limit value, and the output from the dew condensation sensor exceeds the lower limit value and the operating value Alternatively, a method for controlling an auto defroster is characterized in that when any of the lower limit values is reached, an operation signal is issued to the drive unit to drive the defroster, and the dew condensation state is eliminated from the start of the operation of the defroster. A stop value is set as the elapsed time or the output value of the dew condensation sensor using the elapsed time as a coefficient, and when the output value of the dew condensation sensor reaches the stop value, a stop signal is issued to the drive unit to activate the defroster. The above-mentioned conventional problems are solved by providing a method for controlling an auto defroster, which is characterized by stopping the auto defroster.

【実 施 例】【Example】

つぎに、本発明を図に示す一実施例に基づいて詳細に説
明する。 第1図は本発明のオートデフロスタの制御方法をブロッ
ク図で示すもので、フロントガラス1にはフロント結露
センサ2が取付られ、リヤガラス3にはリヤ結露センサ
4が取付られ、前記双方の結露センサ2および4の出力
は共に制御部5に入力されている。 前記制御部5は前記結露センサ2.4からの入力を演算
しその結果に応じて前記フロントガラス1およびリヤガ
ラス3の結露を夫々に検出し、結露が検出された側のガ
ラス1.3に対応するデフロスタ駆動部、即ちフロント
デフロスタ駆動部6、リアデフロスタ駆動部7の何れか
或は双方を動作させ防曇作用を行わせる。 前記デフロスタ駆動部8,7の動作中も前記結露センサ
2.4の前記制御部5による演算は継続され、デフロス
タを駆動した効果が監視され、前記結露センサ2.4が
所定の値になったときには防曇作用が完了したものとし
て前記デフロスタ駆動部6.7の動作を停止させる。 以上の説明でも明らかなように本発明の制御方法は従来
例のリヤガラス3に敷設された熱線のみに対して行うも
のでなく、例えば自動車の暖冷房装置などを利用した送
風によるフロントガラスのデフロスタ装置も動作させる
ことも同時に可能とするものである。 以下に更に詳細に本発明の要旨の部分の説明を行う。 ここで、前記結露センサ2および4は従来から使用され
ている、例えば二本の電極をガラス面に接近して配設し
てその電極間の抵抗値が前記ガラス面に付着する水滴に
より低下するのを以て検出する平行線センサ、あるいは
吸湿により膨張する樹脂と導電性微粒子とが混合され吸
湿により抵抗値が上昇するものなど、どのような種類の
ものでも使用可能である。 第2図は前記結露センサ2.4として湿度により抵抗が
上昇するものを選択したときの本発明の前記制御部5に
よる駆動開始の原理を示すもので、前記フロント結露セ
ンサ2、リヤ結露センサ4共に駆動開始時には同じ原理
で処理されるので説明は前記フロント結露センサ2に付
いてのみ行うものとする。 この発明を成すための発明者による検討結果によれば前
記フロント結露センサ2(以下、センサ2と略称)は、
例えば運転開始のための電源投入時において、その時の
雰囲気湿度を初期値とする抵抗値を持つものであり、こ
の初期値を始点として状態に応する変化をするものであ
る。 これを具体的に示すものが第2図中の特性線りお
よび特性線Hであり、例えば特性線りは雰囲気湿度が低
いときの特性を示すもので、測定開始時における初期値
はA□であり、ガラス面の湿度の上昇に伴い抵抗値をB
、に上昇させる。 同様に特性線Hは前記した雰囲気湿
度が高いときのもので、初期値はA2であり、ガラス面
の湿度の上昇に伴い抵抗値はB2に上昇するものとなる
。 上記の結果から、例えば図中に記載すれば水平線で表さ
れるような所定の抵抗値を以て動作点とする方法は、開
始時の前記雰囲気湿度が低いときには遅れる傾向となり
、逆に前記雰囲気湿度が高いときには早すぎる傾向とな
り、これは主として前記センサ2の時間−吸湿特性によ
り前記した所定の抵抗値に達する迄の時間が初期値によ
り異なることによることが判明した。 上記の条件を勘案し本発明では、前記した初期値AM初
期値A2あるいはその中間の任意の初期値A、を前記制
御部5に記憶させておき、前記センサ2の抵抗値が所定
の倍率となった時に前記デフロスタ駆動部6に動作を開
始させると前記した時間遅れなどの不具合を生ぜず最適
の動作が得られる、即ち倍率F=BI /A。 ”B2/A2 =B、/A。 とすれば良いものであることを見出した。 これにより、 動作点B、=倍率F×初期値A、・・■で求められ るものとなり、原則的には0式を滴定するように前記制
御部5を構成すれば良い。 しかしながら、発明者による更なる検討の結果では前記
0式も極限の条件で例外項を持ち、具体的には梅雨時な
ど前記初期値A、が湿度100%に極めて近接するとき
には事後に倍率Fの変化は不可能であり、依って第2図
に示す前記特性線Hの動作点B2を前記した湿度100
%の点となるように設定して、この湿度100%の点を
下限界値UPとしておき、図中に特性線HHで示すよう
に前記センサ2の抵抗値が前記下限界値UPに達したと
きには初期値に関係無く、即ち0式を満たすことなく前
記制御部5は前記デフロスタ駆動部6をして動作させる
ものとする。 同様に寒冷時など低湿度時においては前記0式が満たさ
れたときにも、あまりの低湿度のために結露に至らない
状態があり、依って第2図に示す結露点B1を結露を生
ずる下限界値DWとなるように設定し、この下限界値D
Wに前記センサ2の値が達しないときには前記0式を満
たしても前記デフロスタ駆動部6をして動作させないも
のとする。 次いで第3図に示すものは動作時から停止に移行すると
きの前記制御部5における動作原理を示すものであり、
発明者による検討の結果では結露はガラス面の温度と車
室内の湿度および気温との相互関係で生じるものであり
、特に自動車の場合前記したガラス面の温度が前記デフ
ロスタの動作に伴い上昇傾向にあることと、乗員の数な
どにより車室内の湿度、温度の変化も多様であり、必ず
しも結露が解消するときの前記センサ2.4の抵抗値は
一定でなく、寧ろ時間を係数として前記制御部5で演算
し、停止点を求めることが好ましいことが見出された。 以上のことを第3図に示す曲線P1〜P4で具体的に説
明すると、曲線P1は例えば乗員が1名のときであり、
このときには時間経過による車室内の湿度、温度の変化
は比較的に少なく、これにより前記センサ2に比較的に
早くデフロスタの効果が表れるものとなるが、例えば多
人数が乗車した時の曲線P4では車室内の湿度、温度の
変化(増加)は激しいものとなり、これにより前記セン
サ2は前記車室内の湿度の増加にも反応し、見掛は上で
効果は生じないような推移を辿るものとなる。 実際に前記した車室内の湿度の増加はデフロスタの効果
を減するものとなり時間が延長されるが、同時にデフロ
スタ使用の経過時間が長くなると共に前記ガラス1面の
温度も上昇して車室内の温度に近すき、これにより結露
を生ずる湿度が上昇する。 依って、経過時間の係数に
より停止点は変化させることが最も適正となる。 上記の判明した事実に基づいて決定されたものが第3図
に階段状の折れ線Rとして示す停止点であり、結露点B
、を通過し僅かのオーバーシュート状態を経て、再度前
記結露点B、を通過する時点Toを起点とする経過時間
ToからT、迄は初期値A、を停止点として設定し、以
後は、経過時間TIからT2迄を(A、+α)、経過時
間T2からT、迄を(A、+β)、経過時間T3以降を
(A、+γ)となるよう〔但し、α〈βくγであり、(
Ax+γ) <Bx )に前記停止点は定められている
。 尚、ここで特にリヤガラス3に彰ける停止点について説
明すれば、上記説明と同じ手段により停止点を定めても
良いが、熱線が直接に前記リヤガラス3面に敷設されて
いることなどから、このガラス面の温度上昇が急激で防
曇効果が顕著であり前記した乗員の増減などの影響を受
にくいので、前記リアデフロスタ駆動部7は第4図に示
すように再度前記結露点B、を通過する時点Toを起点
とする一定時限T、を停止点としても実用上に不都合は
生じない。 尚、前記制御部5は以上説明のように複雑な動作を要求
されるものであるので、実施に当たりこの動作を具体化
した電気回路を構成するときにはマイクロコンピュータ
等を使用することが好ましい。
Next, the present invention will be explained in detail based on an embodiment shown in the drawings. FIG. 1 is a block diagram showing the auto defroster control method of the present invention, in which a front dew condensation sensor 2 is attached to a windshield 1, a rear dew condensation sensor 4 is attached to a rear glass 3, and both of the above dew condensation sensors are attached. Both outputs 2 and 4 are input to the control section 5. The control unit 5 calculates the input from the dew condensation sensor 2.4, and detects dew condensation on the windshield 1 and rear glass 3, respectively, according to the result, and corresponds to the glass 1.3 on the side where dew condensation is detected. Either or both of the defroster drive unit 6 and the rear defroster drive unit 7 are operated to perform an anti-fog action. Even during the operation of the defroster drive units 8 and 7, the calculation by the control unit 5 of the dew condensation sensor 2.4 is continued, the effect of driving the defroster is monitored, and the value of the dew condensation sensor 2.4 reaches a predetermined value. Sometimes, the operation of the defroster drive section 6.7 is stopped, assuming that the anti-fogging action has been completed. As is clear from the above explanation, the control method of the present invention is not only applied to the hot wire installed on the rear glass 3 as in the conventional example, but also applies to a windshield defroster device using air blowing from an automobile's heating/cooling system, etc. It also makes it possible to operate both at the same time. The gist of the present invention will be explained in more detail below. Here, the dew condensation sensors 2 and 4 are conventionally used, for example, two electrodes are disposed close to the glass surface, and the resistance value between the electrodes is reduced by water droplets adhering to the glass surface. Any type of sensor can be used, such as a parallel line sensor that detects the resistance using a sensor that detects moisture, or a sensor that is made of a mixture of resin that expands when it absorbs moisture and conductive particles, and whose resistance value increases when it absorbs moisture. FIG. 2 shows the principle of starting the drive by the control section 5 of the present invention when the dew condensation sensor 2.4 is selected to have a resistance that increases with humidity. Since both are processed using the same principle at the start of driving, only the front dew condensation sensor 2 will be described. According to the results of the study conducted by the inventor to realize this invention, the front dew condensation sensor 2 (hereinafter abbreviated as sensor 2) is as follows:
For example, when the power is turned on to start operation, the resistance value is set to the atmospheric humidity at that time as an initial value, and changes depending on the state from this initial value. The characteristic line and the characteristic line H in Fig. 2 specifically show this.For example, the characteristic line shows the characteristic when the atmospheric humidity is low, and the initial value at the start of measurement is A□. Yes, as the humidity of the glass surface increases, the resistance value decreases to B.
, to rise to. Similarly, the characteristic line H is obtained when the above-mentioned atmospheric humidity is high, and the initial value is A2, and the resistance value increases to B2 as the humidity of the glass surface increases. From the above results, for example, the method of setting the operating point at a predetermined resistance value as represented by a horizontal line in the figure tends to be delayed when the atmospheric humidity at the start is low; When it is high, it tends to be too early, and it has been found that this is mainly due to the fact that the time taken to reach the predetermined resistance value differs depending on the initial value due to the time-moisture absorption characteristics of the sensor 2. In consideration of the above conditions, in the present invention, the above-mentioned initial value AM initial value A2 or an arbitrary initial value A between them is stored in the control unit 5, and the resistance value of the sensor 2 is adjusted to a predetermined magnification. If the defroster drive section 6 is started to operate when the above-mentioned condition is reached, the optimum operation can be obtained without causing problems such as the above-mentioned time delay, that is, the magnification F=BI/A. ``B2/A2 = B, /A.'' We found that it is good to set it as ``B2/A2 = B, /A.'' As a result, the operating point B, = magnification F x initial value A, ...■ can be obtained, and in principle, The controller 5 may be configured to titrate Equation 0. However, as a result of further study by the inventor, the Equation 0 also has an exception term under extreme conditions, and specifically, the initial When the value A is very close to 100% humidity, it is impossible to change the magnification F after the fact, and therefore the operating point B2 of the characteristic line H shown in FIG.
% point, and set this point of 100% humidity as the lower limit value UP, and as shown by the characteristic line HH in the figure, the resistance value of the sensor 2 reaches the lower limit value UP. In some cases, the control section 5 operates the defroster drive section 6 regardless of the initial value, that is, without satisfying Equation 0. Similarly, when the humidity is low, such as in cold weather, even when the above equation 0 is satisfied, there are situations where the humidity is so low that no condensation occurs, and therefore condensation occurs at the condensation point B1 shown in Figure 2. The lower limit value DW is set to be the lower limit value DW.
When the value of the sensor 2 does not reach W, the defroster drive unit 6 is not operated even if the formula 0 is satisfied. Next, what is shown in FIG. 3 shows the operating principle of the control section 5 when transitioning from operation to stop.
As a result of studies conducted by the inventor, condensation occurs due to the interaction between the temperature of the glass surface and the humidity and air temperature inside the vehicle.In particular, in the case of automobiles, the temperature of the glass surface tends to rise as the defroster operates. In addition, the humidity and temperature inside the vehicle vary depending on the number of occupants, etc., and the resistance value of the sensor 2.4 when dew condensation is eliminated is not necessarily constant, but rather the control unit uses time as a factor. It has been found that it is preferable to calculate the stopping point using 5. To specifically explain the above using curves P1 to P4 shown in FIG. 3, curve P1 is for example when there is one occupant;
At this time, there are relatively few changes in the humidity and temperature inside the vehicle over time, so the defroster effect appears on the sensor 2 relatively quickly. Changes (increases) in the humidity and temperature in the vehicle interior become drastic, and as a result, the sensor 2 responds to the increase in humidity in the vehicle interior, and the sensor 2 follows a transition that appears to be upward but has no effect. Become. In fact, the above-mentioned increase in the humidity inside the vehicle reduces the effectiveness of the defroster and extends the time, but at the same time, as the time elapses after using the defroster becomes longer, the temperature of the glass surface also rises, causing the temperature inside the vehicle to increase. This increases the humidity which causes condensation. Therefore, it is most appropriate to change the stopping point depending on the coefficient of elapsed time. What was determined based on the above-mentioned facts is the stopping point shown as the step-like broken line R in Figure 3, and the dew condensation point B.
, and passes through the dew condensation point B again after passing through the dew condensation point B. From the elapsed time To to T, the initial value A is set as the stopping point. From time TI to T2 is (A, +α), from elapsed time T2 to T, is (A, +β), and from elapsed time T3 is (A, +γ) [However, α < β × γ, (
The stopping point is determined at (Ax+γ) <Bx). Here, we will specifically explain the stopping point on the rear glass 3. Although the stopping point may be determined by the same means as explained above, since the hot wire is laid directly on the surface of the rear glass 3, etc. Since the temperature of the glass surface rises rapidly and the anti-fogging effect is remarkable, and it is not affected by the increase or decrease in the number of occupants mentioned above, the rear defroster drive section 7 passes through the dew condensation point B again as shown in FIG. There is no practical problem even if the stopping point is a fixed time period T starting from the time point To. Since the control section 5 is required to perform complex operations as described above, it is preferable to use a microcomputer or the like when constructing an electric circuit embodying this operation.

【発明の効果】【Effect of the invention】

以上に説明したように本発明により、結露状態の発生を
夫々の結露センサの初期値あるいは限界値を基準値とし
て演算し動作させると共に、結露状態の解消を前記動作
の開始からの経過時間および前記経過時間を係数とする
前記結露センサの値で演算し停止させる駆動方法とした
ことで、特に自動車においては顕著である、例えば乗員
の変化、或は冷暖房装置による車室内の状態の変化、及
び季節などによる車室外のUSの変化など、いかなる変
化にも対応できるものとなり、視界を損なうこと無く、
安全性の向上、居住性の向上に優れた効果を奏するもの
である。
As explained above, according to the present invention, the occurrence of dew condensation is calculated and operated using the initial value or limit value of each dew condensation sensor as a reference value, and the elimination of dew condensation is determined based on the elapsed time from the start of the operation and the By using a driving method that calculates and stops the dew condensation sensor value using the elapsed time as a coefficient, this is particularly noticeable in automobiles, such as changes in the number of occupants, changes in the state of the cabin due to air conditioning equipment, and seasonal changes. It can respond to any changes, such as changes in the US outside the vehicle due to other factors, without impairing visibility.
This has an excellent effect on improving safety and livability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るオートデフロスタの制御方法の一
実施例を示すブロック図、第2図は同じ実施例でのデフ
ロスタの動作点を定めるときの原理を示すグラフ、第3
図は同じくフロントガラスに対する停止点を定めるとき
の原理を示すグラフ、第4図は同じくリヤガラスに対す
る停止点を定めるときの原理を示すグラフである。 6・・・・フロントデフロスタ駆動部 7・・・・リヤデフロスタ駆動部 A1〜A、・・・・初期値 B、〜B、・・・・動作点
FIG. 1 is a block diagram showing an embodiment of the auto defroster control method according to the present invention, FIG. 2 is a graph showing the principle of determining the operating point of the defroster in the same embodiment, and FIG.
This figure is a graph showing the principle of determining the stopping point for the windshield, and FIG. 4 is a graph showing the principle of determining the stopping point for the rear glass. 6...Front defroster drive unit 7...Rear defroster drive unit A1-A,...Initial value B, ~B,...Operating point

Claims (2)

【特許請求の範囲】[Claims] (1)自動車のウインドガラスに配設された結露センサ
と、該結露センサからの信号を演算処理する制御部と、
該制御部からの信号によりデフロスタを駆動する駆動部
とで成り、前記制御部は、前記結露センサの運転開始に
伴う電源投入時の初期値を基準値として演算し動作値を
設定すると共に、前記結露センサの湿度飽和値を上限界
値とし、前記ウインドガラスの結露発生に要する最低湿
度に対応する前記結露センサの出力値を下限界値として
保持し、前記結露センサからの出力が前記下限界値を越
え前記動作値あるいは前記上限界値の何れかに達したと
きには前記駆動部に動作信号を発し、前記デフロスタを
駆動することを特徴とするオートデフロスタの制御方法
(1) A dew condensation sensor disposed on the windshield of an automobile, and a control unit that processes signals from the dew condensation sensor;
and a drive section that drives the defroster in response to a signal from the control section, and the control section calculates and sets an operating value using an initial value at power-on when the condensation sensor starts operating as a reference value. The humidity saturation value of the dew condensation sensor is set as an upper limit value, the output value of the dew condensation sensor corresponding to the lowest humidity required for generation of dew condensation on the window glass is held as a lower limit value, and the output from the dew condensation sensor is held as the lower limit value. A method for controlling an auto defroster, characterized in that when the value exceeds the operating value and reaches either the operating value or the upper limit value, an operating signal is issued to the drive section to drive the defroster.
(2)結露状態の解消を前記デフロスタの動作の開始か
らの経過時間あるいは該経過時間を係数とする前記結露
センサの出力値として停止値を設定し、前記結露センサ
の出力値が前記停止値に達したときには前記駆動部に停
止信号を発して前記デフロスタを停止させることを特徴
とする特許請求の範囲第1項記載のオートデフロスタの
制御方法。
(2) A stop value is set as the elapsed time from the start of the operation of the defroster or the output value of the dew condensation sensor using the elapsed time as a coefficient for eliminating the condensation state, and the output value of the dew condensation sensor is set to the stop value. 2. The method of controlling an auto defroster according to claim 1, further comprising: issuing a stop signal to the drive unit to stop the defroster when the defroster reaches the predetermined limit.
JP63167077A 1988-07-05 1988-07-05 Controlling method for automatic defroster Pending JPH0218137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63167077A JPH0218137A (en) 1988-07-05 1988-07-05 Controlling method for automatic defroster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63167077A JPH0218137A (en) 1988-07-05 1988-07-05 Controlling method for automatic defroster

Publications (1)

Publication Number Publication Date
JPH0218137A true JPH0218137A (en) 1990-01-22

Family

ID=15842979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63167077A Pending JPH0218137A (en) 1988-07-05 1988-07-05 Controlling method for automatic defroster

Country Status (1)

Country Link
JP (1) JPH0218137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264458A (en) * 2005-03-23 2006-10-05 Asahi Glass Co Ltd Fogging proof window system for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264458A (en) * 2005-03-23 2006-10-05 Asahi Glass Co Ltd Fogging proof window system for vehicle
JP4670418B2 (en) * 2005-03-23 2011-04-13 旭硝子株式会社 Anti-fog window system for vehicles

Similar Documents

Publication Publication Date Title
US9657976B2 (en) Vehicular HVAC system with modified air recirculation for start-stop engine
JPS5948170B2 (en) Anti-fog control method for vehicle air conditioner
US5992162A (en) Process for the outside-moisture-dependent control of a motor vehicle air conditioner
JP4134725B2 (en) Vehicle defogger control device
JPH0218137A (en) Controlling method for automatic defroster
JP3309528B2 (en) Vehicle air conditioner
JPS61110613A (en) Air conditioner for car
JP2001206040A (en) Air conditioner for vehicle
JP4134726B2 (en) Vehicle defogger control device
JPS604409A (en) Air conditioner for vehicle
JPS6021097B2 (en) Anti-fog device for vehicle window glass
JP2526872B2 (en) Defroster for window glass
JP4134727B2 (en) Vehicle defogger control device
JP3295214B2 (en) Vehicle air-conditioning control method
JP2507978Y2 (en) Automotive air conditioners
JP3518551B2 (en) Air conditioner
JPH0549504B2 (en)
JP2519427Y2 (en) Vehicle air conditioning controller
JP3835913B2 (en) Intake door controller for exhaust gas
KR20160028666A (en) Anti-fogging system for wind-shield glass of automobile and method thereof
JPH0511685Y2 (en)
JPS6355451B2 (en)
JPS63265721A (en) Air conditioner for vehicle
JPH05105032A (en) Air conditioner for electric automobile and control method thereof
JPH0581446B2 (en)