JPH0218044B2 - - Google Patents

Info

Publication number
JPH0218044B2
JPH0218044B2 JP57130630A JP13063082A JPH0218044B2 JP H0218044 B2 JPH0218044 B2 JP H0218044B2 JP 57130630 A JP57130630 A JP 57130630A JP 13063082 A JP13063082 A JP 13063082A JP H0218044 B2 JPH0218044 B2 JP H0218044B2
Authority
JP
Japan
Prior art keywords
black tea
product
extract
freeze
tea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57130630A
Other languages
Japanese (ja)
Other versions
JPS5921346A (en
Inventor
Masahiro Waku
Rokuzo Saito
Masahiko Haruhara
Mitsuo Harada
Kyohei Mikami
Tadataka Hagiwara
Masahiro Usuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Seika Kaisha Ltd
Original Assignee
Meiji Seika Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha Ltd filed Critical Meiji Seika Kaisha Ltd
Priority to JP13063082A priority Critical patent/JPS5921346A/en
Publication of JPS5921346A publication Critical patent/JPS5921346A/en
Publication of JPH0218044B2 publication Critical patent/JPH0218044B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Tea And Coffee (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は即席紅茶の製造方法に関し、詳しくは
紅茶より水溶性物質を抽出し、凍結乾燥した多孔
質構造を有する即席紅茶の製造方法に関する。 従来、紅茶に熱湯を注いで抽出し、該抽出液を
噴霧乾燥、ドラム乾燥、凍結乾燥等によつて乾燥
し、粉末化して即席紅茶を得ていた。しかし、該
即席紅茶に湯を注いで復元しても香味の乏しい紅
茶飲料にしかならなかつた。また、上記の如くし
て得た即席紅茶は見掛比重が非常に大きいため、
スプーン一杯分を用いて紅茶飲料に復元すると、
紅茶茶椀一杯分に相当した香味にはならず、スプ
ーン半杯が凡そ紅茶茶椀一杯分に相当した香味に
なる。そのため、一般家庭においては正確に計量
し難い。 さらに、紅茶を湯で抽出して得られる抽出液に
は茶葉に含まれている蛋白質、カフエイン、タン
ニン質が多量に移行してくるため、該抽出液が冷
却されると所謂クリームダウンが生成されて白濁
化し、沈澱して最終製品の即席紅茶の品質が均一
とならない。しかも、該最終製品を湯で復元した
とき渋味が強く感じられ好ましくない。 また、特開昭47−7777号には固形分を重量で少
くとも30%含む紅茶またはコーヒーの水性抽出物
を、氷の結晶が前記抽出物内に生成するまで約+
5℃とその凝固点との間の温度に冷却し、冷却し
た抽出物を500ミクロンを越えない真空にさらし、
それによつて抽出物を膨張、凍結させ、凍結した
抽出物を粉砕し、凍結乾燥せしめる方法が開示さ
れている。しかしながら、この方法では凍結した
抽出物を融解することなく粉砕しているので、冷
凍設備を付加した粉砕機を用いる必要があり、設
備的に大きなものとなる。さらに、凍結粉砕後、
凍結乾燥した多孔質構造の最終製品には多糖類、
糖類等の骨格となるものが少ないので包装容器へ
の充填操作中または輸送中に形崩れし易い傾向が
ある。 本発明者等は上記の如き諸欠陥を克服すべく鋭
意研究の結果、紅茶を水浸漬し、遠心分離して得
た抽出濃度Bx4〜6程度の抽出液を55℃程度以下
の温度でBx7〜12減圧濃縮後、DE7〜20程度のデ
キストリンを添加して溶解し、Bx20〜30程度と
し、次いで凍結乾燥してから3.5〜30メツシユ
(日本工業規格)に粗砕することにより得られる
最終製品は保形性に優れ、かつスプーン一杯分を
用いて湯または水で復元したときに香味が丁度紅
茶茶椀一杯分に相当することを見出した。また、
該復元した紅茶飲料は通常のテイーバツクより調
製した紅茶飲料と比較し、色調、香味とも何も遜
色ないことが判つた。本発明はかかる知見に基い
て完成されたものである。 本発明に使用する紅茶は特に制限されることが
なく、たとえば醗酵して乾燥処理を施したイン
ド、スリランカ、インドネシア、パキスタン、ケ
ニア、マラウイ産等の紅茶があり、これ等を単独
または混合して用いることが出来る。 紅茶の水浸漬は紅茶を20〜32℃程度の水に12〜
48時間浸漬することにより行なう。浸漬温度が32
℃程度を越えると、茶葉中より蛋白質、カフエイ
ン、タンニン質等が必要以上に抽出されて最終製
品である即席紅茶を水で復元したときにクリーム
ダウンを生成し、白濁化乃至沈澱物が生じ、かつ
渋味を感じるようになり好ましくない。また、20
℃未満程度であると、抽出に必要以上の時間がか
かり、しかも抽出中に抽出液の香味が変つたりす
る恐れがある。茶葉の水に対する浸漬時間が12時
間程度未満であると、抽出濃度が後述する如き
Bx4に達せず、以後の工程である減圧濃縮と凍結
乾燥に必要以上の時間を要し経済的でなく、しか
も最終製品である即席紅茶より復元した紅茶飲料
の香味が渋く美味でない。また、48時間程度以上
茶葉を水に浸漬しておいても抽出濃度はさして上
がらず、逆に香味の劣化が生じる恐れがあるとと
もに、夏期には抽出液の表面が発黴乃至醗酵して
変質する恐れがある。 紅茶の抽出濃度は手持屈折計で測定したとき
Bx4〜6程度が適当である。濃度がBx4程度未満
では前記した如く以後の工程である減圧濃縮と凍
結乾燥に必要以上の時間を要して経済的でなく、
しかも減圧濃縮時に低沸点部の香気が長時間に亘
つて減圧下における一種の水蒸気蒸留を受けて共
沸混合物として大気中に逸散してしまうため、最
終製品である即席紅茶より復元した紅茶飲料の香
味が淡くなり美味でなくなる。また、手持屈折計
でBx6程度を越えた濃度の抽出液を得るには紅茶
の浸漬温度が32℃程度を越えることが必要で、蛋
白質、カフエイン、タンニン質等が必要以上に抽
出される。そのため、抽出液を冷却したときにク
リームダウンを生じると共に喫飲したときに渋味
を感じ好ましくない。しかも、以後の工程である
凍結乾燥する際に、予備凍結してから凍結乾燥機
への搬入操作時に一部融解し、減圧時に発泡する
と共に見掛比重が所期値より小さくなる。 次に、上記で得た茶葉の浸漬液を遠心沈降機、
遠心脱水機、遠心分離機等を用いて茶葉と抽出液
とを分別する。分別後の抽出液を静置型、回転型
等の減圧濃縮機を用いて120トル以下程度で、か
つ55℃程度以下の温度で減圧濃縮を行なう。55℃
程度を越えた温度での減圧濃縮は低沸点部の香り
が一種の水蒸気蒸留によつて逸散し、最終製品で
ある即席紅茶より得た紅茶飲料が美味でなくな
る。また、120トル程度を越えた減圧度での濃縮
では、必要以上の濃縮時間を要し、濃縮中に香気
成分、糖類、蛋白質等が変質することがあり好ま
しくない。この減圧濃縮処理は以後の凍結乾燥工
程において処理時間を可及的に単時間に仕上げ、
かつ最終製品において所期の見掛比重を得るため
に必要である。減圧濃縮は手持屈折計で測定した
値がBx7〜12程度となるように行なう。Bx7程度
未満では以後の凍結乾燥に必要以上の時間を要
し、エネルギー的に不経済であると共に、最終製
品である即席紅茶の多孔質構造の空洞が大きすぎ
て粗砕後の見掛比重が小さいものとなる。そのた
め、該製品のスプーン一杯分で紅茶飲料に復元し
たときに紅茶茶椀一杯分の濃さとはならず、8分
目程度になつてしまう。また、Bx12程度を越え
ると、濃縮時における必要以上の加温による香気
成分が損失および減圧濃縮中に発泡して濃縮処理
が困難となると共に、デキストリンを加えて予備
凍結をする際に完全に凍結し難く、しかも凍結後
凍結乾燥装置への搬入時または減圧操作中に凍結
品が一部融解して凍結乾燥中に発泡して収量が減
少し、さらに凍結乾燥機の棚および内壁を汚すと
共に、粗砕前の凍結乾燥品の見掛比重が均一とな
らない。 次に、上記Bx7〜12程度の濃縮液にデキストリ
ンを添加して溶解混合し、予備凍結前の最終Bx
を20〜30程度にする。デキストリンを添加するの
は最終製品の見掛比重を調整するのに必要であ
り、強制的に気泡を濃縮液に混入せしめて最終製
品の見掛比重を調整する方法とは異るものであ
る。しかも、デキストリンによつて最終製品の骨
格を形成して包装容器への充填操作中乃至遠隔地
への輸送中における製品の形崩れを防止してい
る。添加するデキストリンはDE(還元糖を測定し
てグルコースとして表わし、固形分に対する百分
率を求めた値)7〜20程度のものを加える。この
DE7〜20程度のデキストリンを前記濃縮液に加え
てBx20〜30程度とする。Bx30程度を越えると、
予備凍結に必要以上に低い温度、たとえば−45℃
よりさらに低い温度を必要とし、冷凍設備も大と
なり経済的でない。しかも、このような濃縮液を
凍結しても凍結乾燥機への搬入乃至減圧操作中に
一部融解して発泡して収量が減少し、さらに凍結
乾燥機の棚および内壁を汚すばかりか、粗砕前の
凍結乾燥品の見掛比重が均一とならず、粗砕処理
後の最終製品における粒度分布を測定すると微粉
末が多量に混入しており好ましくない。また、
Bx20程度未満であると、凍結乾燥に必要以上の
時間がかかりエネルギー的に不経済であり、かつ
粗砕前の凍結乾燥品である多孔質構造の空洞が大
となり、粗砕処理後の粒度分布において微粉末が
多く混入して好ましくない。 さらにDE7程度未満のデキストリンを用いる
と、水に対する溶解度が悪く、減圧処理した濃縮
液に上記デキストリンを加えてBx30程度にした
場合、該デキストリンが、一部溶解し難く、しか
も最終製品を水で復元し紅茶飲料に調製したとき
に該デキストリンが完全に溶解し難い。一方、
DE20程度を越えたデキストリンでは吸湿性があ
り、乳鉢、鬼ロール等での粗砕処理中に乳鉢の内
壁やロールの周面に付着し歩留が悪く、作業性が
悪くなると共に、最終製品である即席紅茶が吸湿
し易いものとなる。そのため、このような製品を
包装するために除湿装置を備え付けた包装機を用
い、しかも包装材料も透湿度の低いものまたは無
いものを選ぶ必要があり、包装材料費が高価にな
る。 上記で得たBx20〜30程度の濃縮液を浅いトレ
ーに流し入れて1〜5cm程度の厚さにして氷の微
細結晶を得るために−20〜−40℃程度で急速予備
凍結する。濃縮液の流し込んだ厚さが5cm程度を
越えると、厚すぎて予備凍結と凍結乾燥に長時間
を要する。一方、厚さが1cm程度未満であると、
トレーの使用枚数が多くなるので利用空間が大き
くなり経済的でない。予備凍結する温度が−20℃
程度より高いと、凍結を完了するのに時間がかか
り、また−40℃程度より低い温度を得るのには冷
凍設備が大となり経済的でない。次いで、予備凍
結を終了した凍結品を速やかに凍結乾燥機に搬入
し、凍結乾燥して0.5トル程度以下を維持するよ
うになつたときに凍結乾燥を終了する。0.5トル
程度を越えた状態で凍結乾燥を終了すると乾燥が
充分でなく、水分含量が高くなり、以後の粗砕処
理が困難となる。 次に、凍結乾燥品を乳鉢、鬼ロール等を用いて
粗砕し、日本工業規格の篩3.5〜30メツシユの範
囲内に篩分けを行ない、見掛比重0.21〜0.26g/
c.c.の粗砕した即席紅茶を得る。上記篩分の範囲を
逸脱した部分の物が含まれると、最終製品を壜、
袋等の容器に充填してからの運送等による震動に
より最終製品が容器内部で上方に粗い製品、下方
には細かい製品に分級され都合が悪く、かつ上記
篩分の範囲外の製品を含むと所期の見掛比重、す
なわち0.21〜0.26g/c.c.の範囲を逸脱し易くな
る。上記の如き3.5〜30メツシユの範囲内で、か
つ0.21〜0.26g/c.c.の見掛比重を有する即席紅茶
は従来の通常のテイーバツグと同等の美味さを持
つており、噴霧乾燥、ドラム乾燥などにより得た
ものよりもはるかに美味である。しかも、本発明
品は見掛比重0.21〜0.26g/c.c.であるのでスプー
ン一杯分で復元した紅茶飲料は丁度紅茶茶椀一杯
分の濃さに相当し、一般家庭において極めて計量
し易い製品である。 次に、本発明を実施例により詳しく説明する。 実施例 1 スリランカ産紅茶500gとケニア産紅茶500gを
混合し、32℃の水5Kgを加え、その温度に保ちな
がら12時間浸漬した。次に、直径610mmのバスケ
ツト型遠心脱水機を1600r.p.m.で30分間遠心脱水
して茶葉と分別し、4.5Kgの抽出液を得た。この
抽出液のBxを手持屈折計で測定したところ6で
あつた。上記で得た抽出液がBx12になるまで100
トル、かつ50℃で減圧濃縮し、濃縮液2.25Kgを得
た。この濃縮液に日本資糧工業(株)のデキストリン
であるDE8規格のN.S.D.238(商品名)を0.61Kg添
加し、Bx30の溶液を得た。該溶液を浅いトレー
に5cm厚に流し込み、−40℃で予備凍結した。こ
れを日本真空技術(株)製DF−05特型凍結乾燥機に
搬入し、0.6〜0.3トルで凍結乾燥を行ない、0.3ト
ルを維持した状態で仕上げた。凍結乾燥後、乳鉢
で粗砕し3.5〜30メツシユ(日本工業規格の篩)
の範囲内に篩い分けた。 製品水分は2.5重量%であつた。 得られた製品の見掛比重は0.21g/c.c.であり、
これはスプーン一杯(2.3g)で紅茶茶椀一杯分
(170c.c.)の紅茶飲料を調製することが出来、香味
も下述する如く満足すべき評価であつた。 上記の如くして熱湯で復元した紅茶飲料と市販
のテイーバツグより調製した紅茶飲料とを30人の
専門家パネルによつて二点嗜好試験法による味の
嗜好調査を行なつた。その結果、本実施例品を良
いとした者は15人、市販品を良いとした者は15人
で、危険率5%において有意差がなかつた。 実施例 2 インド産紅茶2Kgに20℃の水9Kgを加え、その
温度に保ちながら48時間浸漬した。次いで、実施
例1と同様に遠心脱水して8Kgの抽出液を得た。
この抽出液のBxを手持屈折計を用いて測定した
ところ4であつた。 上記で得た抽出液がBx7になるまで90トル、45
℃で減圧濃縮し、濃縮液4.57Kgを得た。この濃縮
液に松谷化学工業(株)製のデキストリンでDE18〜
20規格のパインデツクスNo.4(商品名)を0.8Kg添
加してBx21の溶液を得た。該溶液を浅いトレー
に2cm厚に流し込み、該トレーを−30℃で予備凍
結した。次いで、東洋技研(株)製TFD−10LF5型の
凍結乾燥機に搬入し、0.6〜0.3トルで凍結乾燥を
行ない、さらに0.3トルを維持した状態で仕上げ
た。 凍結乾燥後、(株)細川鉄工所製アイスクラツシヤ
ーIC−1型を用いて粗砕し、実施例1と同様に
して3.5〜30メツシユの範囲内の製品を得た。 本製品は水分含量2.8重量%であつた。 この製品は見掛比重0.26g/c.c.であり、スプー
ン一杯(2.5g)で紅茶茶椀一杯分(170c.c.)の紅
茶飲料を得ることができた。 本品と市販のテイーバツグについて実施例1と
同様の味に関する嗜好調査を行なつた結果、本品
を良いとした者13人、市販品を良いとした者17人
で危険率5%において有意差がなかつた。 実施例 3 スリランカ産紅茶0.5Kgに25℃の水2.5Kgを加
え、その温度に24時間保ちながら浸漬した。この
浸漬液を実施例1と同様に遠心脱水して抽出液
2.25Kgを得た。この抽出液を手持屈折計で測定し
たところBxは5であつた。 上記で得た抽出液がBx8になるまで100トル、
48℃で減圧濃縮して濃縮液1.40Kgを得た。この濃
縮液に松谷化学工業(株)製のデキストリンでDE7〜
8規格のパインデツクスNo.1(商品名)を0.25Kg
加えてBx22にした。次いで、該液を浅いトレー
に3cm厚に流し込んだ。該トレーを−35℃で予備
凍結したのち、共和真空技術(株)製RL−50MB型
凍結乾燥機に搬入して0.6〜0.1トルで凍結乾燥し
た。これを0.1トルを維持した状態で仕上げてか
ら実施例2と同様に粗砕し、3.5〜30メツシユの
製品を得た。本製品の見掛比重は0.24g/c.c.であ
り、スプーン一杯(2.5g)で紅茶茶椀一杯分
(170c.c.)の紅茶飲料を得た。 本品と市販のテイーバツグについて実施例1と
同様の味に関する嗜好調査を行なつた結果、本品
を良いとした者14人、市販品を良いとした者16人
で危険率5%において有意差がなかつた。 試験例 1 実施例1,2,3で得た最終製品の粒度分布を
測定し、その結果を第1表に示す。
The present invention relates to a method for producing instant black tea, and more particularly to a method for producing instant black tea having a porous structure by extracting water-soluble substances from black tea and freeze-drying the extracted water-soluble substances. Conventionally, hot water was poured into black tea to extract it, and the extract was dried by spray drying, drum drying, freeze drying, etc., and powdered to obtain instant black tea. However, even if the instant black tea was reconstituted by pouring hot water, the result was a black tea beverage with poor flavor. In addition, since the instant black tea obtained as described above has a very large apparent specific gravity,
When reconstituted into a tea drink using a spoonful,
It will not give you the flavor equivalent to a bowl of black tea, but half a spoon will give you the flavor equivalent to a bowl of black tea. Therefore, it is difficult to measure accurately in general households. Furthermore, a large amount of proteins, caffeine, and tannins contained in the tea leaves are transferred to the extract obtained by extracting black tea with hot water, so when the extract is cooled, so-called cream down is produced. The tea becomes cloudy and precipitates, resulting in uneven quality of the final instant tea product. Moreover, when the final product is reconstituted with hot water, it has a strong astringent taste, which is undesirable. JP-A-47-7777 discloses that an aqueous extract of tea or coffee containing at least 30% solids by weight is added to the extract until ice crystals form in the extract.
cooling to a temperature between 5°C and its freezing point and subjecting the cooled extract to a vacuum of not more than 500 microns;
A method is disclosed whereby the extract is expanded, frozen, the frozen extract is ground, and lyophilized. However, in this method, the frozen extract is pulverized without being thawed, so it is necessary to use a pulverizer equipped with refrigeration equipment, resulting in a large amount of equipment. Furthermore, after freezing and crushing,
The final freeze-dried porous structure product contains polysaccharides,
Since there are few skeletons such as sugars, there is a tendency for the product to lose its shape during filling into packaging containers or during transportation. As a result of intensive research in order to overcome the above-mentioned defects, the present inventors soaked black tea in water and centrifuged it to obtain an extract with a concentration of Bx4 to Bx6. 12 After concentration under reduced pressure, dextrin with a DE of about 7 to 20 is added and dissolved to bring the Bx to about 20 to 30, then lyophilized and coarsely crushed to 3.5 to 30 mesh (Japanese Industrial Standards).The final product is obtained by It has been found that it has excellent shape retention, and that when a spoonful of it is reconstituted with hot or cold water, the flavor is equivalent to that of a bowl of black tea. Also,
The reconstituted black tea beverage was found to be comparable in color tone and flavor to black tea beverages prepared from regular tea bags. The present invention was completed based on this knowledge. The black tea used in the present invention is not particularly limited, and examples thereof include fermented and dried black tea from India, Sri Lanka, Indonesia, Pakistan, Kenya, Malawi, etc., and these can be used alone or in combination. It can be used. To soak black tea in water, soak black tea in water at a temperature of 20 to 32℃ for 12 to 30 minutes.
This is done by soaking for 48 hours. Immersion temperature is 32
If the temperature exceeds ℃, proteins, caffeine, tannins, etc. are extracted from the tea leaves more than necessary, and when the final product, instant black tea, is reconstituted with water, cream down is produced, and cloudiness or precipitates occur. Moreover, it gives an astringent taste, which is undesirable. Also, 20
If the temperature is less than 0.degree. C., the extraction will take longer than necessary, and the flavor of the extract may change during the extraction. If the tea leaves are immersed in water for less than 12 hours, the extraction concentration will be as described below.
Bx4 cannot be achieved, and the subsequent steps of vacuum concentration and freeze-drying require more time than necessary, making it uneconomical, and the flavor of the reconstituted black tea beverage compared to the final product, instant black tea, is bitter and tasteless. In addition, even if tea leaves are soaked in water for more than 48 hours, the concentration of the extract will not increase significantly, and the flavor may deteriorate.In addition, in the summer, the surface of the extract may become moldy or ferment, causing deterioration. There is a risk that The extraction concentration of black tea is measured using a hand-held refractometer.
Bx4 to 6 is appropriate. If the concentration is less than about Bx4, as mentioned above, the subsequent steps of vacuum concentration and freeze-drying will take longer than necessary, making it uneconomical.
Moreover, when concentrating under reduced pressure, the aroma of the low boiling point part undergoes a type of steam distillation under reduced pressure for a long time and dissipates into the atmosphere as an azeotrope. The flavor of the food becomes lighter and it becomes less delicious. Additionally, in order to obtain an extract with a concentration exceeding Bx6 using a hand-held refractometer, the steeping temperature of black tea must exceed 32°C, which results in extraction of proteins, caffein, tannins, etc. in excess of what is necessary. As a result, when the extract is cooled, creaminess occurs, and when the extract is drunk, it has an unpleasant astringent taste, which is undesirable. In addition, during the subsequent freeze-drying process, the product is pre-frozen and then partially thawed during transport into the freeze-dryer, foams when the pressure is reduced, and the apparent specific gravity becomes smaller than the expected value. Next, the tea leaf steeping liquid obtained above is passed through a centrifugal sedimentation machine.
The tea leaves and the extract are separated using a centrifugal dehydrator, centrifuge, etc. The extracted liquid after fractionation is concentrated under reduced pressure using a vacuum concentrator such as a stationary type or a rotary type at a temperature of about 120 Torr or less and a temperature of about 55°C or less. 55℃
Vacuum concentration at temperatures that exceed this level will cause the aroma of the low boiling point to dissipate through a type of steam distillation, making the final product, the tea beverage obtained from the instant black tea, less delicious. Concentration at a reduced pressure of more than about 120 torr is undesirable because it requires a longer concentration time than necessary and aroma components, saccharides, proteins, etc. may be denatured during concentration. This vacuum concentration process reduces the processing time to a single hour as much as possible in the subsequent freeze-drying process.
and is necessary to obtain the desired apparent specific gravity in the final product. Concentration under reduced pressure is performed so that the value measured with a hand-held refractometer is approximately Bx7-12. If it is less than about Bx7, the subsequent freeze-drying takes more time than necessary, which is energy-uneconomical, and the cavities in the porous structure of the final product, the instant black tea, are too large and the apparent specific gravity after coarse crushing is It becomes small. Therefore, when a spoonful of the product is reconstituted into a black tea beverage, it does not become as strong as a bowlful of black tea, but only after about 8 minutes. In addition, if it exceeds about Bx12, aroma components will be lost due to excessive heating during concentration, foaming will occur during vacuum concentration, making concentration processing difficult, and complete freezing will occur when pre-freezing with dextrin added. In addition, the frozen product partially thaws during transportation to the freeze-drying equipment after freezing or during depressurization, resulting in foaming during freeze-drying, reducing the yield, and staining the shelves and inner walls of the freeze-drying machine. The apparent specific gravity of the freeze-dried product before coarse crushing is not uniform. Next, add dextrin to the above Bx7-12 concentrate, dissolve and mix, and final Bx before pre-freezing.
to about 20 to 30. Adding dextrin is necessary to adjust the apparent specific gravity of the final product, and is different from the method of forcibly mixing air bubbles into the concentrate to adjust the apparent specific gravity of the final product. Moreover, the dextrin forms the skeleton of the final product, thereby preventing the product from deforming during filling operations into packaging containers or during transportation to remote locations. The dextrin to be added has a DE (reducing sugar measured and expressed as glucose, calculated as a percentage of the solid content) of about 7 to 20. this
Dextrin with a DE of about 7 to 20 is added to the concentrate to give a Bx of about 20 to 30. When it exceeds about Bx30,
Temperatures lower than necessary for prefreezing, e.g. -45°C
It requires an even lower temperature and requires larger refrigeration equipment, making it uneconomical. Moreover, even if such a concentrated liquid is frozen, it will partially melt and foam during transport to the freeze dryer or during the depressurization operation, reducing the yield. Furthermore, it will not only stain the shelves and inner walls of the freeze dryer, but also cause roughness. The apparent specific gravity of the freeze-dried product before crushing is not uniform, and when the particle size distribution of the final product after crushing treatment is measured, a large amount of fine powder is mixed in, which is undesirable. Also,
If it is less than about Bx20, freeze-drying takes more time than necessary and is uneconomical in terms of energy, and the cavities in the porous structure of the freeze-dried product before coarse crushing become large, resulting in a particle size distribution after coarse crushing. In this case, a large amount of fine powder is mixed in, which is undesirable. Furthermore, if a dextrin with a DE of less than about 7 is used, its solubility in water is poor, and when the above-mentioned dextrin is added to a concentrated solution treated under reduced pressure to achieve a Bx of about 30, a portion of the dextrin is difficult to dissolve, and the final product is reconstituted with water. When preparing a black tea beverage, the dextrin is difficult to completely dissolve. on the other hand,
Dextrin with a DE of more than about 20 is hygroscopic and adheres to the inner wall of the mortar or the circumferential surface of the roll during the crushing process in a mortar, oni roll, etc., resulting in poor yield and poor workability. Certain instant teas tend to absorb moisture. Therefore, in order to package such products, it is necessary to use a packaging machine equipped with a dehumidifying device and to select packaging materials with low or no moisture permeability, which increases the cost of packaging materials. Pour the concentrate with a Bx of 20 to 30 obtained above into a shallow tray to a thickness of 1 to 5 cm, and quickly pre-freeze it at about -20 to -40°C to obtain fine ice crystals. If the thickness of the poured concentrate exceeds about 5 cm, it will be too thick and require a long time to prefreeze and freeze dry. On the other hand, if the thickness is less than about 1 cm,
Since the number of trays used increases, the usable space becomes large, which is not economical. Pre-freezing temperature is -20℃
If the temperature is higher than about -40°C, it will take time to complete freezing, and freezing equipment will be too large to obtain a temperature lower than about -40°C, which is not economical. Next, the frozen product that has been pre-frozen is immediately carried into a freeze dryer and freeze-dried, and the freeze-drying is completed when the temperature is maintained at about 0.5 torr or less. If freeze-drying is terminated when the temperature exceeds about 0.5 torr, drying will not be sufficient and the water content will be high, making subsequent crushing difficult. Next, the freeze-dried product is roughly crushed using a mortar, Oni Roll, etc., and sieved within the range of 3.5 to 30 mesh according to Japanese Industrial Standards, with an apparent specific gravity of 0.21 to 0.26 g/
Obtain cc of coarsely ground instant black tea. If the sieve exceeds the above sieve range, the final product may be bottled or
Due to vibrations caused by transportation after being filled into a container such as a bag, the final product is classified inside the container into coarse products at the top and fine products at the bottom, which is inconvenient. It becomes easy to deviate from the expected apparent specific gravity, that is, the range of 0.21 to 0.26 g/cc. Instant black tea with an apparent specific gravity of 0.21 to 0.26 g/cc within the range of 3.5 to 30 mesh as described above has the same deliciousness as conventional regular tea bags, and can be prepared by spray drying, drum drying, etc. It tastes much better than what I got. Furthermore, since the product of the present invention has an apparent specific gravity of 0.21 to 0.26 g/cc, a spoonful of the reconstituted black tea beverage corresponds to the strength of a bowl of black tea, making it an extremely easy-to-measure product for ordinary households. . Next, the present invention will be explained in detail with reference to examples. Example 1 500 g of black tea from Sri Lanka and 500 g of black tea from Kenya were mixed, 5 kg of water at 32°C was added, and the mixture was soaked for 12 hours while maintaining the temperature. Next, the tea leaves were separated by centrifugal dehydration using a basket-type centrifugal dehydrator with a diameter of 610 mm at 1600 rpm for 30 minutes to obtain 4.5 kg of extract. The Bx of this extract was measured with a hand-held refractometer and was found to be 6. 100 until the extract obtained above reaches Bx12.
The mixture was concentrated under reduced pressure at 50° C. to obtain 2.25 kg of a concentrated solution. To this concentrated solution, 0.61 kg of DE8 standard NSD238 (trade name), which is a dextrin manufactured by Nippon Shiso Kogyo Co., Ltd., was added to obtain a solution of Bx30. The solution was poured into a shallow tray to a thickness of 5 cm and pre-frozen at -40°C. This was carried into a DF-05 special freeze dryer manufactured by Japan Vacuum Technology Co., Ltd., and freeze-dried at 0.6 to 0.3 torr, and finished at 0.3 torr. After freeze-drying, coarsely crush in a mortar to 3.5 to 30 mesh (Japanese Industrial Standards sieve)
It was sieved within the range of . Product moisture was 2.5% by weight. The apparent specific gravity of the obtained product was 0.21 g/cc,
A spoonful (2.3 g) of this tea was enough to prepare a tea bowl (170 c.c.), and the flavor was also evaluated as satisfactory as described below. A panel of 30 experts conducted a taste preference survey using a two-point preference test method on the black tea beverages reconstituted with boiling water as described above and the black tea beverages prepared from commercially available teabags. As a result, 15 people said that the product of this example was good, and 15 people said that the commercially available product was good, and there was no significant difference in the risk rate of 5%. Example 2 9 kg of water at 20° C. was added to 2 kg of Indian black tea, and the mixture was soaked for 48 hours while maintaining the temperature. Next, centrifugal dehydration was performed in the same manner as in Example 1 to obtain 8 kg of extract.
The Bx of this extract was measured using a hand-held refractometer and was found to be 4. 90 torr until the extract obtained above reaches Bx7, 45
It was concentrated under reduced pressure at °C to obtain 4.57 kg of concentrated liquid. Add dextrin manufactured by Matsutani Chemical Industry Co., Ltd. to this concentrated solution to DE18~
A Bx21 solution was obtained by adding 0.8 kg of 20 standard Pine Index No. 4 (trade name). The solution was poured into a shallow tray to a thickness of 2 cm, and the tray was pre-frozen at -30°C. Next, it was carried into a TFD-10LF 5 type freeze dryer manufactured by Toyo Giken Co., Ltd., and freeze-dried at 0.6 to 0.3 torr, and was finished while maintaining the temperature at 0.3 torr. After freeze-drying, it was crushed using an ice crusher model IC-1 manufactured by Hosokawa Iron Works Co., Ltd. in the same manner as in Example 1 to obtain a product within the range of 3.5 to 30 meshes. This product had a moisture content of 2.8% by weight. This product had an apparent specific gravity of 0.26 g/cc, and one spoonful (2.5 g) of the product produced a bowlful (170 c.c.) of black tea beverage. As a result of conducting the same taste preference survey as in Example 1 regarding this product and commercially available T-bags, there was a significant difference at a risk rate of 5% between 13 people who preferred this product and 17 who preferred the commercial product. I was bored. Example 3 2.5 kg of water at 25° C. was added to 0.5 kg of Sri Lankan black tea, and the mixture was immersed while being maintained at that temperature for 24 hours. This immersion liquid was centrifugally dehydrated in the same manner as in Example 1, and the extract was
Obtained 2.25Kg. When this extract was measured with a hand-held refractometer, Bx was 5. 100 torr until the extract obtained above reaches Bx8,
It was concentrated under reduced pressure at 48°C to obtain 1.40 kg of concentrated liquid. Add dextrin manufactured by Matsutani Chemical Industry Co., Ltd. to this concentrated solution to DE7~
0.25kg of 8 standard Pinedex No. 1 (product name)
In addition, I made it Bx22. Next, the liquid was poured into a shallow tray to a thickness of 3 cm. After preliminarily freezing the tray at -35°C, it was carried into a freeze dryer model RL-50MB manufactured by Kyowa Shinku Gijutsu Co., Ltd. and freeze-dried at 0.6 to 0.1 torr. This was finished while maintaining a pressure of 0.1 Torr, and then coarsely crushed in the same manner as in Example 2 to obtain a product of 3.5 to 30 mesh. The apparent specific gravity of this product was 0.24 g/cc, and one spoonful (2.5 g) of the product yielded a black tea beverage equivalent to one bowl of black tea (170 c.c.). As a result of conducting the same taste preference survey as in Example 1 regarding this product and commercially available T-bags, there was a significant difference at a risk rate of 5% between 14 people who preferred this product and 16 who preferred the commercial product. I was bored. Test Example 1 The particle size distribution of the final products obtained in Examples 1, 2, and 3 was measured, and the results are shown in Table 1.

【表】 ユオン
試験例 2 紅茶の浸漬液温度を35℃に保ち、以下実施例1
と同様に処理して得た最終製品を2.3gとり、熱
湯170c.c.に溶解して透明ガラスコツプに入れ、冷
蔵庫中で10℃まで冷却した。一方、実施例1より
得た紅茶飲料も透明ガラスコツプに入れ、前記同
様冷蔵庫中で10℃まで冷却した。 両試料を30人の専門家パネルによつて外観テス
トを行なつた結果、35℃の浸漬液より得た最終製
品から調製した紅茶飲料は冷却されると透明ガラ
スコツプの底部に沈澱物が生じることを認め、外
観的に問題有りとした人が25人いた。一方、実施
例1の方法で得た紅茶飲料は冷却されても沈澱が
全く認められず良好であつた。これは危険率1%
において有意であることを示している。 試験例 3 減圧濃縮後の濃縮液に参松工業(株)製DE25の
SLD−25を添加して実施例2と同様に処理し、
最終製品を得た。この製品の粗砕工程において実
施例2と同様に(株)細川鉄工所製アイスクラツシヤ
ーIC−1型によつて粗砕処理を行ない、その時
の歩留を求め、実施例2より得た歩留と比較し
た。その結果を第2表に示す。 第 2 表 実施例2 試験例3 歩留 99重量% 90重量% また、本試験例3の製品を処理した粗砕機を解
体した結果、鬼ロール面に即席紅茶が吸湿して多
量に付着していた。 試験例 4 実施例3の方法によつて得た紅茶飲料と市販テ
イーバツグを3分間170c.c.の熱湯に浸漬してから
引き上げ、両試料が室温になつた時に色差計(日
本電色工業(株)製ND−101D型)で測色した。その
結果を第3表に示す。表中、L(明度)は数値が
大きくなるほど明るく、a(色相)は数値が大き
くなるほど赤みを帯び、b(彩色)の数値が大き
くなるほど黄味を帯びていることを示す。
[Front] Yuon
Test Example 2 The temperature of the tea steeping liquid was maintained at 35°C, and the following Example 1
2.3 g of the final product obtained in the same manner as above was taken, dissolved in 170 c.c. of boiling water, placed in a transparent glass cup, and cooled to 10°C in a refrigerator. On the other hand, the black tea beverage obtained in Example 1 was also placed in a transparent glass cup and cooled to 10° C. in the refrigerator as described above. Appearance testing of both samples by a panel of 30 experts showed that black tea beverages prepared from the final product obtained from steeping liquid at 35°C formed a precipitate at the bottom of the transparent glass cup when cooled. There were 25 people who recognized that there was a problem with the appearance. On the other hand, the black tea beverage obtained by the method of Example 1 was good with no precipitation observed even after cooling. This is a 1% risk rate.
This shows that it is significant. Test Example 3 DE25 manufactured by Sanmatsu Kogyo Co., Ltd. was added to the concentrated liquid after vacuum concentration.
Add SLD-25 and treat in the same manner as in Example 2,
Obtained the final product. In the crushing process of this product, similar to Example 2, the product was crushed using an ice crusher model IC-1 manufactured by Hosokawa Iron Works Co., Ltd., and the yield at that time was determined. compared with yield. The results are shown in Table 2. Table 2 Example 2 Test Example 3 Yield 99% by weight 90% by weight In addition, as a result of disassembling the crusher that processed the product of Test Example 3, it was found that a large amount of instant black tea had absorbed moisture and adhered to the surface of the demon roll. Ta. Test Example 4 A black tea beverage obtained by the method of Example 3 and a commercially available tea bag were immersed in 170 c.c. boiling water for 3 minutes and then taken out. The color was measured using a model ND-101D (manufactured by Co., Ltd.). The results are shown in Table 3. In the table, the larger the value of L (lightness), the brighter the color, the larger the value of a (hue), the more reddish the color, and the larger the value of b (color), the more yellowish the color.

【表】 上記両試料を白色の同容積紅茶茶椀に同容量注
入し、専門家パネル30人による色調に関する2点
嗜好試験法を行なつた結果、16人が市販品を好
み、14人が実施例3の製品を好んだ。したがつ
て、両試料間の有意差は危険率1%において認め
られなかつた。 試験例 5 スリランカ産紅茶1Kgを水浸漬し、手持屈折計
による測定値がBx3の抽出液を用い、以下実施例
3と同様に処理して即席紅茶を得た。この即席紅
茶と実施例3によつて得た即席紅茶とをそれぞれ
実施例3と同様にして紅茶飲料を調製し、30人の
専門家パネルによつて2点嗜好試験を行なつた結
果、26人が実施例3によつて得た紅茶飲料を好
み、危険率5%において有意であつた。また、実
施例3の即席紅茶より得た紅茶飲料を好んだ理由
として実施例3の製品の方が香りが良いとの評価
であつた。 上記の結果は、添付のガスクロマトグラムによ
つても明らかな如く、実施例3の紅茶飲料より得
たガスクロマトグラム(第1図)の低沸点域(矢
印Aより右方向に向けて沸点が上る)の量がBx3
の浸漬液より調製した即席紅茶より得たガスクロ
マトグラム(第2図)の低沸点域の量より多いこ
とからも支持される。 上記ガスクロマトグラムは次の方法によつて得
ることができる。内径3mm、長さ17cmより成る耐
熱ガラス管に2,6−ジフエニル−パラ−フエニ
レンオキサイドをベースにした弱極性のポリマー
ビーズの充填剤(AKZO Research Labs.製、商
品名:Tenax GC)を充填し試料捕集管を作り、
次に即席紅茶5gを168gの湯にとかし、第3図
の恒温状態の試料収納壜1に入れ、窒素ガスボン
ベ2より窒素ガスを一定流速で試料収納壜1中に
通し、揮発性物質を前記充填剤3を充填した試料
捕集管4に導入して捕集する。次に、試料捕集管
4の先端に注射針5を付けた後にキヤリアガス導
管6を接続し、さらに試料捕集管4を加熱炉7
(島津製作所製ガスクロマトグラフ用臭気分析付
加装置の加熱導入装置FLS−3型)に挿入し、ガ
スクロマトグラフの試料気化室8に差し込む。加
熱炉7を加熱して試料揮発性物質捕集用充填剤3
より揮発性物質を離脱させた後、キヤリアガスを
流し揮発性物質をガスクロマトグラフの試料気化
室8に導きガスクロマトグラムをかかせる。使用
するガスクロマトグラフは大倉ガスクロマトグラ
フMDEL−701を用い、検出器は水素炎イオン化
型、キヤリアガスは窒素ガスを用い、カラムは内
径0.25mm、長さ25mにSilicon OV−101(Ohio
Valley社製)を塗布したシリカキヤピラリーカ
ラムを使用し、カラム温度は50℃から180℃まで
2℃/分にて昇温する。 試験例 6 スリランカ産紅茶1Kgを水浸漬し、手持屈折計
による測定値がBx8の抽出液を用いて以下実施例
3と同様に処理して即席紅茶を得た。この即席紅
茶と実施例3によつて得た即席紅茶とを用いそれ
ぞれ実施例3と同様に紅茶飲料を調製した。この
紅茶飲料について30人の専門家パネルによつて2
点嗜好試験を行なつた結果、24人が実施例3によ
つて得た紅茶飲料を好み、危険率5%において有
意であつた。 また、実施例3の即席紅茶を好んだ理由として
Bx8の抽出液より得た紅茶飲料は渋味がやや有
り、香りに乏しいという評価であつた。 この評価は試験例5と同様に処理したガスクロ
マトグラムによつても明らかな如く、実施例3の
紅茶飲料より得た第1図とBx8の抽出液より調製
した紅茶飲料より得た第5図との面積比は1:
0.85であり、実施例3の紅茶飲料の方が揮発成分
が多いことからも支持される。
[Table] Both samples were poured in the same volume into a white tea bowl of the same volume, and a panel of 30 experts conducted a two-point preference test regarding color tone. As a result, 16 people preferred the commercially available product, and 14 people preferred the commercial product. The product of Example 3 was preferred. Therefore, no significant difference between the two samples was observed at a risk of 1%. Test Example 5 1 kg of Sri Lankan black tea was soaked in water and treated in the same manner as in Example 3 using an extract with a value of Bx3 measured by a hand-held refractometer to obtain instant black tea. Black tea beverages were prepared using this instant black tea and the instant black tea obtained in Example 3 in the same manner as in Example 3, and a two-point preference test was conducted by a panel of 30 experts. The preference of people for the black tea beverage obtained according to Example 3 was significant at a risk rate of 5%. In addition, the reason why they preferred the black tea beverage obtained over the instant black tea of Example 3 was that the product of Example 3 had a better aroma. As is clear from the attached gas chromatogram, the above results are in the low boiling point region of the gas chromatogram (Figure 1) obtained from the black tea beverage of Example 3 (the boiling point increases toward the right from arrow A). The amount of is Bx3
This is also supported by the fact that the amount is higher than that in the low boiling point region of the gas chromatogram (Figure 2) obtained from instant black tea prepared from the steeping liquid. The above gas chromatogram can be obtained by the following method. A heat-resistant glass tube with an inner diameter of 3 mm and a length of 17 cm is filled with a weakly polar polymer bead filler based on 2,6-diphenyl-para-phenylene oxide (manufactured by AKZO Research Labs., trade name: Tenax GC). Make a sample collection tube,
Next, dissolve 5 g of instant black tea in 168 g of hot water and place it in the constant temperature sample storage bottle 1 shown in Fig. 3, and pass nitrogen gas from the nitrogen gas cylinder 2 into the sample storage bottle 1 at a constant flow rate to fill the volatile substance. The sample is introduced into a sample collection tube 4 filled with the agent 3 and collected. Next, after attaching a syringe needle 5 to the tip of the sample collection tube 4, a carrier gas conduit 6 is connected, and the sample collection tube 4 is then placed in a heating furnace 7.
(heating introduction device FLS-3 type of gas chromatograph odor analysis additional device manufactured by Shimadzu Corporation) and inserted into the sample vaporization chamber 8 of the gas chromatograph. Filler 3 for collecting sample volatile substances by heating heating furnace 7
After more volatile substances are removed, a carrier gas is flown to introduce the volatile substances into the sample vaporization chamber 8 of the gas chromatograph and perform a gas chromatogram. The gas chromatograph used is an Okura gas chromatograph MDEL-701, the detector is a hydrogen flame ionization type, the carrier gas is nitrogen gas, and the column is a Silicon OV-101 (Ohio
A silica capillary column coated with silica (manufactured by Valley, Inc.) is used, and the column temperature is raised from 50°C to 180°C at a rate of 2°C/min. Test Example 6 1 kg of Sri Lankan black tea was soaked in water and treated in the same manner as in Example 3 using an extract with a value measured by a hand-held refractometer of Bx8 to obtain instant black tea. Using this instant black tea and the instant black tea obtained in Example 3, black tea beverages were prepared in the same manner as in Example 3, respectively. 2 by a panel of 30 experts on this tea beverage.
As a result of a point preference test, 24 people preferred the black tea beverage obtained in Example 3, which was significant at a risk rate of 5%. Also, the reason why I preferred the instant black tea in Example 3 was
The black tea beverage obtained from the Bx8 extract was evaluated as having a slightly astringent taste and lacking in aroma. This evaluation is evident from the gas chromatograms processed in the same manner as in Test Example 5, as shown in Figure 1 obtained from the black tea beverage of Example 3 and Figure 5 obtained from the black tea beverage prepared from the extract of Bx8. The area ratio of is 1:
0.85, which is also supported by the fact that the black tea beverage of Example 3 has more volatile components.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は紅茶の抽出濃度Bx5の抽出液より得た
即席紅茶のガスクロマトグラム、第2図は上記
Bx3の抽出液より得た即席紅茶のガスクロマトグ
ラム、第3図は試料捕集装置の縦断面図、第4図
は試料気化装置の縦断面図、第5図は紅茶の抽出
濃度Bx8の抽出液より得た即席紅茶のガスクロマ
トグラムである。 1……試料収納壜、2……窒素ガスボンベ、3
……充填剤、4……試料捕集管、5……注射針、
6……キヤリアガス導管、7……加熱炉、8……
試料気化室。
Figure 1 is a gas chromatogram of instant black tea obtained from a black tea extract with an extraction concentration of Bx5, and Figure 2 is the above.
Gas chromatogram of instant black tea obtained from Bx3 extract, Figure 3 is a vertical cross-sectional view of the sample collection device, Figure 4 is a vertical cross-sectional view of the sample vaporizer, Figure 5 is a black tea extract with an extraction concentration of Bx8. This is a gas chromatogram of instant black tea obtained from 1...Sample storage bottle, 2...Nitrogen gas cylinder, 3
... filler, 4 ... sample collection tube, 5 ... syringe needle,
6...Carrier gas conduit, 7...Heating furnace, 8...
Sample vaporization chamber.

Claims (1)

【特許請求の範囲】 1 紅茶を水浸漬し、遠心分離して得た抽出濃度
Bx4〜6程度の抽出液を55℃程度以下の温度で
Bx7〜12程度に減圧濃縮後、DE7〜20程度のデキ
ストリンを添加して溶解し、Bx20〜30程度とし、
次いで凍結乾燥することを特徴とする即席紅茶の
製造方法。 2 紅茶の水浸漬温度が20〜32℃程度である特許
請求の範囲第1項記載の方法。 3 凍結乾燥後、粗砕機で粗砕する特許請求の範
囲第1項記載の方法。
[Claims] 1. Extract concentration obtained by soaking black tea in water and centrifuging it
Bx4-6 extract at a temperature below 55℃
After concentrating under reduced pressure to about Bx7 to 12, add and dissolve dextrin with DE7 to about 20 to make Bx about 20 to 30,
A method for producing instant black tea, which is then freeze-dried. 2. The method according to claim 1, wherein the tea is immersed in water at a temperature of about 20 to 32°C. 3. The method according to claim 1, wherein the freeze-drying is followed by coarse crushing using a crusher.
JP13063082A 1982-07-27 1982-07-27 Preparation of instant black tea Granted JPS5921346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13063082A JPS5921346A (en) 1982-07-27 1982-07-27 Preparation of instant black tea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13063082A JPS5921346A (en) 1982-07-27 1982-07-27 Preparation of instant black tea

Publications (2)

Publication Number Publication Date
JPS5921346A JPS5921346A (en) 1984-02-03
JPH0218044B2 true JPH0218044B2 (en) 1990-04-24

Family

ID=15038835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13063082A Granted JPS5921346A (en) 1982-07-27 1982-07-27 Preparation of instant black tea

Country Status (1)

Country Link
JP (1) JPS5921346A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8714974D0 (en) * 1987-06-26 1987-08-05 Unilever Plc Food product
JP4674319B2 (en) * 2001-06-22 2011-04-20 松谷化学工業株式会社 Tea drink production method
JP5788668B2 (en) * 2010-12-03 2015-10-07 三栄源エフ・エフ・アイ株式会社 Coffee-containing beverage or tea beverage with enhanced richness
JP5860638B2 (en) * 2010-12-27 2016-02-16 キリンビバレッジ株式会社 Unpacked sugar-free black tea beverage containing black tea extract with bitter astringency
CN102511572B (en) * 2011-12-17 2013-08-14 安徽省农业科学院茶叶研究所 Method for processing high-fragrance curly black tea
US10813368B1 (en) 2019-10-31 2020-10-27 Gregory Glancy Systems and methods for the preparation of tablets of botanical extracts including tea

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146822A (en) * 1974-08-22 1976-04-21 Rca Corp Henkosochogeetokairo
JPS5233183A (en) * 1975-09-09 1977-03-14 Howa Mach Ltd Automatic clamping work driver
JPS5414653A (en) * 1977-07-06 1979-02-03 Hitachi Denshi Ltd Digital differentiation analyzer
JPS5427413A (en) * 1977-08-01 1979-03-01 Matsushita Electric Ind Co Ltd Cassette loading device
JPS5733545A (en) * 1980-08-09 1982-02-23 Sato Shokuhin Kogyo Kk Preparation of instant tea

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146822A (en) * 1974-08-22 1976-04-21 Rca Corp Henkosochogeetokairo
JPS5233183A (en) * 1975-09-09 1977-03-14 Howa Mach Ltd Automatic clamping work driver
JPS5414653A (en) * 1977-07-06 1979-02-03 Hitachi Denshi Ltd Digital differentiation analyzer
JPS5427413A (en) * 1977-08-01 1979-03-01 Matsushita Electric Ind Co Ltd Cassette loading device
JPS5733545A (en) * 1980-08-09 1982-02-23 Sato Shokuhin Kogyo Kk Preparation of instant tea

Also Published As

Publication number Publication date
JPS5921346A (en) 1984-02-03

Similar Documents

Publication Publication Date Title
CA2621821C (en) Improved process for tea manufacture
RU2644227C2 (en) Instant coffee
EP1971213B1 (en) Method for the manufacture of a green tea product
US6569486B2 (en) Macchiato coffee concentrate system
KR100290526B1 (en) Method for preparing instant soluble powder
US5683736A (en) Process for the preparation of a powdered instant black tea drink mix
JP2003507047A (en) How to collect coffee aroma
JP4388230B2 (en) Liquid coffee products
JP2019520812A (en) Soluble instant coffee and manufacturing process of pouring water out of nitrogen
JP5875593B2 (en) Products with improved foaming properties
AU2014266923B2 (en) Coffee product
JP2018502560A (en) Coffee aroma composition
JPH0218044B2 (en)
KR102341481B1 (en) Aroma-retaining soluble coffee
CN112806459B (en) Coffee beverage and preparation method thereof
US2360342A (en) Solid expanded coffee corn sirup
RU2653759C2 (en) Method for preparation of foaming agent and use thereof
JPH09275904A (en) Production of roasted coffee, coffee beverage and coffee by coffee pack
KR830000868B1 (en) How to handle the flavor of coffee
FI65893C (en) AROMATISERAD TORR KAFFEPRODUKT OCH FOERFARANDE FOER AROMATISERING AV KAFFEMATERIAL
JPH06121638A (en) Method for producing instantly soluble powder
JPH029783B2 (en)
JPH01168237A (en) Additive for coffee and black tea
JPS61170343A (en) Instant tea provided with paper cup