JPH02180744A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH02180744A
JPH02180744A JP63335078A JP33507888A JPH02180744A JP H02180744 A JPH02180744 A JP H02180744A JP 63335078 A JP63335078 A JP 63335078A JP 33507888 A JP33507888 A JP 33507888A JP H02180744 A JPH02180744 A JP H02180744A
Authority
JP
Japan
Prior art keywords
single crystal
powder
magnetic field
molding
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63335078A
Other languages
Japanese (ja)
Inventor
Tsuginori Hasebe
長谷部 次教
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP63335078A priority Critical patent/JPH02180744A/en
Publication of JPH02180744A publication Critical patent/JPH02180744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor having remarkably high critical current density by cooling the powder of single crystal of superconductive oxide substrate under the critical temp. and impressing magnetic field while imparting vibration and orientating crystal orientation and press-molding the powder of single crystal. CONSTITUTION:(i) Superconductive substance being polycrystalline substance is pulverized to obtain powder of single crystal. (ii) The powder 1 of this single crystal is introduced into a molding vessel and cooled under the critical temp. of superconductive substance by liquid nitrogen, etc., and made a superconductive state. (iii) Magnetic field B is impressed while vibrating the powder 1 of single crystal by imparting mechanical vibration such as ultrasonic wave vibration to the molding vessel 2. This state is held until crystal orientation is orientated to the direction becoming c-axis//B and the powder 1 of single crystal is collected to the upper part of the molding vessel 2. (iv) When the powder 1 is sufficiently collected, vibration is stopped. The power 1 is pressed, e.g. from the lower part and molded in such a state that the magnetic field has being imparted. After molding, the molded body is sintered to obtain a sintered body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、酸化物超電導体の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an oxide superconductor.

〔従来技術とこの発明が解決しようとする課題〕Y+ 
 Ba  I  Cu  s  O?  −δ、B1−
3r−Ca−Cu−Ox、  Tl−Ba−Ca−Cu
−0y等の酸化物高温超電導物質は、第5図に示すよう
に、層状の結晶構造(斜方晶系ペロプスカイト型構造)
をしていて電磁気的な異方性が大きい。すなわち、臨界
電流密度Jcが第5図のa軸、b軸方向では大きいが、
C軸方向では極端に小さいということが知られている。
[Prior art and problems to be solved by this invention] Y+
Ba I Cu s O? -δ, B1-
3r-Ca-Cu-Ox, Tl-Ba-Ca-Cu
As shown in Figure 5, oxide high-temperature superconducting materials such as -0y have a layered crystal structure (orthorhombic perovskite structure).
and has large electromagnetic anisotropy. That is, although the critical current density Jc is large in the a-axis and b-axis directions in FIG.
It is known that it is extremely small in the C-axis direction.

そのため、−船釣な粉末焼結法により超電導体を製造す
ると、様々の結晶方位を持つ単結晶が集まった多結晶体
となり、電流の流れ易い方向がばらばらなため、結晶方
位の揃った多結晶薄膜や単結晶薄膜に比べJcが極端に
低くなっている。
Therefore, when a superconductor is manufactured using the powder sintering method, it becomes a polycrystalline body made up of single crystals with various crystal orientations. Jc is extremely low compared to thin films and single crystal thin films.

この発明は、このような事情に鑑みてなされたもので、
その目的は、超電導物質の結晶方位を揃え、飛躍的に高
い臨界電流密度を持つ超電導材を得ることのできる酸化
物超電導体の製造方法を提供することにある。
This invention was made in view of these circumstances,
The purpose is to provide a method for producing an oxide superconductor that can align the crystal orientation of the superconducting material and obtain a superconducting material that has a dramatically high critical current density.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、結晶方位の揃った焼結体を得るために、逆に
この物質の異方性の一つである磁気的異方性、すなわち
マイスナ−効果の異方性を利用するものであり、次の工
程から構成される(第1図参照)。
The present invention utilizes magnetic anisotropy, which is one of the anisotropies of this material, that is, the anisotropy of the Meissner effect, in order to obtain a sintered body with uniform crystal orientation. , consists of the following steps (see Figure 1).

(i)多結晶体である超電導物質を粉砕して単結晶の粉
体とする。
(i) Grinding a polycrystalline superconducting material into a single crystal powder.

(ii )この単結晶の粉体1を成形容器2に入れ、液
体窒素(77K)等によって超電導物質の臨界温度(例
えば、Y系:94に、Bi系=110に、’TM系:1
20K)以下に冷却して超電導状態にする。
(ii) This single crystal powder 1 is placed in a molding container 2, and the critical temperature of the superconducting material (for example, Y system: 94, Bi system = 110, 'TM system: 1
20K) or below to make it superconducting.

(iii )成形容器2に超音波振動等の機械的振動を
与えることにより、単結晶粉体lを振動させながら、磁
界Bを印加する。この状態を、各々の単結晶粉体1がC
軸//Bとなる方向に配向して成形容器2の上部に集ま
るまで保持する。
(iii) By applying mechanical vibration such as ultrasonic vibration to the molded container 2, a magnetic field B is applied while vibrating the single crystal powder l. In this state, each single crystal powder 1 has C
It is oriented in the direction of axis //B and held until it gathers at the top of the molded container 2.

(iv )単結晶粉体1が充分に集まると、振動を止め
て、磁界Bをかけたままの状態で例えば下方からプレス
して成形する。成形後、焼結して焼結体を得る。
(iv) When the single-crystal powder 1 is sufficiently collected, the vibration is stopped, and while the magnetic field B is still applied, it is pressed and shaped, for example, from below. After shaping, it is sintered to obtain a sintered body.

印加する磁界Bは、プレスする方向と平行で、成形容器
内で−様な磁界とするのが好ましい。
It is preferable that the applied magnetic field B is parallel to the pressing direction and is a -like magnetic field within the molded container.

また、不純物(非超電導物質、臨界温度の低い超電導物
質)が混入していた場合には、最終的にこれら不純物が
下部に残る。そのため、プレス前にこれら不純物4と上
部に配向した結晶3との間に仕切板5を入れて分別し、
その後にプレス加工することにより純度の高い超電導材
が得られるようにするのが好ましい。
Furthermore, if impurities (non-superconducting substances, superconducting substances with a low critical temperature) are mixed in, these impurities will ultimately remain at the bottom. Therefore, before pressing, a partition plate 5 is inserted between these impurities 4 and the crystals 3 oriented at the top to separate them.
It is preferable that a highly pure superconducting material be obtained by press working thereafter.

〔作   用〕[For production]

最初、成形容器2内の下部に単結晶粉体1がその結晶方
位がばらばらの状態で収納されている。このような状態
で臨界温度以下に冷却した後、外部から振動と上向きの
磁界Bを加えると、磁界Bによるマイスナ−浮上刃が強
(働くものが、選択的に成形容器2の上部に押し上げら
れる。
Initially, the single crystal powder 1 is stored in the lower part of the molding container 2 with its crystal orientation being varied. After cooling to below the critical temperature in this state, when vibration and an upward magnetic field B are applied from the outside, the magnetic field B causes the Meissner levitation blades to become strong (the working ones are selectively pushed up to the top of the molded container 2). .

ここで、第4図に示すように、C軸//Bの時には、連
間電流Iはa軸およびb軸方向に流れ、一方、a軸//
B(もしくはb軸//B)のような場合には、b軸(も
しくはa軸)およびC軸方向に流れる。しかし、超電導
電流はC軸方向には流れにくいので、第4図(B)の場
合には、連間電流が充分に流れず、そのためマイスナ−
効果も大きく現れない。
Here, as shown in FIG. 4, when the C-axis //B, the continuous current I flows in the a-axis and b-axis directions, while the a-axis //
In the case of B (or b-axis//B), the flow flows in the b-axis (or a-axis) and C-axis directions. However, since the superconducting current does not easily flow in the C-axis direction, in the case of Fig. 4 (B), the continuous current does not flow sufficiently, and as a result, the Meissner
The effect is not significant either.

従って、第4図(A)のような時だけ、充分なマイスナ
−効果が現れて浮上し、容器上部に移動する。よって、
振動により、うまくc軸//Bとなった結晶からC軸/
/Hの状態を保ちながら上部に移動する。
Therefore, only in the case shown in FIG. 4(A), sufficient Meissner effect appears and the object floats up and moves to the upper part of the container. Therefore,
Due to vibration, the crystal that successfully became the c-axis//B becomes the C-axis/
Move to the top while maintaining the /H state.

以上の結果、容器上部には、C軸//Bという方向に配
向した結晶粒が集まるので、そのまま例えば下方からプ
レスすることにより、この配向状態を保った超電導材を
得ることができる。
As a result of the above, crystal grains oriented in the C-axis//B direction gather in the upper part of the container, so that by pressing the material directly from below, for example, a superconducting material that maintains this orientation can be obtained.

〔実 施 例〕〔Example〕

第1図に示すように、冷却容器6内に電磁石7を配設し
、この電磁石7の中心にプレス成形容器2を下向きにし
て配設し、プレスラム8を成形容器2内に鉛直方向にス
ライド可能に設ける。
As shown in FIG. 1, an electromagnet 7 is disposed inside the cooling container 6, the press-molded container 2 is placed in the center of the electromagnet 7 with the press-molded container 2 facing downward, and the press ram 8 is slid vertically into the molded container 2. Make it possible.

成形容器2には、加振機9を伝達部材10を介して接続
し、配向した結晶3と不純物4とを仕切る仕切板5を設
ける。この仕切板5は、磁界Bをかけたまま、成形容器
2の側方あるいは下方から挿入できるようにする。
A vibrator 9 is connected to the molded container 2 via a transmission member 10, and a partition plate 5 is provided to partition the oriented crystals 3 and impurities 4. This partition plate 5 can be inserted into the molded container 2 from the side or from below while the magnetic field B is applied.

電磁石7は、磁界Bがプレスする方向と平行で単結晶粉
体1に上向きにかかるようにし、不純物4を重力を利用
して成形容器2の下部に集められるようにする。また、
成形容器2内で−様な磁界Bが得られるように、電磁石
7は鉛直方向に十分な長さとする。
The electromagnet 7 is arranged so that the magnetic field B is parallel to the pressing direction and applied upward to the single crystal powder 1, so that the impurities 4 can be collected at the lower part of the molding container 2 by using gravity. Also,
The electromagnet 7 is made to have a sufficient length in the vertical direction so that a -like magnetic field B can be obtained within the molded container 2.

なお、成形容器2は上向きとし、上方からプレスするよ
うにしてもよい、この場合、適宜の手段により不純物4
を成形容器2の底部から排出できるようにして仕切板5
を省略することも可能である。
Note that the molded container 2 may be oriented upward and pressed from above. In this case, the impurities 4 may be removed by appropriate means.
The partition plate 5 allows the liquid to be discharged from the bottom of the molded container 2.
It is also possible to omit.

〔発明の効果〕〔Effect of the invention〕

前述のとおり、この発明に係る製造方法は、単結晶粉体
に振動を与えつつ磁界を印加し、マイスナ−効果の異方
性を利用して超電導物質の結晶方位を揃え、これをプレ
ス成形するようにしたため、大電流を流せる線材などに
使用できるような飛躍的に高い臨界電流密度を有する酸
化物超電導体を得ることができる。
As mentioned above, the manufacturing method according to the present invention applies a magnetic field while giving vibration to a single crystal powder, aligns the crystal orientation of the superconducting material using the anisotropy of the Meissner effect, and press-forms the same. As a result, it is possible to obtain an oxide superconductor having a dramatically high critical current density that can be used for wires and the like through which large currents can flow.

また、プレス加工する前に、配向された単結晶粉体と残
された不純物の間に仕切板を入れる等すれば、純度の高
い超電導材を容易に得ることができる。
Moreover, if a partition plate is inserted between the oriented single crystal powder and the remaining impurities before pressing, a highly pure superconducting material can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の製造方法を実施するための装置の
一例を示す概略図、第2図は本発明の配向状態を示す概
略図、第3図は同様のプレス加工前の状態を示す概略図
、第4図は単結晶の姿勢によるマイスナ−効果の差異を
示す斜視図、第5図はY−Ba−Cu−0系の結晶構造
を示す説明図である。
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the manufacturing method of the present invention, FIG. 2 is a schematic diagram showing an orientation state of the present invention, and FIG. 3 is a similar diagram showing a state before pressing. 4 is a perspective view showing the difference in the Meissner effect depending on the orientation of the single crystal, and FIG. 5 is an explanatory diagram showing the crystal structure of the Y-Ba-Cu-0 system.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物超電導物質の単結晶粉体を臨界温度以下に
冷却した状態で、この単結晶粉体に振動を与えつつ磁界
を印加して、マイスナ−効果により単結晶粉体を移動さ
せつつその結晶方位を配向させ、この配向された単結晶
粉体をプレス成形することを特徴とする酸化物超電導体
の製造方法。
(1) A single crystal powder of an oxide superconducting material is cooled to below the critical temperature, and a magnetic field is applied while giving vibration to the single crystal powder, causing the single crystal powder to move due to the Meissner effect. A method for producing an oxide superconductor, which comprises orienting its crystal orientation and press-molding the oriented single-crystal powder.
(2)プレス加工する前に、配向された単結晶粉体と残
された不純物の間に仕切板を入れることを特徴とする請
求項(1)記載の酸化物超電導体の製造方法。
(2) The method for producing an oxide superconductor according to claim (1), characterized in that, before pressing, a partition plate is inserted between the oriented single crystal powder and the remaining impurities.
JP63335078A 1988-12-29 1988-12-29 Production of oxide superconductor Pending JPH02180744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63335078A JPH02180744A (en) 1988-12-29 1988-12-29 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63335078A JPH02180744A (en) 1988-12-29 1988-12-29 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02180744A true JPH02180744A (en) 1990-07-13

Family

ID=18284517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63335078A Pending JPH02180744A (en) 1988-12-29 1988-12-29 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02180744A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645944A (en) * 1987-06-26 1989-01-10 Hitachi Cable Production of high temperature superconductor
JPS6469584A (en) * 1987-09-10 1989-03-15 Seiko Epson Corp Production of superconducting material
JPH01238078A (en) * 1988-03-18 1989-09-22 Fujitsu Ltd Formation of superconductive wiring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645944A (en) * 1987-06-26 1989-01-10 Hitachi Cable Production of high temperature superconductor
JPS6469584A (en) * 1987-09-10 1989-03-15 Seiko Epson Corp Production of superconducting material
JPH01238078A (en) * 1988-03-18 1989-09-22 Fujitsu Ltd Formation of superconductive wiring

Similar Documents

Publication Publication Date Title
JP3110451B2 (en) High critical current orientated grained Y-Ba-Cu-O superconductor and method for producing the same
KR20000028741A (en) Manufacturing method for thermoelectric material for semiconductor or semiconductor device and manufacturing method for thermoelectric module
JPH02133367A (en) Oriented polycrystalline superconductor
US5231076A (en) Process for manufacturing a YBa2 Cu3 Ox superconductor using infiltration-reaction technique
JPH09306256A (en) Bulk oxide superconductor, and production of wire rod and plate thereof
US5439879A (en) Method for joining superconductor segments to form a superconducting article
US5334578A (en) Method of manufacturing superconductor
JPH02180744A (en) Production of oxide superconductor
US5206211A (en) Process for the production of an elongate body consisting of longitudinally aligned acicular crystals of a superconducting material
EP0310332A2 (en) Preferential orientation of metal oxide superconducting materials
EP0564279B1 (en) Rare earth superconducting body and process for production thereof
WO1991014286A1 (en) Crystal alignment technique for superconductive material
JPH0665623B2 (en) Method for producing high temperature superconducting ceramic material by mechanical orientation method
US5273956A (en) Textured, polycrystalline, superconducting ceramic compositions and method of preparation
Somayazulu et al. Direct observation of ferroelastic reorientation in single crystals of the superconductor Y Ba Cu O
US5776864A (en) Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals
JPH11503711A (en) Method for manufacturing melt-textured volume probe based on high temperature superconductor YBa 2 lower Cu 3 lower 7 (YBCO)
RU1547241C (en) Method of production of high-temperature ceramic superconductors
JPH02153891A (en) Production of crystal having decomposed and molten composition
JPH01108156A (en) Production of oxide based superconducting material
Hidalgo et al. A Process for Producing “Granular Single Crystals” of Ceramics from Polycrystals by Biaxial Alignment, Demonstrated for High-Tc Superconductors
JP3115695B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JP2000302595A (en) Production of oxide bulk superconductor
Hu et al. Bulk YBa2Cu3Ox superconductors through pressurized partial melt growth processing
JPH03137050A (en) Manufacture of oxide superconductor