JPH0218122B2 - - Google Patents

Info

Publication number
JPH0218122B2
JPH0218122B2 JP27904884A JP27904884A JPH0218122B2 JP H0218122 B2 JPH0218122 B2 JP H0218122B2 JP 27904884 A JP27904884 A JP 27904884A JP 27904884 A JP27904884 A JP 27904884A JP H0218122 B2 JPH0218122 B2 JP H0218122B2
Authority
JP
Japan
Prior art keywords
cylindrical container
liquid
air bubbles
bubbles
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27904884A
Other languages
Japanese (ja)
Other versions
JPS61153108A (en
Inventor
Riichi Ogura
Masaru Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHINIPPON RYUTAI GIKEN KK
Original Assignee
NISHINIPPON RYUTAI GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHINIPPON RYUTAI GIKEN KK filed Critical NISHINIPPON RYUTAI GIKEN KK
Priority to JP27904884A priority Critical patent/JPS61153108A/en
Publication of JPS61153108A publication Critical patent/JPS61153108A/en
Publication of JPH0218122B2 publication Critical patent/JPH0218122B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基本的には、特に高速で流動する液
体中から気泡を除去する場合に有効な全く新規な
気泡除去方法、およびその方法を実施するのに好
適な気泡除去装置の開発に関し、更に発展的に
は、その気泡除去装置を利用した高流速流力試験
用回流水槽の開発に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention basically provides a completely new method for removing air bubbles that is particularly effective in removing air bubbles from a liquid flowing at high speed, and the method. The present invention relates to the development of a bubble removal device suitable for carrying out the test, and more specifically, to the development of a circulating water tank for high flow rate flow tests using the bubble removal device.

〔従来の技術〕[Conventional technology]

例えば、船舶や海洋構造物或いはプロペラや船
外機等の推進器更には魚網などの性能を試験(計
測/観測)するための流力試験用設備として、旧
来主流であつた曳航水槽(静止貯留水中で被試験
体自体を動かす方式)に代わつて、近年は、設備
費および運転費が安価で済むと共に、試験を容易
かつ短時間で行え、しかも、所望とあれば如何に
長時間でも連続的に試験を行うことができる回流
水槽(固定的に位置させて被試験体自体の周りに
水を循環流動させる方式)が、盛んに利用される
ようになつてきており、多大な成果が挙げられて
いる。
For example, towing water tanks (stationary storage In recent years, instead of the method of moving the test object itself underwater, the equipment cost and operating cost are low, the test can be performed easily and in a short time, and if desired, it can be performed continuously for any length of time. Circulation water tanks (a method in which water is circulated around the test object in a fixed position), which allow testing to be carried out in a controlled manner, are becoming more widely used, and have achieved great results. ing.

ところで、この流力試験用回流水槽としては、
例えばキヤビテーシヨンタンクのように、管状閉
流路部分のみから成る循環流路内に充満させた加
圧水を流動させて、その循環流路の一部に形成さ
れた自由水面を有しない閉塞計測/観測部にプロ
ペラなどを位置させて試験を行う特殊な形式のも
のを除いて、一般には、管状閉流路部分と自由水
面を有する計測/観測部を形成する水平溝状開流
路部分とを備えて成る循環流路内に水を循環流動
させるための流速発生装置を、前記管状閉流路部
分の途中に設けてある、という所謂オープンの計
測/観測部を有せしめた形式のものが普通であ
る。
By the way, this recirculation water tank for hydrodynamic testing is as follows:
For example, in a cavitation tank, pressurized water is filled in a circulating flow path consisting only of a tubular closed flow path, and the blockage measurement is performed without a free water surface formed in a part of the circulating flow path. / Except for special types of tests in which a propeller or the like is placed in the observation section, in general, a horizontal groove-like open channel section forming the measurement/observation section has a tubular closed channel section and a free water surface. A type having a so-called open measurement/observation part in which a flow velocity generating device for circulating water in the circulation flow path is provided in the middle of the tubular closed flow path section. It's normal.

従つて、かかる流力試験用回流水槽において
は、水を強制循環させていることから、特に前記
オープンの計測/観測部とその下流側の前記管状
閉流路部分との境界部とか被試験体の周囲におい
て、循環流水中に気泡が混入し易く、その気泡が
試験精度を向上させる上での大きな障害となつて
いる。
Therefore, since water is forced to circulate in such a recirculation water tank for flow force testing, it is particularly important to avoid damage to the boundary between the open measurement/observation section and the tubular closed flow path section downstream of the test object. Air bubbles tend to get mixed into the circulating water around the area, and these air bubbles are a major obstacle to improving test accuracy.

そこで、かかる流力試験用回流水槽には、少な
くとも所謂オープンの計測/観測部へ流入する循
環流水に対する流速撹乱を生じさせないで、しか
も、その計測/観測部へ流入する循環流水中に含
まれる気泡を極力少なくできるように、従来か
ら、第11図に示すように、その計測/観測部a
の上流側および下流側夫々に気泡浮上スペース
b,bおよび浮上気泡吸引装置c,cを設けた
り、あるいは、その計測/観測部aの下流側に多
数の気泡付着板d…および付着気泡吸引装置eを
設ける、という手段が採用されていた。
Therefore, such a circulation water tank for flow force testing is designed to at least not cause flow rate disturbance to the circulating water flowing into the so-called open measurement/observation section, and to prevent air bubbles contained in the circulating water flowing into the measurement/observation section. As shown in Fig. 11, in order to minimize the
Bubbles floating spaces b, b and floating bubble suction devices c, c are provided on the upstream and downstream sides of the measurement/observation section a, or a large number of bubble adhesion plates d... and adhered bubble suction devices are provided on the downstream side of the measurement/observation section a. The method used was to provide e.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記したような従来構成の気泡
除去装置では、循環流水の流速が2〜3m/sec
位までなら実用上差支え無い程度の気泡除去機能
を発揮し得るものの、循環流水の流速がそれ以上
に大きくなると、気泡の浮上力や付着力が流速に
よる押し流し力に負けてしまつて、気泡除去機能
が非常に低下してしまう。従つて、循環流水の流
速が大きくなればなる程、前記計測/観測部aと
その下流側の管状閉流路部分fとの境界部から前
記下流側気泡浮上スペースbまでの流路長さ、あ
るいは、前記気泡付着板d…の長さを、極めて長
大とせねばならず、それに伴つて、流力試験用回
流水槽の極端な大型化、ひいては、製造コストお
よびランニングコストの非常な増大を招くことと
なる。
However, in the conventional bubble removal device as described above, the flow rate of the circulating water is 2 to 3 m/sec.
However, if the flow rate of the circulating water becomes higher than that, the floating force and adhesion force of the bubbles will be overcome by the sweeping force due to the flow rate, and the bubble removal function will be reduced. becomes extremely low. Therefore, as the flow rate of the circulating water increases, the length of the flow path from the boundary between the measurement/observation section a and the downstream tubular closed flow path section f to the downstream bubble floating space b, Alternatively, the length of the air bubble adhesion plate d must be made extremely long, resulting in an extremely large size of the recirculating water tank for flow test, which in turn leads to a significant increase in manufacturing costs and running costs. becomes.

そして、かかる事情があるために、実務サイド
ならびに研究サイドの両面から循環流水の流速が
10m/sec程度の高流速流力試験用回流水槽の実
現が切望されている現状にあるにも拘わらず、未
だその達成を見ていない。
Due to these circumstances, the flow rate of circulating water has become difficult from both the practical and research sides.
Although the realization of a recirculation water tank for high-velocity flow tests of approximately 10 m/sec is currently highly desired, this goal has not yet been achieved.

本発明は、かかる従来実情に鑑みてなされたも
のであつて、その目的は、たとえ高速で流動する
液体を対象とする場合であつても、その高速流動
液体から効果的に気泡を除去し得る気泡除去方法
を開発すること、および、その気泡除去方法を実
施するのに好適で、また、格別な動力源などを必
要としない比較的シンプルかつコンパクトな気泡
除去装置を開発すること、更には、その気泡除去
装置を有効利用することによつて、従来は実際上
不可能とされていた高流速流力試験用回流水槽の
実現を達成することにある。
The present invention has been made in view of such conventional circumstances, and its purpose is to be able to effectively remove bubbles from a high-speed flowing liquid even when the object is a high-speed flowing liquid. To develop a bubble removal method, and to develop a relatively simple and compact bubble removal device that is suitable for carrying out the bubble removal method and does not require a special power source, and further, By effectively utilizing the air bubble removal device, the object of the present invention is to achieve the realization of a recirculation water tank for high flow rate flow tests, which was previously thought to be practically impossible.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本第一発明による
流動液体中から気泡を除去する方法は、 実質的に鉛直に立設した円筒状容器の外側から
その円筒状容器内へ、気泡を含む流動液体を、実
質的に前記円筒状容器の内面に沿う水平接線方向
から導入して、前記円筒状容器内で前記気泡を含
む流動液体を自力水平回転流動させることによ
り、液体−気体間の比重差に基く遠心分離の原理
を利用して、前記円筒状容器内の中央部へ前記流
動液体中の気泡を集めると共に、前記円筒状容器
内の周部へ気泡が除去された液体を集め、前記円
筒状容器内の中央部へ集められた気泡および気泡
を多量に含む液体と、前記円筒状容器内の周部へ
集められた気泡を除去された液体とを、各別に前
記円筒状容器外へ導出する、という手段を採用し
た点に特徴がある。
In order to achieve the above object, the method for removing air bubbles from a flowing liquid according to the first invention includes the following steps: A flowing liquid containing air bubbles is introduced into the cylindrical container from the outside of a cylindrical container that is set substantially vertically. is introduced from the horizontal tangential direction substantially along the inner surface of the cylindrical container, and the flowing liquid containing the bubbles is horizontally rotated by itself within the cylindrical container, thereby reducing the specific gravity difference between the liquid and the gas. Utilizing the basic principle of centrifugation, air bubbles in the flowing liquid are collected in the center of the cylindrical container, and the liquid from which air bubbles have been removed is collected in the periphery of the cylindrical container. Bubbles and a liquid containing a large amount of bubbles collected in the center of the container, and a liquid from which air bubbles have been removed and collected in the periphery of the cylindrical container are separately led out of the cylindrical container. It is distinctive in that it adopts the following method.

また、本第二発明による流動液体中から気泡を
除去する装置は、 実質的に鉛直に立設した円筒状容器に対して、
実質的にその内面に沿う水平接線方向から気泡を
含む流動液体をその円筒状容器内へ導入するため
の流路を、その円筒状容器の外側から導入接続す
ると共に、前記円筒状容器の上部には、その円筒
状容器内の中央部へ集められて浮力により自力上
昇する気泡をその円筒状容器外へ導出するための
開口を設け、かつ、前記円筒状容器内の底面中央
部からは、その円筒状容器内の中央部へ集められ
た気泡を多量に含む液体をその円筒状容器外へ導
出するための流路を接続導出し、更に、前記円筒
状容器内の底面周部または側部からは、その円筒
状容器内の周部へ集められた気泡を除去された液
体をその円筒状容器外へ導出するための流路を接
続導出してある、という特徴を備えている。
Furthermore, the device for removing air bubbles from a flowing liquid according to the second invention is configured to:
A channel for introducing a flowing liquid containing bubbles into the cylindrical container from the horizontal tangential direction substantially along the inner surface of the cylindrical container is introduced from outside the cylindrical container, and is connected to the upper part of the cylindrical container. is provided with an opening for leading out of the cylindrical container air bubbles that are collected in the center of the cylindrical container and rise by themselves due to buoyancy, and that the air bubbles are removed from the center of the bottom of the cylindrical container. Connecting and guiding a flow path for leading out of the cylindrical container the liquid containing a large amount of bubbles collected in the center of the cylindrical container, and further connecting and leading out the liquid containing a large amount of bubbles collected in the center of the cylindrical container, The cylindrical container has a feature in that a flow path is connected to lead out the liquid from which air bubbles collected around the periphery of the cylindrical container have been removed to the outside of the cylindrical container.

更に、本第三発明による高流速流力試験用回流
水槽は、 管状閉流路部分と自由水面を有する計測/観測
部を形成する水平溝状開流路部分とを備えて成る
循環流路内に水を高速で循環流動させるための高
流速発生装置を、前記管状閉流路部分の途中に設
けてある高流速流力試験用回流水槽であつて、 前記計測/観測部を形成する水平溝状開流路部
分とその下流側の前記管状閉流路部分との間に、
実質的に鉛直に立設した少なくともひとつの円筒
状容器を介装して、前記計測/観測部を形成する
水平溝状開流路部分からの気泡を含む流動液体を
前記円筒状容器内へ、実質的にその円筒状容器の
内面に沿う水平接線方向から導入することによ
り、その円筒状容器内で前記気泡を含む流動液体
を自力水平回転流動させて、液体−気体間に比重
差に基く遠心分離の原理を利用して、前記円筒状
容器内の中央部へ前記流動液体中の気泡を集める
と共に、前記円筒状容器内の周部へ気泡が除去さ
れた液体を集めるように構成し、かつ、前記円筒
状容器の上部には、その円筒状容器内の中央部へ
集められて浮力により自力上昇する気泡をその円
筒状容器外へ導出するための開口を設け、更に、
前記円筒状容器内の底面中央部からは、その円筒
状容器内の中央部へ集められた気泡を多量に含む
液体をその円筒状容器外へ導出するための流路を
接続導出し、そして、前記円筒状容器内の底面周
部または側部からは、その円筒状容器内の周部へ
集められた気泡を除去された液体を前記計測/観
測部を形成する水平溝状開流路部分の下流側の前
記管状閉流路部分へ導出するように構成してあ
る、という特徴を備えている。
Furthermore, the circulation water tank for high flow rate flow tests according to the third invention includes a circulation flow path comprising a tubular closed flow path portion and a horizontal groove-like open flow path portion forming a measurement/observation portion having a free water surface. A recirculation water tank for high flow rate flow testing, in which a high flow rate generation device for circulating water at high speed is installed in the middle of the tubular closed channel portion, and the horizontal groove forming the measurement/observation section between the tubular open channel portion and the tubular closed channel portion downstream thereof,
interposing at least one cylindrical container arranged substantially vertically to direct the flowing liquid containing air bubbles from the horizontal groove-like open channel portion forming the measurement/observation section into the cylindrical container; By introducing the fluid from the horizontal tangential direction substantially along the inner surface of the cylindrical container, the flowing liquid containing the bubbles is caused to rotate horizontally by itself within the cylindrical container, resulting in centrifugation based on the difference in specific gravity between the liquid and the gas. Utilizing the principle of separation, the air bubbles in the flowing liquid are collected in the central part of the cylindrical container, and the liquid from which air bubbles have been removed is collected in the peripheral part of the cylindrical container, and , an opening is provided in the upper part of the cylindrical container for guiding out of the cylindrical container air bubbles that are collected in the center of the cylindrical container and rise by themselves due to buoyancy, and further,
A flow path is connected and led out from the center of the bottom surface of the cylindrical container to lead out of the cylindrical container a liquid containing a large amount of bubbles collected in the center of the cylindrical container, and From the bottom periphery or side of the cylindrical container, the liquid collected on the cylindrical container from which air bubbles have been removed is transferred to the horizontal groove-shaped open channel portion forming the measurement/observation section. It is characterized in that it is configured to lead out to the tubular closed flow path portion on the downstream side.

〔作用〕[Effect]

かかる特徴構成故に発揮される作用は次の通り
である。
The effects achieved due to this characteristic configuration are as follows.

即ち、上記第一発明による流動液体中から気泡
を除去する方法によれば、気泡を含む流動液体
を、鉛直に立設した円筒状容器内へ導いて、それ
自体が有している流動エルギーを利用して、その
円筒状容器内で自力水平回転流動させることによ
つて、液体−気体間の比重差に基く遠心分離の原
理により、気泡のおよび気泡を多量に含む液体
は、その円筒状容器内の中央部へ集められ、一
方、気泡が除去された液体は、その円筒状容器内
の周部へ集められることとなるので、前記気泡お
よび気泡を多量に含む液体と、前記気泡を除去さ
れた液体とを、前記円筒状容器内から各別に導出
する、というように、格別の動力源などを要する
こと無く、非常に容易かつ確実に、気泡を含む流
動液体から、気泡が除去されて気泡を全く或いは
殆ど含まなくなつた液体を効果的に分離して取り
出すことができる。そして、その気泡除去作用
は、対象となる気泡を含む流動液体の有する流動
エルギーが大きい場合、つまり、その流速が大き
い場合ほど確実かつ効果的に発揮されるため、こ
の本発明方法は、従来の気泡除去方法の対象とし
得なかつた高流速流動液体に対して特に有効であ
る。
That is, according to the method for removing air bubbles from a flowing liquid according to the first invention, a flowing liquid containing air bubbles is introduced into a vertically erected cylindrical container to release its own flowing energy. By utilizing the principle of centrifugal separation based on the difference in specific gravity between liquid and gas, the bubbles and the liquid containing a large amount of bubbles are transferred to the cylindrical container by horizontal rotation of the liquid. On the other hand, the liquid from which air bubbles have been removed will be collected at the periphery of the cylindrical container. The bubbles are removed from the flowing liquid containing bubbles very easily and reliably, without requiring any special power source, and the bubbles are drawn out separately from the cylindrical container. It is possible to effectively separate and take out a liquid that no longer contains any or almost no . The bubble removal effect is more reliably and effectively achieved when the flowing liquid containing bubbles has a large flow energy, that is, when its flow velocity is high. It is particularly effective for high-flowing liquids that cannot be subjected to bubble removal methods.

また、上記第二発明による流動液体中から気泡
を除去する装置は、格別の動力源などを備えてい
ない単純な円筒状容器に、その中央部へ集められ
て浮力により自力上昇する気泡をその円筒状容器
外へ導出するための開口を設けると共に、その円
筒状容器に対して、対象とする気泡含む流動液体
をその円筒状容器内へ導入するための流路と、そ
の円筒状容器内の中央部へ集められた気泡を多量
に含む液体をその円筒状容器外へ導出するための
流路と、その円筒状容器内の周部へ集められた気
泡を除去された液体をその円筒状容器外へ導出す
るための流路とを接続してある、という非常にシ
ンプルかつコンパクトな構成のものでありなが
ら、前述した優れた気泡除去作用を発揮する第一
発明方法を好適に実施し得ることが明らかであ
る。
In addition, the device for removing air bubbles from a flowing liquid according to the second invention uses a simple cylindrical container that is not equipped with a special power source, and collects air bubbles in the center of the container and rises by itself due to buoyancy. In addition to providing an opening for leading out of the cylindrical container, a channel for introducing a flowing liquid containing bubbles into the cylindrical container, and a center in the cylindrical container. A flow path for leading a liquid containing a large amount of air bubbles collected around the cylindrical container to the outside of the cylindrical container, and a flow path for leading the liquid containing a large amount of air bubbles collected around the periphery of the cylindrical container to the outside of the cylindrical container. It is possible to suitably carry out the method of the first invention, which exhibits the above-mentioned excellent bubble removal effect, even though it has a very simple and compact configuration in which the method is connected to a flow path for leading out to the air. it is obvious.

そして、上記第三発明による高流速流力試験用
回流水槽も、オープンの計測/観測部を形成する
水平溝状開流路部分とその下流側の管状閉流路部
分との間において、前述したように、非常にシン
プルかつコンパクトな構成で、しかも、優れた気
泡除去作用を発揮し得る第二発明装置を応用利用
しているが故に、計測/観測部の下流側の流路長
さを非常に短くして装置全体を極めてコンパクト
に構成できながら、従来は実際上不可能とされて
いた流速が10m/sec程度にも達する高流速の水
を循環させた状態においても、その計測/観測部
へ流入する循環流水中に含まれる気泡を十分に少
なくできるように構成し得たのである。
The recirculation water tank for high flow rate flow tests according to the third invention also has the above-mentioned structure between the horizontal groove-shaped open channel part forming the open measurement/observation section and the tubular closed channel part on the downstream side thereof. As such, it has a very simple and compact configuration, and because it uses the second invention device that can exhibit excellent bubble removal effects, the length of the flow path on the downstream side of the measurement/observation section can be extremely shortened. The measurement/observation section can be made extremely compact by shortening the length of the device, while still being able to operate the measurement/observation section even when circulating water at a high flow rate of about 10 m/sec, which was previously thought to be practically impossible. The structure was able to sufficiently reduce the number of bubbles contained in the circulating water flowing into the tank.

〔実施例〕 以下、本発明の具体的実施例を図面に基いて説
明する。
[Example] Hereinafter, specific examples of the present invention will be described based on the drawings.

第1図イ,ロは、本第一発明に係る流動液体中
から気泡を除去する方法の基本的原理を説明する
ための縦断側面図および横断平面図であつて、図
示するように、実質的に鉛直に立設した上部開口
型円筒状容器1を用意しておき、気泡を含む流動
液体FAを、矢印Xで示すように、実質的にその
円筒状容器1の内面に沿う水平接線方向から、そ
の円筒状容器1の外側から内側へ導入して、その
円筒状容器1内で前記気泡を含む流動液体FAを
矢印Yで示すように自力水平回転流動させること
により、液体−気体間の比重差に基く遠心分離の
原理を利用して、その円筒状容器1内の中央部へ
前記流動液体FA中の気泡Aを集めると共に、そ
の円筒状容器1内の周部へ気泡が除去された液体
Fを集めるようにし、そして、前記円筒状容器1
内の中央部へ集められて浮力により自力上昇する
気泡Aは、矢印Z1…で示すようにその円筒状容
器1の上部開口1aから大気中へ放出し、また、
前記円筒状容器1内の中央部へ集められた気泡を
多量に含む液体FA′は、矢印Z2で示すようにそ
の円筒状容器1の底面中央部からその円筒状容器
1外へ導出し、更に、前記円筒状容器1内の周部
へ集められた気泡を除去された液体Fは、矢印Z
3…で示すようにその円筒状容器1の底面周部か
らその円筒状容器1外へ導出する、という手法に
よつて、気泡を含む流動液体FAから気泡が完全
にまたはほぼ完全に除去された液体Fを分離して
取り出すのである。
FIGS. 1A and 1B are a longitudinal sectional side view and a lateral plan view for explaining the basic principle of the method for removing air bubbles from a flowing liquid according to the first invention, and as shown in the figures, substantially A cylindrical container 1 with an open top is vertically installed in the cylindrical container 1, and a flowing liquid FA containing bubbles is directed from a horizontal tangential direction substantially along the inner surface of the cylindrical container 1, as shown by an arrow X. , by introducing the fluid liquid FA containing air bubbles from the outside to the inside of the cylindrical container 1 and causing it to horizontally rotate on its own as shown by the arrow Y within the cylindrical container 1, thereby reducing the specific gravity between the liquid and the gas. Utilizing the principle of centrifugation based on difference, the air bubbles A in the flowing liquid FA are collected in the center of the cylindrical container 1, and the liquid from which the air bubbles have been removed is collected in the periphery of the cylindrical container 1. F is collected, and the cylindrical container 1
The bubbles A that are collected in the center of the container and rise by themselves due to buoyancy are released into the atmosphere from the upper opening 1a of the cylindrical container 1 as shown by arrow Z1, and
The liquid FA' containing a large amount of air bubbles collected in the center of the cylindrical container 1 is led out of the cylindrical container 1 from the center of the bottom surface of the cylindrical container 1, as shown by arrow Z2, and further , the liquid F from which air bubbles collected around the periphery of the cylindrical container 1 have been removed is shown by the arrow Z
As shown in 3..., air bubbles were completely or almost completely removed from the flowing liquid FA containing air bubbles by the method of leading out of the cylindrical container 1 from the bottom circumference of the cylindrical container 1. The liquid F is separated and taken out.

なお、第2図において矢印Z3′…で示すよう
に、前記円筒状容器1内の周部へ集められた気泡
を除去された液体Fを、その円筒状容器1の側部
から、その円筒状容器1外へ導出するようにして
もよい。
In addition, as shown by arrows Z3' in FIG. It may also be led out of the container 1.

また、第3図に示すように、前記円筒状容器1
内の中央部へ集められてからその円筒状容器1外
へ導出された気泡を多量に含む液体FA′を、例え
ば小型ポンプPにより、再び前記円筒状容器1内
へ、実質的にその円筒状容器1の内面に沿う接線
方向から帰還させて、その気泡を多量に含む液体
FA′から再度気泡を除去するようにすれば、液体
を無駄にすることが無くて好ましい。
Further, as shown in FIG. 3, the cylindrical container 1
The liquid FA' containing a large amount of bubbles is collected in the center of the cylindrical container 1 and then led out of the cylindrical container 1. For example, by a small pump P, the liquid FA' is returned to the cylindrical container 1 and is pumped into the cylindrical container 1. The liquid containing a large amount of bubbles is returned from the tangential direction along the inner surface of the container 1.
It is preferable to remove air bubbles from FA' again, since the liquid will not be wasted.

更にまた、第4図に示すように、前記円筒状容
器1内の中央部へ集められてからその円筒状容器
1外へ導出された気泡を多量に含む液体FA′の流
速が非常に小さくなつていることを利用して、例
えば従来の自然浮上式または付着式の簡易型気泡
除去機構Qによつて、その気泡を多量に含む液体
FA′から矢印Z4で示すように気泡Aを除去して
矢印Z5で示すように液体Fを得、その液体F
を、前記矢印Z3または矢印Z3′で示されると
ころの前記円筒状容器1の底面周部または側部か
ら導出された気泡を除去された液体Fに合流させ
るように構成してもよい。
Furthermore, as shown in FIG. 4, the flow velocity of the liquid FA' containing a large amount of air bubbles, which is collected in the center of the cylindrical container 1 and then led out of the cylindrical container 1, becomes extremely low. By taking advantage of the fact that the air bubbles are present in the liquid, for example, a liquid containing a large amount of air bubbles can be removed using a conventional natural floating type or adhesion type simple air bubble removal mechanism Q.
Bubbles A are removed from FA' as shown by arrow Z4, and liquid F is obtained as shown by arrow Z5.
may be configured such that air bubbles led out from the bottom circumference or side of the cylindrical container 1 as indicated by the arrow Z3 or Z3' are made to join the removed liquid F.

第5図イ,ロは、上記第一発明方法を好適に実
施するための本第二発明に係る流動液体中から気
泡を除去する装置の基本的構成を示す縦断側面図
および横断平面図であつて、図示するように、実
質的に鉛直に立設した円筒状容器1に対して、実
質的にその内面に沿う水平接線方向から気泡を含
む流動液体FAをその円筒状容器1内へ導入する
ための管状流路2を、その円筒状容器1の外側か
ら導入接続して、その円筒状容器1内で前記気泡
を含む流動液体FAを矢印Yで示すように自力水
平回転流動させることにより、液体−気体間の比
重差に基く遠心分離の原理を利用して、その円筒
状容器1内の中央部へ前記流動液体FA中の気泡
Aを集めると共に、その円筒状容器1内の周部へ
気泡が除去された液体Fを集めるように構成し、
前記円筒状容器1の上部には、その円筒状容器1
内の中央部へ集められて浮力により自力上昇する
気泡Aをその円筒状容器1外へ放出可能な開口1
aを有する蓋体1Aを設け、かつ、前記円筒状容
器1内の底面中央部からは、その円筒状容器1内
の中央部へ集められた気泡を多量に含む液体
FA′をその円筒状容器1外へ導出するための管状
流路3を接続導出し、更に、前記円筒状容器1内
の底面周部に穿設した多数の小孔1b…からは、
その円筒状容器1内の周部へ集められた気泡を除
去された液体Fを、その円筒状容器1の下方に形
成されたチヤンバー1Bを介して、その円筒状容
器1外へ導出するための管状流路4を接続導出し
たものである。図中3A,4Aは、夫々、前記気
泡を多量に含む液体FA′をその円筒状容器1外へ
導出するための流路3、および、前記気泡を除去
された液体Fをその円筒状容器1外へ導出するた
めの流路4に介装された流量調節弁である。
5A and 5B are a longitudinal sectional side view and a lateral plan view showing the basic configuration of an apparatus for removing air bubbles from a flowing liquid according to the second invention for suitably carrying out the method of the first invention, and FIG. As shown in the figure, a fluid liquid FA containing air bubbles is introduced into a cylindrical container 1 that is set substantially vertically from a horizontal tangential direction substantially along the inner surface of the cylindrical container 1. By introducing and connecting the tubular flow path 2 for the purpose from the outside of the cylindrical container 1, and causing the fluid liquid FA containing bubbles to horizontally rotate on its own as shown by arrow Y within the cylindrical container 1, Utilizing the principle of centrifugation based on the difference in specific gravity between liquid and gas, the bubbles A in the flowing liquid FA are collected in the center of the cylindrical container 1, and are transferred to the periphery of the cylindrical container 1. configured to collect liquid F from which air bubbles have been removed;
At the top of the cylindrical container 1, the cylindrical container 1
An opening 1 through which air bubbles A, which are collected in the center of the interior and rise by themselves due to buoyancy, can be released to the outside of the cylindrical container 1.
A liquid containing a large amount of bubbles is collected from the center of the bottom of the cylindrical container 1 to the center of the cylindrical container 1.
A tubular flow path 3 for guiding FA' out of the cylindrical container 1 is connected and led out, and furthermore, from a large number of small holes 1b bored in the bottom circumference of the cylindrical container 1,
A liquid F from which air bubbles collected around the periphery of the cylindrical container 1 have been removed is guided out of the cylindrical container 1 through a chamber 1B formed below the cylindrical container 1. A tubular flow path 4 is connected and led out. In the figure, 3A and 4A denote a flow path 3 for leading out the liquid FA' containing a large amount of air bubbles to the outside of the cylindrical container 1, and a flow path 3 for guiding the liquid F from which the air bubbles have been removed to the cylindrical container 1. This is a flow rate control valve interposed in the flow path 4 for leading out.

なお、前記円筒状容器1内の周部へ集められた
気泡を除去された液体Fを、その円筒状容器1の
下方に形成されたチヤンバー1B内に導出するた
めに、その円筒状容器1内の底面周部に多数の小
孔1b…を穿設する代わりに、同第5図イにおい
て点線1c…で示すように、その円筒状容器1の
側部から多数のバイパス流路を導出するように構
成してもよい。また、第6図に示すように、前記
多数の小孔1b…の代わりに、複数個のスリツト
1d…を前記円筒状容器1内の底面周部に形成す
るようにしてもよい。
In addition, in order to lead out the liquid F from which air bubbles collected around the periphery of the cylindrical container 1 have been removed into the chamber 1B formed below the cylindrical container 1, the inside of the cylindrical container 1 is Instead of drilling a large number of small holes 1b... around the bottom of the container, a large number of bypass channels are led out from the side of the cylindrical container 1, as shown by dotted lines 1c... in Fig. 5A. It may be configured as follows. Furthermore, as shown in FIG. 6, instead of the large number of small holes 1b, a plurality of slits 1d may be formed around the bottom of the cylindrical container 1.

また、第7図および第8図に示すように、前記
円筒状容器1に対して導入接続された気泡を含む
流動液体FAをその円筒状容器1内へ導入するた
めの流路2を、前記の管状のものに代えて、前記
気泡を含む流動液体FAが自由表面sを形成し得
る上部解放型溝状流路を構成しておけば、その上
部解放型溝状流路2においても予めある程度の気
泡自然放出が期待できる。
Further, as shown in FIGS. 7 and 8, a channel 2 for introducing the fluid liquid FA containing bubbles into the cylindrical container 1 is connected to the cylindrical container 1. If, instead of the tubular one, an open top groove channel is constructed in which the flowing liquid FA containing air bubbles can form a free surface s, the top open channel channel 2 will also have a certain amount of space in advance. Spontaneous release of bubbles can be expected.

更に、第7図に示すように、前記円筒状容器1
内の底面中央部から接続導出された気泡を多量に
含む液体FA′をその円筒状容器1外へ導出するた
めの流路3を、例えば小型ポンプPにより、前記
円筒状容器1に対して導入接続された気泡を含む
流動液体FAをその円筒状容器1内へ導入するた
めの流路2へ帰還させることにより、その気泡を
多量に含む液体FA′を再び前記円筒状容器1内へ
導いて、その気泡を多量に含む液体FA′から再度
気泡を除去するようにすれば、液体を無駄にする
ことが無くて好ましい。
Furthermore, as shown in FIG. 7, the cylindrical container 1
A flow path 3 is introduced into the cylindrical container 1 by a small pump P, for example, for leading out the liquid FA' containing a large amount of bubbles, which is connected and led out from the center of the bottom surface of the cylindrical container 1. By returning the connected flowing liquid FA containing air bubbles to the channel 2 for introducing it into the cylindrical container 1, the liquid FA' containing a large amount of air bubbles is guided back into the cylindrical container 1. It is preferable to remove the bubbles again from the liquid FA' containing a large amount of bubbles, since the liquid will not be wasted.

更にまた、第8図に示すように、前記円筒状容
器1内の中央部へ集められてからその円筒状容器
1外へ導出された気泡を多量に含む液体FA′の流
速が非常に小さくなつていることを利用して、前
記流路3の途中に、例えば従来の自然浮上式また
は付着式の簡易型気泡除去機構Qを介装し、その
簡易型気泡除去機構Qにより、その気泡を多量に
含む液体FA′から気泡Aを除去した液体Fを得、
その液体Fを、前記円筒状容器1の底面周部(ま
たは側部)から導出された気泡を除去された液体
Fの導出流路4に合流させるように構成してもよ
い。
Furthermore, as shown in FIG. 8, the flow velocity of the liquid FA' containing a large amount of bubbles, which is collected in the center of the cylindrical container 1 and then led out of the cylindrical container 1, becomes extremely low. Taking advantage of this fact, for example, a conventional natural floating type or adhering type simple bubble removing mechanism Q is interposed in the middle of the flow path 3, and the simple bubble removing mechanism Q removes a large amount of the bubbles. Obtain liquid F by removing air bubbles A from liquid FA′ contained in
The liquid F may be configured to join the liquid F flowing out from the bottom periphery (or side) of the cylindrical container 1 from which air bubbles have been removed.

なお、同第8図に示した装置においては、前記
円筒状容器1の上部蓋体1Aに形成された気体放
出用開口1aに吸引ポンプ5を付設して円筒状容
器1内を負圧にすることにより、液中からの気体
Aの放出を促進させると共に、その気体Aを積極
的に大気中へ放出するようにしている。
In the apparatus shown in FIG. 8, a suction pump 5 is attached to the gas release opening 1a formed in the upper lid 1A of the cylindrical container 1 to create a negative pressure inside the cylindrical container 1. This not only promotes the release of gas A from the liquid, but also actively releases the gas A into the atmosphere.

また、同第8図に示した装置においては、前記
円筒状容器1における液体F導出用小孔1b…を
有する底面を一側方へ傾斜させると共に、その下
方におけるチヤンバー1B内の最も高い部分か
ら、前記円筒状容器1の上端近くまで達する連通
管6を導出してある。これによつて、チヤンバー
1B内の液体F中に微少の気体が万一残存してい
たとしても、その残存気体を前記連通管6を介し
て大気中へ放出させることができる。また、その
連通管6を透明材料で構成しておけば、前記円筒
状容器1内の液位をも知ることができて便利であ
る。
In addition, in the apparatus shown in FIG. 8, the bottom surface of the cylindrical container 1 having the small holes 1b for deriving the liquid F is inclined to one side, and the bottom surface of the cylindrical container 1 is inclined from the highest part in the chamber 1B below. A communicating pipe 6 is led out which reaches near the upper end of the cylindrical container 1. Thereby, even if a small amount of gas should remain in the liquid F in the chamber 1B, the remaining gas can be released into the atmosphere through the communication pipe 6. Furthermore, if the communicating tube 6 is made of a transparent material, it is convenient because the liquid level inside the cylindrical container 1 can also be known.

第9図イ,ロ,ハは、上記第二発明装置を応用
利用して構成された本第三発明に係る高流速流力
試験用回流水槽を示している。
FIGS. 9A, 9B, and 9C show a recirculation water tank for high flow rate flow tests according to the third invention, which is constructed by applying the second invention apparatus described above.

即ち、第9図イに示すように、地面Gに立設し
た基台6…上に、管状閉流路部分7と自由水面S
有する計測/観測部Mを形成する水平溝状開流路
部分2Aとを備えて成る循環流路Cを上下方向に
載置すると共に、その循環流路C内に水を高速
(最大循環流速が10m/sec程度)で循環流動させ
るためのインペラから成る高流速発生装置8を、
前記管状閉流路部分7の途中に設けて、所謂垂直
循環型の高流速流力試験用回流水槽を構成してあ
る。
That is, as shown in FIG. 9A, a tubular closed channel portion 7 and a free water surface S are placed on a base 6 erected on the ground G.
A circulation channel C comprising a horizontal groove-like open channel portion 2A forming a measurement/observation section M is placed in the vertical direction, and water is fed into the circulation channel C at high speed (the maximum circulation flow velocity is A high flow rate generating device 8 consisting of an impeller for circulating the flow at a rate of about 10 m/sec),
It is provided in the middle of the tubular closed flow path portion 7 to constitute a so-called vertical circulation type recirculation water tank for high flow rate flow test.

そして、前記計測/観測部Mを形成する水平溝
状開流路部分2Aとその下流側の前記管状閉流路
部分7との間には、第9図ロ,ハにも示すような
構成の気泡除去装置Kが介装されている。即ち、
前記水平溝状開流路部分2Aとその下流側の前記
管状閉流路部分7との間に、実質的に鉛直に立設
した一対の円筒状容器1,1を、その水平溝状開
流路部分2Aに関して左右対称に介装して、その
水平溝状開流路部分2Aから高速で流動して来る
気泡を含む流動液体FAを前記両円筒状容器1,
1内へ、実質的に各円筒状容器1の内面に沿う水
平接線方向から導入することにより、その各円筒
状容器1内で前記気泡を含む流動液体FAを矢印
Yで示すように自力水平回転流動させて、液体−
気体間の比重差に基く遠心分離の原理を利用し
て、前記各円筒状容器1内の中央部へ前記流動液
体FA中の気泡Aを集めると共に、前記各円筒状
容器1内の周部へ気泡が除去された液体Fを集め
るように構成し、かつ、前記各円筒状容器1の上
部には、その各円筒状容器1内の中央部へ集めら
れて浮力により自力上昇する気泡Aをその各円筒
状容器1外へ導出するための開口1aを設け、更
に、前記各円筒状容器1内の底面中央部からは、
その各円筒状容器1内の中央部へ集められた気泡
を多量に含む液体FA′をその各円筒状容器1外へ
導出するための流路3を接続導出し、そして、前
記各円筒状容器1内の底面周部(または側部)に
形成された多数の小孔1b…からは、その各円筒
状容器1内の周部へ集められた気泡を除去された
液体Fを、両円筒状容器1,1に対して共通の先
絞りダクト4Aを介して、その各円筒状容器1の
下流側の前記管状閉流路部分7へ導出するように
構成してある。
Between the horizontal groove-shaped open channel portion 2A forming the measurement/observation section M and the tubular closed channel portion 7 on the downstream side thereof, a structure as shown in FIGS. 9B and 9C is provided. A bubble removing device K is interposed. That is,
A pair of cylindrical containers 1, 1 installed substantially vertically between the horizontal groove-shaped open flow path portion 2A and the tubular closed flow path portion 7 on the downstream side thereof are connected to the horizontal groove-shaped open flow path portion 2A. The two cylindrical containers 1 and 2A are arranged symmetrically with respect to the channel portion 2A, and the fluid liquid FA containing bubbles flowing at high speed from the horizontal groove-like open channel portion 2A is contained in the two cylindrical containers 1 and 2A.
1 from a horizontal tangential direction substantially along the inner surface of each cylindrical container 1, the fluid liquid FA containing bubbles is horizontally rotated by itself as shown by arrow Y within each cylindrical container 1. Let it flow, liquid-
Utilizing the principle of centrifugation based on the difference in specific gravity between gases, the bubbles A in the flowing liquid FA are collected in the center of each cylindrical container 1, and are also transferred to the periphery of each cylindrical container 1. The liquid F from which air bubbles have been removed is collected, and the upper part of each cylindrical container 1 contains air bubbles A that are collected in the center of each cylindrical container 1 and rise by themselves due to buoyancy. An opening 1a is provided for leading out of each cylindrical container 1, and further, from the center of the bottom inside each cylindrical container 1,
A flow path 3 for leading out the liquid FA' containing a large amount of air bubbles collected in the center of each cylindrical container 1 to the outside of each cylindrical container 1 is connected and led out. From the large number of small holes 1b formed on the bottom circumference (or side) of each cylindrical container 1, the liquid F from which air bubbles collected at the circumference of each cylindrical container 1 have been removed is transferred to both cylindrical containers 1. It is configured to lead out to the tubular closed flow path section 7 on the downstream side of each cylindrical container 1 via a common pre-throttled duct 4A for the containers 1,1.

更に、前記各円筒状容器1内の底面中央部から
接続導出された気泡を多量に含む液体FA′をその
円筒状容器1外へ導出するための流路3は、ひと
つの自然浮上式または付着式の簡易型気泡除去機
構Qを介して、前記円筒状容器1の下流側の前記
管状閉流路部分7へ導入接続されており、その簡
易型気泡除去機構Qにより、前記気泡を多量に含
む液体FA′から気泡Aを除去して得た液体Fを、
前記前記管状閉流路部分7へ帰還させるように構
成してある。
Furthermore, the flow path 3 for leading out the liquid FA' containing a large amount of air bubbles connected and led out from the center of the bottom of each cylindrical container 1 is a single natural floating type or adhesive type. It is introduced and connected to the tubular closed flow path portion 7 on the downstream side of the cylindrical container 1 through a simple air bubble removing mechanism Q of the formula, and the simple air bubble removing mechanism Q allows the container to contain a large amount of air bubbles. Liquid F obtained by removing bubbles A from liquid FA′ is
It is configured to be returned to the tubular closed flow path section 7.

また、図中、9は、前記計測/観測部Mを形成
する水平溝状開流路部分2Aからの気泡を含む流
動液体FAを、前記両円筒状容器1,1へ略均等
に振り分けて導入するための分流板、10…はコ
ーナーベーン、11,11は自然浮上気泡吸引除
去機構、12,12は前記計測/観測部Mの周囲
に設けられた観測窓、13は前記計測/観測部M
における水位検出計、そして、14は、前記水位
検出計13の水位検出結果に基いて自動開閉し
て、前記計測/観測部Mの水位を所定の値に保持
するための電磁開閉弁Vを備えた補給水流路であ
る。
Further, in the figure, reference numeral 9 indicates the introduction of the flowing liquid FA containing bubbles from the horizontal groove-shaped open channel portion 2A forming the measurement/observation section M into both the cylindrical containers 1, 1 in a substantially equal manner. 10 is a corner vane, 11, 11 is a naturally floating bubble suction/removal mechanism, 12, 12 is an observation window provided around the measurement/observation section M, and 13 is the measurement/observation section M.
and 14 includes an electromagnetic opening/closing valve V that automatically opens and closes based on the water level detection result of the water level detector 13 to maintain the water level in the measurement/observation section M at a predetermined value. This is the make-up water flow path.

なお、第10図に示すように、前記高流速発生
装置8としてのインペラを左右一対設けると共
に、前記両円筒状容器1,1とそれらの両インペ
ラを内蔵する二股管状閉流路部分7′,7′とを、
格別の先絞りダクト4B,4Bを介して連結する
ように構成してもよい。
As shown in FIG. 10, a pair of left and right impellers serving as the high flow rate generating device 8 are provided, and the two cylindrical containers 1, 1 and a bifurcated tubular closed flow path portion 7' housing the two impellers are provided. 7′ and
They may also be configured to be connected via special tip drawing ducts 4B, 4B.

〔発明の効果〕〔Effect of the invention〕

以上詳述したところから明らかなように、本第
一発明方法によれば、気泡を含む流動液体を、鉛
直に立設した円筒状容器内へ導いて、それ自体が
有している流動エルギーを利用して、その円筒状
容器内で自力水平回転流動させることによつて、
液体−気体間の比重差に基く遠心分離の原理によ
り、気泡および気泡を多量に含む液体をその円筒
状容器内の中央部へ集める一方、気泡が除去され
た液体をその円筒状容器内の周部へ集めると共
に、前記気泡および気泡を多量に含む液体と、前
記気泡を除去された液体とを、前記円筒状容器内
から各別に導出する、というように、格別の動力
源などを要すること無く、非常に容易かつ確実
に、気泡を含む流動液体から、気泡が除去されて
気泡を全く或いは殆ど含まなくなつた液体を効果
的に分離して取り出すことができる。そして、そ
の気泡除去作用は、対象となる気泡を含む流動液
体の有する流動エルギーが大きい場合、つまり、
その流速が大きい場合ほど確実かつ効果的に発揮
されるため、この本発明方法は、従来の気泡除去
方法の対象とし得なかつた高流速流動液体に対し
て特に有効である。
As is clear from the detailed description above, according to the method of the first invention, a flowing liquid containing bubbles is introduced into a vertically erected cylindrical container to release its own flowing energy. By utilizing the cylindrical container and causing it to flow horizontally under its own power,
Based on the principle of centrifugation based on the difference in specific gravity between liquid and gas, bubbles and a liquid containing a large amount of bubbles are collected in the center of the cylindrical container, while the liquid from which air bubbles have been removed is collected around the periphery of the cylindrical container. The bubbles and the liquid containing a large amount of bubbles and the liquid from which the bubbles have been removed are separately drawn out from within the cylindrical container, without requiring a special power source. , it is possible to very easily and reliably separate and extract a liquid from which air bubbles have been removed and which no longer contains any or almost no air bubbles from a flowing liquid containing air bubbles. The bubble removal effect is effective when the flowing liquid containing bubbles has a large flow energy, that is,
Since the method is more reliable and effective when the flow rate is high, the method of the present invention is particularly effective for high-flow rate flowing liquids that cannot be treated with conventional bubble removal methods.

また、本第二発明装置によれば、格別の動力源
などを備えていない単純な円筒状容器に、その中
央部へ集められて浮力により自力上昇する気泡を
その円筒状容器外へ導出するための開口を設ける
と共に、その円筒状容器に対して、対象とする気
泡含む流動液体をその円筒状容器内へ導入するた
めの流路と、その円筒状容器内の中央部へ集めら
れた気泡を多量に含む液体をその円筒状容器外へ
導出するための流路と、その円筒状容器内の周部
へ集められた気泡を除去された液体をその円筒状
容器外へ導出するための流路とを接続してある、
という非常にシンプルかつコンパクトな構成のも
のでありながら、前述した優れた気泡除去作用を
発揮する第一発明方法を好適に実施し得る。
Further, according to the second invention device, air bubbles that are collected in the center of a simple cylindrical container that is not equipped with a special power source and rise by themselves due to buoyancy are guided out of the cylindrical container. In addition to providing an opening in the cylindrical container, a channel is provided for introducing a flowing liquid containing target bubbles into the cylindrical container, and a flow path is provided for introducing the flowing liquid containing bubbles into the cylindrical container, and a channel for introducing the bubbles collected into the center of the cylindrical container. A flow path for leading a large amount of liquid out of the cylindrical container, and a flow path for leading out of the cylindrical container liquid from which air bubbles collected around the cylindrical container have been removed. is connected to
Although the method has a very simple and compact structure, the method of the first invention that exhibits the above-mentioned excellent bubble removal effect can be suitably implemented.

そして、本第三発明による高流速流力試験用回
流水槽によれば、オープンの計測/観測部を形成
する水平溝状開流路部分とその下流側の管状閉流
路部分との間において、前述したように、非常に
シンプルかつコンパクトな構成で、しかも、優れ
た気泡除去作用を発揮し得る第二発明装置を応用
利用しているが故に、計測/観測部とその下流側
の管状閉流路部分に至る流路長さを非常に短くし
て、装置全体を極めてコンパクトに構成できなが
ら、従来は実際上不可能とされていた10m/sec
程度にも達する高流速の水を循環させた状態にお
いても、その計測/観測部へ流入する循環流水中
に含まれる気泡を十分に少なくできるようになつ
たのである。
According to the circulating water tank for high flow rate flow tests according to the third aspect of the present invention, between the horizontal groove-shaped open channel portion forming the open measurement/observation section and the tubular closed channel portion on the downstream side thereof, As mentioned above, it has a very simple and compact configuration, and because it uses the second invention device that can exhibit excellent bubble removal effects, The length of the flow path leading to the channel section can be made extremely short, making the entire device extremely compact, while still achieving a speed of 10 m/sec, which was previously considered practically impossible.
Even when water is being circulated at extremely high flow rates, it has become possible to sufficiently reduce the amount of air bubbles contained in the circulating water flowing into the measurement/observation section.

このように、本発明により、たとえ高速で流動
する液体を対象とする場合であつても、その高速
流動液体から効果的に気泡を除去し得る気泡除去
方法、ならびに、その気泡除去方法を実施するの
に好適で、また、格別な動力源などを必要としな
いシンプルかつコンパクトな気泡除去装置を開発
することができ、更には、その気泡除去装置を有
効利用することによつて、実務サイドおよび研究
サイドの両面から従来より切望されていたところ
の、比較的シンプルかつコンパクトで安価に構成
できる高流速流力試験用回流水槽の実現で達成で
きるに至つたのである。
As described above, the present invention provides a bubble removal method that can effectively remove bubbles from a high-speed flowing liquid even when the target is a high-speed flowing liquid, and the bubble removal method. It is possible to develop a simple and compact air bubble removal device that is suitable for This has been achieved by creating a recirculation water tank for high-velocity flow tests that can be constructed relatively simply, compactly, and inexpensively, which has long been desired from both sides.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は、本第一発明に係る流動
液体中から気泡を除去する方法の実施例を示し、
第1図イ,ロは夫々基本的実施例の手順を説明す
るための概略縦断側面図および概略横断平面図、
そして、第2図ないし第4図は夫々別の実施例の
手順を説明するための概略縦断側面図である。ま
た、第5図ないし第8図は、本第二発明に係る流
動液体中から気泡を除去する装置の具体的実施例
を示し、第5図イは基本的実施例の縦断側面図、
第5図ロは第5図イの−線矢視図、第6図は
別の実施例の横断平面図、そして、第7図および
第8図は夫々更に別の実施例の縦断側面図であ
る。また、第9図および第10図は、本第三発明
に高流速流力試験用回流水槽の具体的実施例を示
し、第9図イは基本的実施例の一部断面全体概略
正面図、第9図ロは第9図イの−線矢視図、
第9図ハは第9図ロの−線矢視図、そして、
第10図は別の実施例の要部の側面図である。そ
して、第11図は従来技術を説明するための一部
断面全体概略正面図である。 FA……気泡を含む流動液体、A……気泡、F
……気泡が除去された液体、FA′……気泡を多量
に含む液体、1……円筒状容器、1a……気泡A
を円筒状容器1外へ導出するための開口、2……
気泡を含む流動液体FAを円筒状容器1内へ導入
するための流路、3……気泡を多量に含む液体
FA′を円筒状容器1外へ導出するための流路、4
……気泡を除去された液体Fを円筒状容器1外へ
導出するための流路、2A……水平溝状開流路部
分、7……管状閉流路部分、9……高流速発生装
置、s……自由表面、Q……自然浮上式または付
着式の簡易型気泡除去機構、S……自由水面、M
……計測/観測部、C……循環流路。
1 to 4 show an embodiment of the method for removing air bubbles from a flowing liquid according to the first invention,
Figures 1A and 1B are a schematic vertical side view and a schematic cross-sectional plan view for explaining the procedure of the basic embodiment, respectively;
2 to 4 are schematic longitudinal sectional side views for explaining the procedures of different embodiments. Moreover, FIGS. 5 to 8 show specific embodiments of the device for removing air bubbles from flowing liquid according to the second invention, and FIG. 5A is a longitudinal sectional side view of the basic embodiment;
FIG. 5B is a view taken along the line - in FIG. 5A, FIG. 6 is a cross-sectional plan view of another embodiment, and FIG. 7 and FIG. be. Moreover, FIGS. 9 and 10 show a specific embodiment of the recirculation water tank for high velocity flow test according to the third invention, and FIG. 9A is a partial cross-sectional overall schematic front view of the basic embodiment; Figure 9B is a view taken from the - line arrow in Figure 9A;
Figure 9C is a - line arrow view of Figure 9B, and
FIG. 10 is a side view of the main parts of another embodiment. FIG. 11 is a partially cross-sectional overall schematic front view for explaining the prior art. FA...Flowing liquid containing bubbles, A...Bubbles, F
...Liquid from which air bubbles have been removed, FA'...Liquid containing a large amount of air bubbles, 1...Cylindrical container, 1a...Bubble A
an opening for leading out of the cylindrical container 1, 2...
A channel for introducing a fluid liquid FA containing bubbles into the cylindrical container 1, 3...a liquid containing a large amount of bubbles
a flow path for leading FA' out of the cylindrical container 1, 4
. . . Channel for leading the liquid F from which air bubbles have been removed out of the cylindrical container 1, 2A . . . Horizontal groove-shaped open channel portion, 7 . . . Tubular closed channel portion, 9 . , s...Free surface, Q...Simplified bubble removal mechanism of natural floating type or adhesion type, S...Free water surface, M
...Measurement/observation section, C...Circulation channel.

Claims (1)

【特許請求の範囲】 1 実質的に鉛直に立設した円筒状容器1の外側
からその円筒状容器1内へ、気泡を含む流動液体
FAを、実質的に前記円筒状容器1の内面に沿う
水平接線方向から導入して、前記円筒状容器1内
で前記気泡を含む流動液体FAを自力水平回転流
動させることにより、液体−気体間の比重差に基
く遠心分離の原理を利用して、前記円筒状容器1
内の中央部へ前記流動液体FA中の気泡Aを集め
ると共に、前記円筒状容器1内の周部へ気泡が除
去された液体Fを集め、前記円筒状容器1内の中
央部へ集められた気泡Aおよび気泡を多量に含む
液体FA′と、前記円筒状容器1内の周部へ集めら
れた気泡を除去された液体Fとを、各別に前記円
筒状容器1外へ導出することを特徴とする流動液
体中から気泡を除去する方法。 2 前記円筒状容器1内の中央部へ集められて浮
力により自力上昇する気泡Aは、その円筒状容器
1の上部から大気中へ放出し、前記円筒状容器1
内の中央部へ集められた気泡を多量に含む液体
FA′は、その円筒状容器1の底面中央部からその
円筒状容器1外へ導出し、前記円筒状容器1内の
周部へ集められた気泡を除去された液体Fは、そ
の円筒状容器1の底面周部または側部からその円
筒状容器1外へ導出する特許請求の範囲第1項に
記載の流動液体中から気泡を除去する方法。 3 前記円筒状容器1内の中央部へ集められてか
らその円筒状容器1外へ導出された気泡を多量に
含む液体FA′を、再び前記円筒状容器1内へ、実
質的にその円筒状容器1の内面に沿う接線方向か
ら帰還させる特許請求の範囲第1項または第2項
に記載の流動液体中から気泡を除去する方法。 4 実質的に鉛直に立設した円筒状容器1に対し
て、実質的にその内面に沿う水平接線方向から気
泡を含む流動液体FAをその円筒状容器1内へ導
入するための流路2を、その円筒状容器1の外側
から導入接続すると共に、前記円筒状容器1の上
部には、その円筒状容器1内の中央部へ集められ
て浮力により自力上昇する気泡Aをその円筒状容
器1外へ導出するための開口1aを設け、かつ、
前記円筒状容器1内の底面中央部からは、その円
筒状容器1内の中央部へ集められた気泡を多量に
含む液体FA′をその円筒状容器1外へ導出するた
めの流路3を接続導出し、更に、前記円筒状容器
1内の底面周部または側部からは、その円筒状容
器1内の周部へ集められた気泡を除去された液体
Fをその円筒状容器1外へ導出するための流路4
を接続導出してあることを特徴とする流動液体中
から気泡を除去する装置。 5 前記気泡を含む流動液体FAを前記円筒状容
器1内へ導入するための流路2を、前記気泡を含
む流動液体FAが自由表面sを形成し得る上部解
放型溝状流路としてある特許請求の範囲第4項に
記載の流動液体中から気泡を除去する装置。 6 前記気泡を多量に含む液体FA′を前記円筒状
容器1内の底面中央部からその円筒状容器1外へ
導出するための流路3を、前記気泡を含む流動液
体FAを前記円筒状容器1内へ導入するための流
路2へ帰還させてある特許請求の範囲第4項また
は第5項に記載の流動液体中から気泡を除去する
装置。 7 前記気泡を多量に含む液体FA′を前記円筒状
容器1内の底面中央部からその円筒状容器1外へ
導出するための流路3の途中に、自然浮上式また
は付着式の簡易型気泡除去機構Qを介装してある
特許請求の範囲第4項ないし第6項の何れかに記
載の流動液体中から気泡を除去する装置。 8 管状閉流路部分7と自由水面Sを有する計
測/観測部Mを形成する水平溝状開流路部分2A
とを備えて成る循環流路C内に水を高速で循環流
動させるための高流速発生装置9を、前記管状閉
流路部分7の途中に設けてある高流速流力試験用
回流水槽であつて、 前記計測/観測部Mを形成する水平溝状開流路
部分2Aとその下流側の前記管状閉流路部分7と
の間に、実質的に鉛直に立設した少なくともひと
つの円筒状容器1を介装して、前記計測/観測部
Mを形成する水平溝状開流路部分2Aからの気泡
を含む流動液体FAを前記円筒状容器1内へ、実
質的にその円筒状容器1の内面に沿う水平接線方
向から導入することにより、その円筒状容器1内
で前記気泡を含む流動液体FAを自力水平回転流
動させて、液体−気体間の比重差に基く遠心分離
の原理を利用して、前記円筒状容器1内の中央部
へ前記流動液体FA中の気泡Aを集めると共に、
前記円筒状容器1内の周部へ気泡が除去された液
体Fを集めるように構成し、かつ、前記円筒状容
器1の上部には、その円筒状容器1内の中央部へ
集められて浮力により自力上昇する気泡Aをその
円筒状容器1外へ導出するための開口1aを設
け、更に、前記円筒状容器1内の底面中央部から
は、その円筒状容器1内の中央部へ集められた気
泡を多量に含む液体FA′をその円筒状容器1外へ
導出するための流路3を接続導出し、そして、前
記円筒状容器1内の底面周部または側部からは、
その円筒状容器1内の周部へ集められた気泡を除
去された液体Fをその円筒状容器1の下流側の前
記管状閉流路部分7へ導出するように構成してあ
ることを特徴とする高流速流力試験用回流水槽。 9 前記円筒状容器1を、前記計測/観測部Mを
形成する水平溝状開流路部分2Aに関して対称
に、左右一対設けてある特許請求の範囲第8項に
記載の高流速流力試験用回流水槽。 10 前記気泡を多量に含む液体FA′を前記円筒
状容器1内の底面中央部からその円筒状容器1外
へ導出するための流路3を、自然浮上式又は付着
式の簡易型気泡除去機構Qを介して、前記円筒状
容器1の下流側の前記管状閉流路部分7へ導入接
続してある特許請求の範囲第8項または第9項に
記載の高流速流力試験用回流水槽。
[Scope of Claims] 1. A flowing liquid containing air bubbles is introduced into the cylindrical container 1 from the outside of the cylindrical container 1 which is set up substantially vertically.
The FA is introduced from a horizontal tangential direction substantially along the inner surface of the cylindrical container 1, and the flowing liquid FA containing bubbles is horizontally rotated by itself within the cylindrical container 1, thereby creating a liquid-gas gap. Using the principle of centrifugation based on the difference in specific gravity, the cylindrical container 1
Bubbles A in the flowing liquid FA are collected in the center of the cylindrical container 1, and liquid F from which air bubbles have been removed is collected in the periphery of the cylindrical container 1. It is characterized in that the bubbles A, the liquid FA' containing a large amount of bubbles, and the liquid F from which the bubbles collected around the periphery of the cylindrical container 1 have been removed are separately led out of the cylindrical container 1. A method for removing air bubbles from a flowing liquid. 2 The bubbles A that are collected in the center of the cylindrical container 1 and rise by themselves due to buoyancy are released into the atmosphere from the upper part of the cylindrical container 1, and
A liquid containing a large amount of air bubbles that is collected in the center of the liquid.
FA' is led out of the cylindrical container 1 from the center of the bottom surface of the cylindrical container 1, and the liquid F from which air bubbles collected around the periphery of the cylindrical container 1 have been removed is transferred to the cylindrical container 1. 1. A method for removing air bubbles from a flowing liquid according to claim 1, wherein the bubbles are led out of the cylindrical container 1 from the bottom periphery or side of the cylindrical container 1. 3. The liquid FA' containing a large amount of air bubbles, which has been collected in the center of the cylindrical container 1 and then led out of the cylindrical container 1, is transferred back into the cylindrical container 1, substantially in the cylindrical shape. A method for removing air bubbles from a flowing liquid according to claim 1 or 2, wherein air bubbles are returned from a tangential direction along the inner surface of the container. 4 A flow path 2 is provided for introducing the fluid liquid FA containing bubbles into the cylindrical container 1 that is substantially vertically installed from a horizontal tangential direction substantially along the inner surface of the cylindrical container 1. , is introduced from the outside of the cylindrical container 1, and at the same time, the air bubbles A, which are collected in the center of the cylindrical container 1 and rise by themselves due to buoyancy, are connected to the cylindrical container 1 from the outside. An opening 1a is provided for leading out, and
A flow path 3 is provided from the center of the bottom of the cylindrical container 1 for leading out of the cylindrical container 1 the liquid FA' containing a large amount of bubbles collected in the center of the cylindrical container 1. Further, from the bottom periphery or side portion of the cylindrical container 1, the liquid F from which air bubbles collected on the periphery of the cylindrical container 1 have been removed is directed outside the cylindrical container 1. Channel 4 for deriving
A device for removing air bubbles from a flowing liquid, characterized in that the device is connected to and led out from a flowing liquid. 5. A patent in which the flow path 2 for introducing the fluid liquid FA containing air bubbles into the cylindrical container 1 is a top-open groove-like flow path in which the fluid liquid FA containing air bubbles can form a free surface s. An apparatus for removing air bubbles from a flowing liquid according to claim 4. 6. A flow path 3 for leading the liquid FA' containing a large amount of air bubbles from the center of the bottom of the cylindrical container 1 to the outside of the cylindrical container 1, and a flow path 3 for leading the liquid FA' containing a large amount of air bubbles to the outside of the cylindrical container 1. A device for removing air bubbles from a flowing liquid according to claim 4 or 5, wherein the bubbles are returned to the flow path 2 for introduction into the flowing liquid. 7. Simple air bubbles of a natural floating type or an attached type are installed in the middle of the flow path 3 for leading the liquid FA' containing a large amount of air bubbles from the center of the bottom of the cylindrical container 1 to the outside of the cylindrical container 1. An apparatus for removing air bubbles from a flowing liquid according to any one of claims 4 to 6, which is provided with a removal mechanism Q. 8 Horizontal groove-shaped open channel portion 2A forming a measurement/observation section M having a tubular closed channel portion 7 and a free water surface S
A high flow rate generation device 9 for circulating water at high speed in a circulation flow path C comprising and at least one cylindrical container standing substantially vertically between the horizontal groove-shaped open channel portion 2A forming the measurement/observation section M and the tubular closed channel portion 7 on the downstream side thereof. 1, the fluid liquid FA containing air bubbles from the horizontal groove-like open channel portion 2A forming the measurement/observation section M is introduced into the cylindrical container 1, and substantially the inside of the cylindrical container 1 is By introducing the liquid FA from the horizontal tangential direction along the inner surface, the liquid FA containing bubbles is caused to rotate horizontally by itself within the cylindrical container 1, and utilizes the principle of centrifugal separation based on the difference in specific gravity between liquid and gas. and collect the bubbles A in the flowing liquid FA to the center of the cylindrical container 1,
The structure is such that the liquid F from which air bubbles have been removed is collected around the periphery of the cylindrical container 1, and the upper part of the cylindrical container 1 has a buoyant force so that the liquid F is collected at the center of the cylindrical container 1. An opening 1a is provided to guide the air bubbles A that rise by themselves to the outside of the cylindrical container 1, and furthermore, the air bubbles A are collected from the center of the bottom surface of the cylindrical container 1 to the center of the cylindrical container 1. A flow path 3 is connected to lead out the liquid FA' containing a large amount of bubbles to the outside of the cylindrical container 1, and from the bottom circumference or side of the cylindrical container 1,
It is characterized in that the liquid F from which air bubbles collected around the periphery of the cylindrical container 1 have been removed is led out to the tubular closed flow path section 7 on the downstream side of the cylindrical container 1. Circulation water tank for high flow rate tests. 9 The cylindrical container 1 is provided in pairs on the left and right sides symmetrically with respect to the horizontal groove-shaped open channel portion 2A forming the measurement/observation section M. Circulation water tank. 10 The flow path 3 for leading out the liquid FA' containing a large amount of air bubbles from the center of the bottom of the cylindrical container 1 to the outside of the cylindrical container 1 is connected to a simple air bubble removal mechanism of a natural floating type or an adhesion type. The recirculation water tank for high flow rate flow tests according to claim 8 or 9, which is connected to the tubular closed flow path section 7 on the downstream side of the cylindrical container 1 via the cylindrical container 1.
JP27904884A 1984-12-27 1984-12-27 Method and apparatus for removing bubble from fluidized liquid and circulating water vessel for testing high-flow velocity flowing force utilizing said apparatus Granted JPS61153108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27904884A JPS61153108A (en) 1984-12-27 1984-12-27 Method and apparatus for removing bubble from fluidized liquid and circulating water vessel for testing high-flow velocity flowing force utilizing said apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27904884A JPS61153108A (en) 1984-12-27 1984-12-27 Method and apparatus for removing bubble from fluidized liquid and circulating water vessel for testing high-flow velocity flowing force utilizing said apparatus

Publications (2)

Publication Number Publication Date
JPS61153108A JPS61153108A (en) 1986-07-11
JPH0218122B2 true JPH0218122B2 (en) 1990-04-24

Family

ID=17605669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27904884A Granted JPS61153108A (en) 1984-12-27 1984-12-27 Method and apparatus for removing bubble from fluidized liquid and circulating water vessel for testing high-flow velocity flowing force utilizing said apparatus

Country Status (1)

Country Link
JP (1) JPS61153108A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293004A (en) * 1989-05-02 1990-12-04 Takuo Mochizuki Separator for foaming component in liquid
JP2786581B2 (en) * 1993-07-23 1998-08-13 三菱重工業株式会社 Gas-liquid separation device
JP2007120398A (en) * 2005-10-27 2007-05-17 Toyota Boshoku Corp Air bubble separator

Also Published As

Publication number Publication date
JPS61153108A (en) 1986-07-11

Similar Documents

Publication Publication Date Title
US3615017A (en) Oil entrapment and containment watercraft
US4339232A (en) Pressure differential liquid transfer system
JPH0218122B2 (en)
US4117726A (en) Apparatus and method for sampling water for fish larvae and other trophic levels
US3889123A (en) Irradiation plant for flowable material
CH612476A5 (en) Self-priming multicellular centrifugal pump
US2382999A (en) Circulating water channel
CN112985919B (en) Layered collecting and storing device for deep lake water sample
JP4321770B2 (en) Circulating water tank with bubble removal device
US5200066A (en) Oil spill collecting device with vortex generator
CN109557334B (en) Strong-tracking floater suitable for observing flow velocity distribution prototype at door area of navigation hub
GB1393028A (en) Method and device for restoration of bodies of water by oxygen- enriching of the water
JPH06502730A (en) photo processing equipment
JPS58119387A (en) Apparatus for sucking floated substance on water surface
US3333465A (en) Variable-pressure, variable-depth, freesurface, high-speed, circulating water channel
EP4118967A1 (en) Perfusion device
CN112268022B (en) Full-plastic environment-friendly vacuum unit
SU1456633A1 (en) Wave-energy power plant
ES8403184A1 (en) Pool cleaning device for operation under floating pool cover.
JPH03504259A (en) Method and apparatus for removing oily substances and floating objects in general from the surface of water bodies
CN219475057U (en) Mobilizable water pollution detection device
CN211494400U (en) Anti-tipping marine biological information acquisition device
KR102000388B1 (en) A slow-acting device of treatment for water quality improvement
SU1276855A1 (en) Immersion jet apparatus
SU1587435A1 (en) Apparatus for ultrasonic inspection of articles

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term