JPH02180742A - Antibacterial composition for ceramics - Google Patents

Antibacterial composition for ceramics

Info

Publication number
JPH02180742A
JPH02180742A JP63286206A JP28620688A JPH02180742A JP H02180742 A JPH02180742 A JP H02180742A JP 63286206 A JP63286206 A JP 63286206A JP 28620688 A JP28620688 A JP 28620688A JP H02180742 A JPH02180742 A JP H02180742A
Authority
JP
Japan
Prior art keywords
ceramics
powder
oxide
antibacterial composition
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63286206A
Other languages
Japanese (ja)
Inventor
Yuzo Yokota
横田 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP63286206A priority Critical patent/JPH02180742A/en
Publication of JPH02180742A publication Critical patent/JPH02180742A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the antibacterial property of a ceramic product obtd. by adding water to a compsn. and sintering this compsn. by blending powdery starting material for ceramics with powder of a radioactive mineral and/or powder of a silver-bearing mineral, etc., to form the compsn. CONSTITUTION:Powdery starting material for ceramics as a base is blended with powder of a radioactive mineral and/or powder of a silver-bearing mineral, etc., to form an antibacterial compsn. for ceramics. The powdery starting material is based on clay and inorg. oxides such as metal oxides. Water is added to the compsn. and this compsn. is molded and sintered to obtain an antibacterial ceramic product.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、抗菌性陶磁器等のセラミックス製品及びこの
セラミックス製品を得るための組成物に関し、陶磁器等
のセラミックス製品に収納した飲食品等に菌が発生又は
生長するのを良好に防止しうる抗菌性セラミックス製品
及びこのセラミックス製品を得るための組成物に関する
ものである。 なお、本発明において用いるセラミックスという言葉の
意味は、陶磁器、特殊陶磁器、耐火物等を意味し、セメ
ント及びガラスを含まないものである。
The present invention relates to antibacterial ceramic products such as ceramics and compositions for obtaining these ceramic products, and relates to antibacterial ceramic products that can effectively prevent the generation or growth of bacteria in foods and drinks stored in ceramic products such as ceramics. The present invention relates to a ceramic product and a composition for obtaining the ceramic product. Note that the term "ceramics" used in the present invention means ceramics, special ceramics, refractories, etc., and does not include cement or glass.

【従来の技術及び発明が解決しようとする課題】従来よ
り、陶磁器や耐火物等のセラミックス製品は、各種飲食
品の収納容器又は包装容器として広く用いられている。 ところで、内容物である飲食品の腐敗を防止するために
、飲食品に防腐剤を混入する方法又は飲食品を加熱殺菌
する方法等の飲食品自体を加工する方法が従来より採用
されている。しかしながら、この方法は飲食品の加工工
程が必要になるため、不合理であるという欠点があった
。 そこで、本発明者は飲食品の収納容器又は包装容器であ
る陶磁器等のセラミックス製品自体に抗菌性を付与し、
飲食品に加工を施すことなく腐敗を防止することを試み
、本発明に到ったのである。
BACKGROUND OF THE INVENTION Conventionally, ceramic products such as ceramics and refractories have been widely used as storage containers or packaging containers for various food and drink products. By the way, in order to prevent the food and drink contents from spoiling, methods of processing the food and drink products themselves, such as a method of mixing a preservative into the food and drink products or a method of heat sterilizing the food and drink products, have been conventionally employed. However, this method has the disadvantage of being unreasonable because it requires a processing step for the food and drink. Therefore, the present inventors imparted antibacterial properties to the ceramic products themselves, such as ceramics, which are storage containers or packaging containers for food and beverages.
The present invention was achieved by attempting to prevent food and drinks from spoiling without undergoing any processing.

【課題を解決するための手段及び作用】即ち、本発明は
放射性鉱物の粉末及び/又は銀鉱物粉末及び/又は酸化
亜鉛粉末と、粘土、金属酸化物等の無機系酸化物を主成
分とするセラミックス用原料粉末と、よりなるセラミッ
クス用抗菌性組成物、及びこの組成物を用いて得られる
セラミックス製品に関するものである。 本発明においてセラミックス用原料粉末としては、陶磁
器用原料粉末として周知の粘土を用いることができる。 また、粘土以外にも、トウ石、キヌウンモ、チョウ石、
ケイ石9石灰石、ドロマイトアルミナ、陶土、ベントナ
イト等が用いられる。更に、二酸化珪素、酸化アルミニ
ウム、酸化ナトリウム、酸化カリウム、酸化鉄(■)、
酸化カルシウム、酸化マグネシウム、酸化チタン(■)
、三酸化ニホウ素等よりなる金属酸化物を含む無機系酸
化物を用いることもできる。セラミックス用原料粉末の
粒径は、一般的に陶磁器等を製造する際に用いられてい
る程度が良く、例えば1〜lO・μ程度である。 本発明において放射性鉱物としては、例えばフェルグソ
ン石、褐廉石、モナズ石等が用いられる。 これらは天然に産するものであり、例えば愛媛県波方地
方、福島県飯坂地方、長野県山口地方2京都府大呂地方
、福島県阿武隅地方、福島県石川地方、岐阜県苗木地方
、福岡県小峠地方、オーストラリア、インド、マレ−シ
ア等で産出するものである。これらの放射性鉱物の組成
は、酸化ラジウム、酸化トリウム、酸化ニオビュム、酸
化タンタル、酸化イツトリウム、酸化セリウム、珪酸、
酸化鉄、酸化アルミニウム、酸化チタニウム、酸化カル
シウム、酸化マンガン、酸化マグネシウム。 酸化マンガン、酸化エルビウム等よりなるもめである。 この組成中の酸化トリウム等から放射線が照射される。 従って、放射性鉱物としては特に酸化トリウム0.05
〜2゜0重量%を含有するものを用いるのが好ましい。 酸化トリウムが2.0重量%を超えると、照射される放
射線の量が多くなり、本発明に係るセラミックス用抗菌
性組成物やこの組成物を原料とするセラミックス製品の
製造現場の労働環境が悪くなる傾向が生じる。また、酸
化トリウムが0.05重量%未満であると、照射される
放射線の量が少なくなりすぎて、抗菌性が低下する傾向
となる。なお、放射性鉱物の粉末の粒径は細かいほど好
ましく、一般的には0.5μ〜3μ程度がよい。 本発明において銀鉱物としては、例えばキギン鉱、カク
ギン鉱、シルバニア鉱、ミアジル鉱、ペッツ鉱、アンギ
ン鉱、ハリギン鉱、ノルコウギン鉱、タンコウギン鉱、
ポリパス鉱等が用いられる。 また、前記の鉱物よりも銀の含有量の少ないものであっ
ても使用しうる。即ち、銀鉱物の銀の含有量がo、 0
05重量%以上であれば本発明において使用しうるもの
である。銀と他の物とを接触させることにより、その物
に対して抗菌効果が得られることは知られているが、銀
鉱物中の銀の含有量がo、oos重量%未満になると、
銀の抗菌効果が低下する傾向となる。なお、銀鉱物粉末
の粒径も細かいほど好ましく、一般的には0.5μ〜3
μ程度がよい。 本発明において用いられる酸化亜鉛は、いわゆる亜鉛華
又は亜鉛−と呼ばれているものである。 これは、抗菌性を持ち、医薬品や化粧品の増量剤として
も用いられている。酸化亜鉛の粒径も細かいほど好まし
く、一般的には0.5μ〜3μ程度がよい。 本発明に係るセラミックス用抗菌性組成物は、セラミッ
クス用原料粉末と、上記の放射性鉱物の粉末及び/又は
銀鉱物粉末及び/又は酸化亜鉛と、よりなるものである
。放射性鉱物の粉末等の含有量は、セラミックス用抗菌
性組成物中に1〜70重量%程度であるのが好ましい。 放射性鉱物の粉末等の含有量が1重量%未満であると、
照射される放射線の量等が少なくなる傾向が生じる。ま
た、放射性鉱物の粉末等の含有量が70重量%を超える
と、連結剤であるセラミックス用原料粉末の量が相対的
に低下し、強度的に脆いセラミックス製品しか得られな
いという傾向が生じる。 本発明に係るセラミックス用抗菌性組成物は、セラミッ
クス用原料粉末の中に放射性鉱物の粉末等を単に混入す
れば得ることができる。そして、この組成物に水を加え
て土練器で良く練り、その後鋳込み、ロクロ成型、圧縮
成型等の方法で成型し、素焼、締焼、ユウ焼1本焼、上
絵焼等を適宜組み合わせて焼成すれば、本発明に係るセ
ラミックス製品を得ることができる。
[Means and effects for solving the problems] That is, the present invention mainly consists of radioactive mineral powder and/or silver mineral powder and/or zinc oxide powder and inorganic oxides such as clay and metal oxides. The present invention relates to a raw material powder for ceramics, an antibacterial composition for ceramics comprising the same, and a ceramic product obtained using this composition. In the present invention, clay, which is well known as a raw material powder for ceramics, can be used as the raw material powder for ceramics. In addition to clay, we also have stone, stone, stone,
Silica stone 9 Limestone, dolomite alumina, china clay, bentonite, etc. are used. Furthermore, silicon dioxide, aluminum oxide, sodium oxide, potassium oxide, iron oxide (■),
Calcium oxide, magnesium oxide, titanium oxide (■)
Inorganic oxides including metal oxides such as diboron trioxide and the like can also be used. The particle size of the raw material powder for ceramics is preferably the same as that generally used in manufacturing ceramics, and is, for example, about 1 to 1O·μ. In the present invention, as the radioactive mineral, for example, fergusonite, perochite, monazite, etc. are used. These are naturally occurring, such as the Namikata region of Ehime Prefecture, the Iizaka region of Fukushima Prefecture, the Yamaguchi region of Nagano Prefecture, the Oro region of Kyoto Prefecture, the Abusumi region of Fukushima Prefecture, the Ishikawa region of Fukushima Prefecture, the Naegi region of Gifu Prefecture, and Fukuoka Prefecture. It is produced in the Kotoge region of the prefecture, Australia, India, Malaysia, etc. The composition of these radioactive minerals is radium oxide, thorium oxide, niobium oxide, tantalum oxide, yttrium oxide, cerium oxide, silicic acid,
Iron oxide, aluminum oxide, titanium oxide, calcium oxide, manganese oxide, magnesium oxide. This is a conflict between manganese oxide, erbium oxide, etc. Radiation is irradiated from thorium oxide, etc. in this composition. Therefore, as a radioactive mineral, especially thorium oxide 0.05
It is preferable to use one containing up to 2.0% by weight. When thorium oxide exceeds 2.0% by weight, the amount of radiation irradiated increases, resulting in poor working conditions at manufacturing sites for the antibacterial composition for ceramics according to the present invention and ceramic products made from this composition. There is a tendency to Further, if the thorium oxide content is less than 0.05% by weight, the amount of radiation irradiated becomes too small, and the antibacterial properties tend to decrease. Note that the particle size of the radioactive mineral powder is preferably as fine as possible, and is generally about 0.5 μm to 3 μm. In the present invention, silver minerals include, for example, kigginite, kakuginite, sylvanianite, miasilite, petzite, anginite, hariginite, norkouginite, tankouginite,
Polypus ore etc. are used. Further, minerals containing less silver than the above-mentioned minerals can also be used. That is, if the silver content of the silver mineral is o, 0
If the amount is 0.05% by weight or more, it can be used in the present invention. It is known that an antibacterial effect can be obtained by bringing silver into contact with another object, but when the content of silver in silver minerals is less than o, oos weight percent,
The antibacterial effect of silver tends to decrease. The particle size of the silver mineral powder is preferably as fine as possible, and is generally 0.5μ to 3μ.
A value of around μ is good. The zinc oxide used in the present invention is so-called zinc white or zinc. It has antibacterial properties and is also used as a filler in pharmaceuticals and cosmetics. The finer the particle size of zinc oxide, the better, and generally about 0.5 μm to 3 μm is preferable. The antibacterial composition for ceramics according to the present invention comprises raw material powder for ceramics, and the above radioactive mineral powder and/or silver mineral powder and/or zinc oxide. The content of the radioactive mineral powder, etc. in the antibacterial composition for ceramics is preferably about 1 to 70% by weight. If the content of radioactive mineral powder, etc. is less than 1% by weight,
There is a tendency for the amount of radiation to be irradiated to decrease. Furthermore, if the content of radioactive mineral powder or the like exceeds 70% by weight, the amount of the ceramic raw material powder, which is a coupling agent, will be relatively reduced, and there will be a tendency that only ceramic products with weak strength will be obtained. The antibacterial composition for ceramics according to the present invention can be obtained by simply mixing radioactive mineral powder or the like into raw material powder for ceramics. Then, add water to this composition and knead it well in a clay kneader, then mold it using methods such as casting, potter's wheel molding, compression molding, etc., and appropriately combine bisque firing, shime firing, single firing, overglaze firing, etc. By firing, the ceramic product according to the present invention can be obtained.

【実施例】【Example】

実施例1 下記の組成及び配合よりなるセラミックス用抗菌性組成
物を得た。 陶磁器用原料粉末        70重量部フェルグ
ソン石(粒径3μ)30重量部この組成物100重量部
に対して水を50重量部加え、土練器で練ってハイ土と
した。このハイ土を用いてロクロ成型を行い、試験管の
形状にした。 これを乾燥し、約1000°Cで2日間焼成して、陶磁
器製の試験管を得た。 実施例1で得られた試験管の抗菌性を確認するために、
以下の実験を行った。 滅菌リン酸緩衝希釈水250a+1を固有する滅菌され
た500m1容のコニカルスコ中に、炊飯直後の米飯1
gを無菌的に投入し、滅菌ガラス棒でこの米飯を細砕し
た。次に、この1+alを滅菌ピペットを用いて滅菌試
験管にとり、滅菌リン酸緩衝希釈水9mlを加え、よく
混合してこれを試料とする。 その後、チオグリコール酸塩培養基10m1を入れた実
施例1で得られた陶磁器製試験管に、前記の試料In+
1を加え、温度35±1℃で48時間放置した。 そして、目視により菌の増殖が認められるか否か確認し
たが、菌の増殖は認められなかった。 これに対し、一般に市販されているガラス製試験管を用
い、上記と同様の菌の培養試験を行った。 その結果、目視により菌の増殖が認められた。 実施例2 下記の組成及び配合よりなるセラミックス用抗菌性組成
物を得た。 陶磁器用原料粉末       100重量部ハリギン
鉱           20重量部このセラミックス
用抗菌性組成物を用いて、実施例1と同様の方法で陶磁
器製の試験管を得、実施例1と同様の方法で試験したと
ころ、菌の増殖は認められなかった。 実施例3 下記の組成及び配合よりなるセラミックス用抗菌性組成
物を得た。 二酸化珪素           60重量部アルミナ
            40重量部モナズ石(粒径3
μ)20重量部 キギン鉱(粒径2μ)20重量部 このセラミックス用抗菌性組成物を用いて、実施例1と
同様の方法で陶磁器製の試験管を得、実施例1と同様の
方法で試験したところ、菌の増殖は認められなかった。 実施例4 下記の組成及び配合よりなるセラミックス用抗菌性組成
物を得た。 二酸化珪素           70重量部アルミナ
            30重量部褐廉石(粒径5μ
)        40重量部ハリギン絋(粒径5μ)
20重量部 このセラミックス用抗菌性組成物を用いて、実施例1と
同様の方法で陶磁器製の試験管を得、実施例1と同様の
方法で試験したところ、菌の増殖は認められなかった。 実施例5 下記の組成及び配合よりなるセラミックス用抗菌性組成
物を得た。 陶磁器用原料粉末       100重量部酸化亜鉛
(粒径1μ)75重量部 このセラミックス用抗菌性組成物を用いて、実施例1と
同様の方法で陶磁器製の試験管を得、実施例1と同様の
方法で試験したところ、菌の増殖は認められなかった。 実施例6 下記の組成及び配合よりなるセラミックス用抗菌性組成
物を得た。 陶磁器用原料粉末       100重量部ハリギン
絋(粒径2μ)      10重量部酸化亜鉛(粒径
1μ)30重量部 このセラミックス用抗菌性組成物を用いて、実施例1と
同様の方法で陶磁器製の試験管を得、実施例1と同様の
方法で試験したところ、菌の増殖は認められなかった。 実施例7 下記の組成及び配合よりなるセラミックス用抗菌性組成
物を得た。 二酸化珪素           60重量部アルミナ
            40重量部モナズ石(粒径3
μ)       15重量部酸化亜鉛(粒径1μ)3
5重量部 このセラミックス用抗菌性組成物を用いて、実施例1と
同様の方法で陶磁器製の試験管を得、実施例1と同様の
方法で試験したところ、菌の増殖は認められなかった。 実施例8 下記の組成及び配合よりなるセラミックス用抗菌性組成
物を得た。 二酸化珪素           60重量部アルミナ
            40重量部モナズ石(粒径3
μ)10重量部 キギン鉱(粒径2μ)10重量部 酸化亜鉛(粒径1μ)20重量部 このセラミックス用抗菌性組成物を用いて、実施例1と
同様の方法で陶磁器製の試験管を得、実施例1と同様の
方法で試験したところ、菌の増殖は認められなかった。 実施例9 下記の組成及び配合よりなるセラミックス用抗菌性組成
物を得た。 陶磁器用原料粉末        50重量部モナズ石
(粒径3μ)50重量部 このセラミックス用抗菌性組成物を用いて、実施例1と
同様の方法で陶磁器製の試験管を得、実施例1と同様の
方法で試験したところ、菌の増殖は認められなかった。
Example 1 An antibacterial composition for ceramics having the following composition and formulation was obtained. Raw material powder for ceramics: 70 parts by weight Fergussonite (particle size 3 μm) 30 parts by weight To 100 parts by weight of this composition, 50 parts by weight of water was added and kneaded in a clay kneader to obtain high clay. Using this high soil, potter's wheel molding was carried out to form the shape of a test tube. This was dried and fired at about 1000°C for 2 days to obtain a ceramic test tube. In order to confirm the antibacterial properties of the test tube obtained in Example 1,
The following experiment was conducted. In a sterile 500ml conical Scotch containing 250a+1 of sterile phosphate buffered diluted water, 1 cup of cooked rice was added immediately after cooking.
g was added aseptically, and the cooked rice was pulverized using a sterilized glass rod. Next, take this 1+al into a sterile test tube using a sterile pipette, add 9 ml of sterile phosphate buffered dilution water, mix well, and use this as a sample. Thereafter, the above sample In+ was added to the ceramic test tube obtained in Example 1 containing 10 ml of thioglycolate culture medium.
1 was added, and the mixture was left at a temperature of 35±1° C. for 48 hours. Then, it was visually confirmed whether or not bacterial growth was observed, but no bacterial growth was observed. On the other hand, a culture test of bacteria similar to the above was conducted using a commonly available glass test tube. As a result, bacterial growth was visually observed. Example 2 An antibacterial composition for ceramics having the following composition and formulation was obtained. Raw material powder for ceramics 100 parts by weight Haliginite 20 parts by weight Using this antibacterial composition for ceramics, a ceramic test tube was obtained in the same manner as in Example 1, and tested in the same manner as in Example 1. , no bacterial growth was observed. Example 3 An antibacterial composition for ceramics having the following composition and formulation was obtained. Silicon dioxide 60 parts by weight Alumina 40 parts by weight Monazite (particle size 3
μ) 20 parts by weight Kiginite (particle size 2μ) 20 parts by weight Using this antibacterial composition for ceramics, a ceramic test tube was obtained in the same manner as in Example 1; When tested, no bacterial growth was observed. Example 4 An antibacterial composition for ceramics having the following composition and formulation was obtained. Silicon dioxide: 70 parts by weight Alumina: 30 parts by weight
) 40 parts by weight Harigin silk (particle size 5μ)
Using 20 parts by weight of this antibacterial composition for ceramics, a ceramic test tube was obtained in the same manner as in Example 1, and when tested in the same manner as in Example 1, no bacterial growth was observed. . Example 5 An antibacterial composition for ceramics having the following composition and formulation was obtained. Raw material powder for ceramics 100 parts by weight Zinc oxide (particle size 1μ) 75 parts by weight Using this antibacterial composition for ceramics, a ceramic test tube was obtained in the same manner as in Example 1. When tested using this method, no bacterial growth was observed. Example 6 An antibacterial composition for ceramics having the following composition and formulation was obtained. Raw material powder for ceramics 100 parts by weight Harigin (particle size 2 μ) 10 parts by weight Zinc oxide (particle size 1 μ) 30 parts by weight Using this antibacterial composition for ceramics, a ceramic test was conducted in the same manner as in Example 1. When the tube was obtained and tested in the same manner as in Example 1, no bacterial growth was observed. Example 7 An antibacterial composition for ceramics having the following composition and formulation was obtained. Silicon dioxide 60 parts by weight Alumina 40 parts by weight Monazite (particle size 3
μ) 15 parts by weight zinc oxide (particle size 1 μ) 3
5 parts by weight Using this antibacterial composition for ceramics, a ceramic test tube was obtained in the same manner as in Example 1, and tested in the same manner as in Example 1. No growth of bacteria was observed. . Example 8 An antibacterial composition for ceramics having the following composition and formulation was obtained. Silicon dioxide 60 parts by weight Alumina 40 parts by weight Monazite (particle size 3
μ) 10 parts by weight Kiginite (particle size 2 μ) 10 parts by weight Zinc oxide (particle size 1 μ) 20 parts by weight Using this antibacterial composition for ceramics, a ceramic test tube was prepared in the same manner as in Example 1. When tested in the same manner as in Example 1, no bacterial growth was observed. Example 9 An antibacterial composition for ceramics having the following composition and formulation was obtained. Raw material powder for ceramics 50 parts by weight Monazite (particle size 3μ) 50 parts by weight Using this antibacterial composition for ceramics, a ceramic test tube was obtained in the same manner as in Example 1. When tested using this method, no bacterial growth was observed.

【発明の効果】【Effect of the invention】

以上説明したように、本発明に係るセラミックス用抗菌
性組成物は、その中に放射性鉱物の粉末及び/又は銀鉱
物粉末及び/又は酸化亜鉛粉末を含有しているので、こ
の組成物に水を加え、所定の型に成型して焼成したセラ
ミックス製品も、その中に放射性鉱物等の粉末を含有し
ている。そして、セラミックス製品は多孔質であるため
、放射性鉱物の粉末より放射線が障害なく照射され、ま
た恨鉱物粉末や酸化亜鉛粉末は外気と接触し易くなって
いる。従って、このセラミックス製品に各種飲食品等を
収納又は包装しておけば、飲食品等に放射線が照射され
たり又は飲食品等に銀鉱物粉末等が接触し、その結果飲
食品等の菌の生長が抑制され又は菌が殺滅されるので、
飲食品等の腐敗を防止しうるという効果を奏する。また
、このセラミックス製品を各種飲食品等と共に併存して
おいても、飲食品等の腐敗を防止しうるという効果を奏
する。そして更に、本発明に係るセラミックス製品は飲
食品等の腐敗に伴って生じる悪臭をも防止しうる。 なお、以上主に本発明に係るセラミックス製品が、飲食
品の収納容器や包装容器に用いられる場合を中心として
説明したが、その他の各種の用途にも用いられることは
勿論である。
As explained above, the antibacterial composition for ceramics according to the present invention contains radioactive mineral powder and/or silver mineral powder and/or zinc oxide powder, so water is added to this composition. In addition, ceramic products that are molded into a predetermined mold and fired also contain powders such as radioactive minerals. Since ceramic products are porous, they can be irradiated with radiation more easily than radioactive mineral powders, and mineral powders and zinc oxide powders are more likely to come into contact with the outside air. Therefore, if various foods and beverages are stored or packaged in this ceramic product, the foods and beverages may be irradiated with radiation or come into contact with silver mineral powder, etc., resulting in the growth of bacteria in the foods and beverages. is suppressed or bacteria are killed,
This has the effect of preventing spoilage of foods and drinks. Moreover, even if this ceramic product is coexisted with various foods and drinks, it is effective in preventing the foods and drinks from spoiling. Furthermore, the ceramic product according to the present invention can also prevent bad odors that occur due to the decay of foods and drinks. Although the ceramic products according to the present invention are mainly used in storage containers and packaging containers for food and beverages, it is of course possible to use them in various other applications.

Claims (9)

【特許請求の範囲】[Claims] (1)粘土,金属酸化物等の無機系酸化物を主成分とす
るセラミックス用原料粉末と放射性鉱物の粉末とよりな
るセラミックス用抗菌性組成物。
(1) An antibacterial composition for ceramics comprising raw material powder for ceramics whose main component is an inorganic oxide such as clay or metal oxide, and powder of a radioactive mineral.
(2)粘土,金属酸化物等の無機系酸化物を主成分とす
るセラミックス用原料粉末と銀鉱物粉末とよりなるセラ
ミックス用抗菌性組成物。
(2) An antibacterial composition for ceramics comprising raw material powder for ceramics whose main component is an inorganic oxide such as clay or metal oxide, and silver mineral powder.
(3)粘土,金属酸化物等の無機系酸化物を主成分とす
るセラミックス用原料粉末と酸化亜鉛粉末とよりなるセ
ラミックス用抗菌性組成物。
(3) An antibacterial composition for ceramics comprising raw material powder for ceramics whose main component is an inorganic oxide such as clay or metal oxide, and zinc oxide powder.
(4)粘土,金属酸化物等の無機系酸化物を主成分とす
るセラミックス用原料粉末と放射性鉱物の粉末と銀鉱物
粉末とよりなるセラミックス用抗菌性組成物。
(4) An antibacterial composition for ceramics consisting of raw material powder for ceramics whose main component is an inorganic oxide such as clay or metal oxide, radioactive mineral powder, and silver mineral powder.
(5)粘土,金属酸化物等の無機系酸化物を主成分とす
るセラミックス用原料粉末と放射性鉱物の粉末と酸化亜
鉛粉末とよりなるセラミックス用抗菌性組成物。
(5) An antibacterial composition for ceramics consisting of raw material powder for ceramics whose main components are inorganic oxides such as clay and metal oxides, radioactive mineral powder, and zinc oxide powder.
(6)粘土,金属酸化物等の無機系酸化物を主成分とす
るセラミックス用原料粉末と銀鉱物粉末と酸化亜鉛粉末
とよりなるセラミックス用抗菌性組成物。
(6) An antibacterial composition for ceramics consisting of raw material powder for ceramics whose main component is an inorganic oxide such as clay or metal oxide, silver mineral powder, and zinc oxide powder.
(7)粘土,金属酸化物等の無機系酸化物を主成分とす
るセラミックス用原料粉末と放射性鉱物の粉末と銀鉱物
粉末と酸化亜鉛粉末とよりなるセラミックス用抗菌性組
成物。
(7) An antibacterial composition for ceramics comprising raw material powder for ceramics mainly composed of inorganic oxides such as clay and metal oxides, radioactive mineral powder, silver mineral powder, and zinc oxide powder.
(8)放射性鉱物として、酸化トリウム0.05〜2.
0重量%含有するものを用いる請求項(1),(4),
(5)又は(7)記載のセラミックス用抗菌性組成物。
(8) As a radioactive mineral, thorium oxide 0.05 to 2.
Claims (1), (4), using a material containing 0% by weight;
The antibacterial composition for ceramics according to (5) or (7).
(9)請求項(1)〜(8)記載の組成物に水を加えて
所定の型に成型した後、焼成してなる抗菌性セラミック
ス製品。
(9) An antibacterial ceramic product obtained by adding water to the composition according to claims (1) to (8), molding the mixture into a predetermined mold, and then firing the mixture.
JP63286206A 1988-09-02 1988-11-12 Antibacterial composition for ceramics Pending JPH02180742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63286206A JPH02180742A (en) 1988-09-02 1988-11-12 Antibacterial composition for ceramics

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP63-220734 1988-09-02
JP63-220735 1988-09-02
JP22073488 1988-09-02
JP63286206A JPH02180742A (en) 1988-09-02 1988-11-12 Antibacterial composition for ceramics

Publications (1)

Publication Number Publication Date
JPH02180742A true JPH02180742A (en) 1990-07-13

Family

ID=26523890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63286206A Pending JPH02180742A (en) 1988-09-02 1988-11-12 Antibacterial composition for ceramics

Country Status (1)

Country Link
JP (1) JPH02180742A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618762A (en) * 1994-05-16 1997-04-08 Ngk Insulators, Ltd. Light-weight antibacterial ceramic and antibacterial ceramic filter
KR100255111B1 (en) * 1997-02-04 2000-05-01 박찬영 Anti-bacterial ceramic composition maintaining freshment and the manufacture method thereof
KR20030000464A (en) * 2001-06-25 2003-01-06 주식회사 더죤의료기 composite for activated circulation of the blood and sterilization
TWI409241B (en) * 2010-09-17 2013-09-21

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618762A (en) * 1994-05-16 1997-04-08 Ngk Insulators, Ltd. Light-weight antibacterial ceramic and antibacterial ceramic filter
KR100255111B1 (en) * 1997-02-04 2000-05-01 박찬영 Anti-bacterial ceramic composition maintaining freshment and the manufacture method thereof
KR20030000464A (en) * 2001-06-25 2003-01-06 주식회사 더죤의료기 composite for activated circulation of the blood and sterilization
TWI409241B (en) * 2010-09-17 2013-09-21

Similar Documents

Publication Publication Date Title
Hwang et al. Chemical constitution, physical properties, and biocompatibility of experimentally manufactured Portland cement
US4143018A (en) Cements
Shah et al. Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride‐containing bioactive glass
Choudhary et al. Biomineralization, dissolution and cellular studies of silicate bioceramics prepared from eggshell and rice husk
Li et al. The impact of zirconium oxide nanoparticles on the hydration chemistry and biocompatibility of white Portland cement
KR20120099743A (en) Low thermal expansion doped fused silica crucibles
Boyd et al. The role of Sr 2+ on the structure and reactivity of SrO–CaO–ZnO–SiO 2 ionomer glasses
JPH02180742A (en) Antibacterial composition for ceramics
CN102826754A (en) Formulation of high-clarity glass bottle
TWI623492B (en) Method for preparing tetracalcium phosphate
JPH0816019B2 (en) Fumed silica slurry
CN107586098A (en) A kind of aerolite ceramics and preparation method thereof of ultralow leaching ability of heavy metal, low-activity
GB1602821A (en) Ceramic powder material and method for manufacturing the same
JPH03501618A (en) Powdered dental processed materials and their preparation methods and uses
JPS6177208A (en) Almina ceramic composition
KR20160048042A (en) antimicrobial functional food film with mineral matter development method
KR100673791B1 (en) Ceramic Composition with Scoria
JPH0529625B2 (en)
JPH1135340A (en) Production and utilization of glaze having sterilizing power
CN107216158B (en) Mullite plastic material and preparation method thereof
Tseng et al. Bioceramics in the CaMgSi2O6–Li2O System: A Glass‐Ceramic Strategy for Excellent Mechanical Strength and Enhanced Bioactivity by Spontaneous Elemental Redistribution
RU2142437C1 (en) Charge material for manufacturing glass ceramics
JP6180595B2 (en) Powdered dental cement composition
Kumar et al. In vitro Cytotoxicity, Apoptotic and Hemolysis Assay of Kalsilite‐Based Glass Ceramics for Dental Veneering Application
SU1472953A1 (en) Electro insulating composition