JPH02180409A - Temperature sensitive voltage generating circuit and temperature compensating element using same - Google Patents

Temperature sensitive voltage generating circuit and temperature compensating element using same

Info

Publication number
JPH02180409A
JPH02180409A JP63335049A JP33504988A JPH02180409A JP H02180409 A JPH02180409 A JP H02180409A JP 63335049 A JP63335049 A JP 63335049A JP 33504988 A JP33504988 A JP 33504988A JP H02180409 A JPH02180409 A JP H02180409A
Authority
JP
Japan
Prior art keywords
temperature
voltage
compensation
sensitive voltage
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63335049A
Other languages
Japanese (ja)
Other versions
JP2750886B2 (en
Inventor
Yoshifusa Ueno
美房 上野
Takayuki Suzuki
孝之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP63335050A priority Critical patent/JPH02180410A/en
Priority to JP33504988A priority patent/JP2750886B2/en
Priority to US07/382,107 priority patent/US5004988A/en
Priority to KR1019890010419A priority patent/KR930002036B1/en
Priority to EP89113579A priority patent/EP0352695B1/en
Priority to DE68915355T priority patent/DE68915355T2/en
Publication of JPH02180409A publication Critical patent/JPH02180409A/en
Application granted granted Critical
Publication of JP2750886B2 publication Critical patent/JP2750886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To generate a sensitive voltage only in part of a temperature range by providing a switching circuit to connect a first transistor(TR), which is turned on at a temperature T1, and second TR, which is turned off at a temperature T2, and to operate in the temperature range of T1 to T2. CONSTITUTION:A thermister TR1 and a resistance R4 are set so as to be turned on at the temperature T1. A resistance R5 and a thermister RT2 are set so as to be turned off at the temperature T2. By turning on and off first and second TRs TR1 and TR2, switching circuits TR1 and TR2 are operated in the range from the temperature T1 to T2. Consequently in the partial area between the temperature T1 to T2, a sensitive voltage V2 is set so as to conform to the area, and in the area other than the partial area, a normal voltage V1 at a higher level than that of the sensitive voltage V2 is set. The values of the normal voltage V1 and the sensitive voltage V2 can freely be set by resistances R1, R2 and R3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一部領域の周囲温度を検出して感応電圧を発生
する温度感応電圧発生回路を利用分野とし、特に水晶発
振器の温度特性を二重に補償する場合の補償電圧発生回
路に適用した温度補償素子に関する。
Detailed Description of the Invention (Industrial Field of Application) The field of the present invention is a temperature-sensitive voltage generation circuit that detects the ambient temperature in a partial area and generates a sensitive voltage. The present invention relates to a temperature compensation element applied to a compensation voltage generation circuit for heavy compensation.

(発明の背Wk) 温度補償発振器は、特に水晶振動子に起因した温度特性
による周波数変化を補償するものとして広く普及してい
る。匠年では、年々厳しくなる通信事情等により温度に
対して更に高安定な温度補償発振器が望まれている。
(Background of the Invention Wk) Temperature-compensated oscillators are widely used to compensate for frequency changes due to temperature characteristics, particularly those caused by crystal resonators. In Takumi, a temperature-compensated oscillator that is even more stable with respect to temperature is desired due to communication conditions that are becoming more severe year by year.

(従来技術) 第13図はこの種の一従来例を説明する温度補蒸発振器
のブロック図である。
(Prior Art) FIG. 13 is a block diagram of a temperature compensation evaporator oscillator illustrating a conventional example of this type.

温度?Ifl償発振蒸発振器器#S1と;品度補償回路
2とからなる。発振回路1は水晶振動子3を発振子と1
7、その一端側を例えば回路側4の発振用トランジスタ
5に接続する。そして、図示しないコンデンf等の他の
回路素子と相俟って例えばコルピッ・ソ型の回路網を形
成する。水晶振動子3は切断角度を例えばATカットと
じた厚みすべり振動姿態とする。なお、図中のV cc
は電源、voは出力である。このような発振回路】では
、第14図の曲線(イ)に示したような温度特性になる
。すなわち、水晶振動子3を主因とした常温25℃近傍
に変曲点をもった三次曲線となる。
temperature? It consists of an Ifl compensation oscillation evaporator #S1 and a quality compensation circuit 2. The oscillation circuit 1 has a crystal resonator 3 as an oscillator.
7. Connect one end thereof to, for example, the oscillation transistor 5 on the circuit side 4. In combination with other circuit elements such as a capacitor f (not shown), a Colpis-Sot type circuit network is formed, for example. The crystal resonator 3 has a thickness-shear vibration state with a cutting angle of, for example, an AT cut. In addition, Vcc in the figure
is the power supply and vo is the output. Such an oscillation circuit has a temperature characteristic as shown in curve (a) of FIG. 14. In other words, it becomes a cubic curve with an inflection point near the room temperature of 25° C. mainly caused by the crystal resonator 3.

温度補償回路2は補償電圧発生回路6 (息下、電圧発
生回路6とする)と電圧可変容量素子7とからなる。電
圧発生回路6は電源V ccとアース電位間に接続した
感温素子(例えばサーミスタ8)及び抵抗9の図示しな
い直・並列回路網からなる。
The temperature compensation circuit 2 includes a compensation voltage generation circuit 6 (hereinafter referred to as voltage generation circuit 6) and a voltage variable capacitance element 7. The voltage generating circuit 6 consists of a series/parallel network (not shown) of a temperature sensing element (for example, a thermistor 8) and a resistor 9 connected between the power supply Vcc and the ground potential.

そして、サーミスタ8の抵抗値により、周囲温度に応答
した補償電圧V11を出力端aに得る。電圧可変容量素
子7は例丸ば電圧可変容量ダイオード(以下、可変容量
グイオードとする)とし、カソード側を電圧発生回路6
の出力端aに、アノード側をアース電位に接地する。そ
して、電圧発生回路6と可変ダイオード7の接続点を水
晶振動子3の一端側に接続する。そして、 このような
ものでは、?lfl償雷圧v、1を発振回路1の2品度
特性を補償するような値に設定して規格を満足する補償
温度特性を得る[前第14図の曲線(ロ)(従来技術の
問題点) しかしながら、上記構成の温度補償発振器では理論上避
けろことのできない次のような問題があった・ すなわち、ト記補償温度特性を拡大17た第15図のO
印を結ぶ曲n(ハ)から明らかなように、規格を例えば
温度範囲へT1が一30〜70℃で周波数許容偏差(以
下、許容偏差とする)△「/[が±2ppmとすれば、
この補償温度特性は同規格を満足する。しかし、規格を
同温度範囲ΔT1で許容偏差±jppmとした場合には
、点線伜で示す一20℃及び60℃の部分で同規格外と
なる。
Then, depending on the resistance value of the thermistor 8, a compensation voltage V11 responsive to the ambient temperature is obtained at the output terminal a. The voltage variable capacitance element 7 is, for example, a round voltage variable capacitance diode (hereinafter referred to as a variable capacitance diode), and the cathode side is connected to the voltage generating circuit 6.
The anode side of the output terminal a is grounded to the ground potential. Then, the connection point between the voltage generation circuit 6 and the variable diode 7 is connected to one end of the crystal resonator 3. And with something like this? By setting the lfl compensation voltage v,1 to a value that compensates for the two-grade characteristics of the oscillation circuit 1, a compensation temperature characteristic that satisfies the standard is obtained [curve (b) in Figure 14 above (problems with the prior art). However, the temperature compensated oscillator with the above configuration has the following problems that cannot be avoided in theory.
As is clear from the curve n (c) connecting the marks, if the standard is changed to the temperature range, for example, if T1 is 130 to 70°C and the frequency tolerance (hereinafter referred to as tolerance) is ±2 ppm, then
This compensation temperature characteristic satisfies the same standard. However, if the standard is set to allowable deviation ±jppm within the same temperature range ΔT1, the parts at -20° C. and 60° C. shown by the dotted line ① fall outside the standard.

従来、このような場合には、その補償温度特性に基づき
、各抵抗9の値を再計算により修正する。
Conventionally, in such a case, the value of each resistor 9 is corrected by recalculating based on the compensation temperature characteristics.

そして、これにより電圧発生回路6を新たに製作して交
換し、許容偏差+ippmの規格を満足させていた。し
か17、−Sには、抵抗のその値は良い物でも1〜2%
の誤差を持つ。また、サーミスタに関しても、厳密には
各温度におけろ抵抗値の誤差やB定数も変化する。した
がって、各抵抗9の値を修正したとしても理論計算によ
る補償温度特性とは+0.5ppIT!程度の誤差を生
ずる。このようなことから、従来の温度補償発振器では
電圧発生回路6を再製作したとしても許容偏差を±1p
p+n以下にすることは、各素子の精度上の問題から理
論的に困難としていた。そして、許容偏差ΔfaFを±
lppm以下とする場合には、非常に歩留りを悪くして
生産性を低下する問題があった。
As a result, the voltage generating circuit 6 was newly manufactured and replaced, and the standard of tolerance + ippm was satisfied. However, for 17, -S, the value of the resistance is 1 to 2% even if it is a good one.
has an error of Furthermore, regarding the thermistor, strictly speaking, the error in resistance value and the B constant also change at each temperature. Therefore, even if the value of each resistor 9 is corrected, the compensation temperature characteristic according to the theoretical calculation is +0.5ppIT! This results in a certain degree of error. For this reason, in the conventional temperature compensated oscillator, even if the voltage generation circuit 6 is remanufactured, the tolerance is ±1p.
It has been theoretically difficult to reduce the value to p+n or less due to accuracy problems of each element. Then, the allowable deviation ΔfaF is ±
When the amount is 1 ppm or less, there is a problem in that the yield is extremely poor and the productivity is lowered.

(発明の着目点及び目的) 本発明は規格内温度中の許容偏差を越える部分の一部l
晶度領域についてのみ更に補償すれば温度規格を満足で
きる点に着目し、前記一部湿度領域のときのみ感応電圧
を発生する温度感応電圧発生回路及びこれを用いた温度
?In償素子を提供することを目的とする。
(Points of Interest and Objectives of the Invention) The present invention is directed to
Focusing on the fact that temperature standards can be satisfied by further compensating only for the crystallinity region, we developed a temperature-sensitive voltage generating circuit that generates a sensitive voltage only in the above-mentioned partial humidity region, and a temperature-sensitive voltage generating circuit using this circuit. The purpose is to provide an In compensation element.

(解決手段) 本発明は、周囲温度に感応する第1感温素子にrリバイ
アス電圧を設定されてンm度Ti時にOFFからONと
なる第1トラノジスタと、第2感ン品素子によりバイア
ス電圧を設定されて温度T2時こONからOFFになる
第2トランジスタとを接続して、温度T、からT2のと
き動作期間とするスイ、ソ千ング回路から温度感応電圧
発生回路を形成したことを、及びこれから温度補償素子
を構成したことを解決手段とする。以下、本発明の一実
施例を説明する。
(Solution Means) The present invention provides a first toranosistor which turns on from OFF to ON when the first temperature-sensing element that is sensitive to ambient temperature is set with r rebias voltage, and a second temperature-sensing element that controls the bias voltage. A temperature-sensitive voltage generation circuit is formed from a switching circuit whose operating period is from temperature T to T2 by connecting it to a second transistor that turns from ON to OFF when temperature T2 is set. , and configuring a temperature compensation element from this is the solution. An embodiment of the present invention will be described below.

(実施例) 第1図は本発明の一実施例を説明する温度感応電圧発生
回路の図である。
(Embodiment) FIG. 1 is a diagram of a temperature sensitive voltage generation circuit illustrating an embodiment of the present invention.

補償電圧発生回路10は、電#iV、c(十〇C)をコ
レクタ側、アース電位をエミッタ側として第1と第2の
トランジスタ゛rrI、Tr2をシリーズに設けたスイ
ッチング回路からなる。このスイッチング回路ではトラ
ンジスタTrlのコレクタ側に(よ負荷抵抗R,を、T
rIのコレクタとTr2のエミッタ間には抵抗R2とR
8とを縦続して設ける。
The compensation voltage generating circuit 10 consists of a switching circuit in which first and second transistors rrI and Tr2 are arranged in series with the voltage #iV, c (10C) on the collector side and the ground potential on the emitter side. In this switching circuit, the collector side of the transistor Trl (with a load resistance R, T
Resistors R2 and R are connected between the collector of rI and the emitter of Tr2.
8 are provided in series.

そ1)て、抵抗R2とR3との接続点を出力端すとする
。また、トランジスタT r 1のバイアス分割抵抗用
と17てサーミスタRT、と抵抗R4を、Tr2の同抵
抗用として抵抗R3とサーミスタRT、をそれぞれペー
ス側に設ける。なお、サーミスタRT1、RT、の湿度
電圧特性は、第2図に示したように低温から高温側に移
行するに従いそれに応答する抵抗値は指数関数的に減少
する。そして、第3図に示したように、サーミスタRT
lと抵抗R4はトランジスタTR,を温度T1時にOF
FからONになるように設定される「同図(a)」。ま
た、抵抗R6とサーミスタRT xはトランジスタTr
yを温度12時にONからOFFになるように設定され
る「第3図(b)J。
1) Let us assume that the connection point between resistors R2 and R3 is the output terminal. Further, a thermistor RT and a resistor R4 are provided for the bias dividing resistance of the transistor Tr1, and a resistor R3 and thermistor RT are provided for the same resistance of the transistor Tr2, respectively, on the pace side. Note that, as shown in FIG. 2, the humidity-voltage characteristics of the thermistors RT1 and RT decrease exponentially as the temperature changes from a low temperature to a high temperature. Then, as shown in Fig. 3, the thermistor RT
l and resistor R4 turn the transistor TR off at temperature T1.
``Figure (a)'' is set to turn on from F. Also, the resistor R6 and thermistor RT x are the transistor Tr
y is set to turn from ON to OFF when the temperature is 12 o'clock.

このようなものでは、第1と第2のトランジスタTrI
、Tr2のON、OFFにより、温度T8からT2まで
の間をスイッチング回MP1(T r、、 T r i
lの動作期間とする「第3図(C)」。したがって、第
4図に示したようにスイッチング回路の動作期間中は負
荷抵抗R,の電圧降下により、抵抗R2とR3との間の
出力電圧は低下する。すなわち、温度T、からT2まで
の間の一部領域ではこれに応答した感応電圧v2とし、
一部領域以外では感応電圧■2よりレベルの高い通常電
圧V、となる。なお、通常型■1圧及び感応電圧■2の
値は抵抗R1、R2、R4により自在に設定できる。
In such a case, the first and second transistors TrI
, Tr2 are turned ON and OFF, the switching time MP1 (T r, , T r i
"Fig. 3 (C)" assumes an operation period of 1. Therefore, as shown in FIG. 4, during the operation of the switching circuit, the output voltage between resistors R2 and R3 decreases due to the voltage drop across the load resistor R. That is, in a partial region between temperature T and T2, the responsive voltage v2 is set in response to this,
In areas other than some areas, the normal voltage V is higher than the sensitive voltage (2). Note that the values of the normal type (1) pressure and the sensitive voltage (2) can be freely set using resistors R1, R2, and R4.

したがって、第5図に示したようにこの温度感応電圧発
生回路10の出力端に可変容量ダイオード11を接続し
て直流阻止用のコンデンサ12を設けてやれば[同図(
11)J、一部温度領域のみで容量値の変化する温度補
償素子13としての電圧可変容量素子re得ることがで
きる「同図(b)」。そ17て、第6図に示したように
、この温度補償素子を前述した温度補償発振器(前第1
3図参照)に接続してやれば、補償温度特性中の温度T
、h’らT2時の−1p p mを越える部分を更に補
償してその部分を前第15図の曲線(ニ)のp部分に示
した、1うに±lppm以内にすることができる。
Therefore, as shown in FIG. 5, if a variable capacitance diode 11 is connected to the output terminal of the temperature-sensitive voltage generating circuit 10 and a DC blocking capacitor 12 is provided [the same figure ((
11) J, "Figure (b)" in which a voltage variable capacitance element re can be obtained as the temperature compensation element 13 whose capacitance value changes only in a certain temperature range. 17. As shown in FIG.
(see Figure 3), the temperature T in the compensation temperature characteristic
, h', etc. By further compensating for the portion exceeding -1 p p m at T2, that portion can be brought within ±l ppm as shown in the p portion of curve (d) in FIG. 15.

(Q L、この場合、補償電圧としての感応電圧v2を
周波数変化が±lppm以内になるような値に設定する
。また、通常電圧■□の印加時には補償7品度特性は変
化しないように例えば可変コンデンサに1しり調整する
必要がある。そj7て、このようなものでは従来のよう
ζζ電圧発生回Is6 (温度補償回路2)を再製作し
て交換する必要もな〈従来の温度補償発振器にこの温度
補償素子を付加すればよいので、歩留を良好として生産
性を向上する。。
(Q L, in this case, the sensitive voltage v2 as the compensation voltage is set to a value such that the frequency change is within ±lppm. Also, when the normal voltage ■□ is applied, the compensation 7 quality characteristics do not change, for example. It is necessary to make a small adjustment to the variable capacitor.In addition, with such a device, there is no need to remanufacture and replace the ζζ voltage generation circuit Is6 (temperature compensation circuit 2) as in the conventional temperature compensation oscillator. Since this temperature compensating element can be added to the wafer, the yield can be improved and productivity can be improved.

(他の実施例) 第7図は本発明の他の実施例を説明する温度感応電圧発
生回路の図である。
(Other Embodiments) FIG. 7 is a diagram of a temperature sensitive voltage generation circuit explaining another embodiment of the present invention.

乙の実施例の温度感応電圧発生回路14は、電源V6.
.(+DC)をコレクタ側、アース電位をエミ、ツク側
としたトランジスタTr3.Tr4をパラレルに設けた
スイッチング回路からなる。このスイ、−)チング回路
では、■・ランジスタTrs(Tra)のコレクタ側に
は負荷抵抗R6を、Tr3のコレクタとエミッタ (ア
ース電位)間には抵抗R7とR8とを縦続して設ける。
The temperature sensitive voltage generating circuit 14 of the embodiment B is powered by a power source V6.
.. Transistor Tr3. (+DC) is on the collector side, earth potential is on the emitter and on side. It consists of a switching circuit with Tr4 arranged in parallel. In this switching circuit, a load resistor R6 is provided on the collector side of transistor Trs (Tra), and resistors R7 and R8 are connected in series between the collector and emitter (ground potential) of Tr3.

そして、抵抗R7とR6との接続点を出力端Cとする。The connection point between the resistors R7 and R6 is defined as an output terminal C.

また、トランジスタTr、のバイアス分割抵抗用として
サーミスタRT。
Also, a thermistor RT is used as a bias dividing resistance for the transistor Tr.

と抵抗R9を、T r 4の同抵抗用として抵抗RI0
とサーミスタRT4とをそれぞれベース側に設ける。
and resistor R9, and resistor RI0 for the same resistance of T r 4.
and thermistor RT4 are respectively provided on the base side.

そして、サーミスタRT、と抵抗R8は、第8図(a)
に示したようにトランジスタTr3を温度14時にOF
FからONになるように設定される。
The thermistor RT and resistor R8 are shown in FIG. 8(a).
As shown in , the transistor Tr3 is turned off at a temperature of 14
It is set to turn on from F.

また、抵抗R1゜とサーミスタRT、はトランジスタT
r4を温度T3時にONからOFFになるように設定さ
れる「第8図(b)」。
Also, the resistor R1゜, thermistor RT, and the transistor T
"Fig. 8(b)" shows that r4 is set to turn from ON to OFF at temperature T3.

このようなものでは、第3と第4のトランジスタTr3
、Tr4のON、OFFにより、温度T3からT4まで
の間をスイッチング回#(T rs、T r a)の動
作期間とする「第8図(C)」。したがって、スイッチ
ング回路の動作期間中はTr3、Tr4、@ OF F
とするので、抵抗R3とR4との間の出力電圧は上Wす
る。すなわち、第9図に示したよう(こ、温度T3から
T4までの間の一部領域ではこれに応答した感応電圧v
4とし、一部領域以外では感応電圧v4よりレベルの低
い通常電圧■、となる。
In such a device, the third and fourth transistors Tr3
, Tr4 is turned ON and OFF, and the period from temperature T3 to T4 is the operating period of switching cycle # (T rs, T ra) as shown in FIG. 8(C). Therefore, during the operation period of the switching circuit, Tr3, Tr4, @OF
Therefore, the output voltage between resistors R3 and R4 increases by W. In other words, as shown in FIG.
4, and a normal voltage (2) lower in level than the sensitive voltage v4 except in some areas.

なお、通常電圧v3及び感応電圧V4の値は前述同様に
抵抗R1、R2、R5により自在に設定できる。
Note that the values of the normal voltage v3 and the sensitive voltage V4 can be freely set using the resistors R1, R2, and R5, as described above.

j7たがって、この実施例でも、第10図に示したよう
に温度感応電圧発生回路14の出力端に可変界隈ダイオ
ード15を接続して直流阻止用のコンデンサ16を設け
てやれば[同図(a)、1、−部温度領域のみで容量値
の変化する温度補償素子17としての電圧可変容量素子
を得ることができる[同図(h)]。そして、この温温
度補償子を第11図に示したように、前述した温度補償
発振器に接続してやれば、補償温度特性中の温度T3か
らT4時のippmを越えろ部分を更に補償して、その
部分を前第13図の曲線(ニ)のp部分に示(ツなよう
±lppm以内にすることができる。
Therefore, in this embodiment as well, if a variable area diode 15 is connected to the output terminal of the temperature sensitive voltage generating circuit 14 and a DC blocking capacitor 16 is provided as shown in FIG. a), 1, It is possible to obtain a voltage variable capacitance element as the temperature compensation element 17 whose capacitance value changes only in the - part temperature region [(h) in the same figure]. If this temperature compensator is connected to the temperature compensated oscillator described above as shown in FIG. can be kept within ±lppm as shown in the p portion of curve (d) in FIG. 13 above.

但し、この場合も、補償電圧としての感応電圧V4を周
波数変化が±lppm以内になるような値に設定する。
However, in this case as well, the sensitive voltage V4 as the compensation voltage is set to a value such that the frequency change is within ±1 ppm.

また、通常電圧■、の印加時には補償温度特性は変化し
ないように例えば可変コンデンサにより調整する必要が
ある。そして、このようなものでは従来のように電圧発
生回路6 (温度補償回路2)を再製作して交換する必
要もないので、歩留を良好として生産性を向上する。
Furthermore, it is necessary to adjust the compensation temperature characteristics using, for example, a variable capacitor so that the compensation temperature characteristics do not change when the normal voltage (2) is applied. In addition, since there is no need to remanufacture and replace the voltage generation circuit 6 (temperature compensation circuit 2) as in the conventional case, the yield can be improved and productivity can be improved.

(他の事項) なお、上記実施例では従来の補償温度特性中の+側又は
−側に外れた部分を別個に補償する場合を説明したが、
第12図に示したように、十及び−側に外れた部分をと
もに補償するようにしてもよいことは勿論である。そし
て、基本的には、温度m償特性の形態には拘らず規格を
越える部分についてその補償を行え得ろものである。ま
た、従来の補償温度特性は電圧制御によるものを例示j
ノなか、例えばサーミスタ、コンデンサ、抵抗の直・並
列回路からなる所謂直接?IQ償法によるものであって
も適用できる。
(Other Matters) In the above embodiment, a case was explained in which a portion of the conventional compensation temperature characteristic that deviates to the + side or - side is separately compensated.
Of course, as shown in FIG. 12, it is also possible to compensate for both the portions that deviate to the + and - sides. Basically, it is possible to compensate for the portion exceeding the standard regardless of the form of the temperature m-compensation characteristic. In addition, the conventional compensation temperature characteristic is based on voltage control.
Nonaka, for example, the so-called direct circuit consisting of series and parallel circuits of thermistors, capacitors, and resistors? This can be applied even if it is based on the IQ compensation method.

また、本発明では付随的に次の効果を生ずる。Further, the present invention additionally produces the following effects.

すなわち、水晶振動子3の温度特性は理論上では常温2
5℃近傍に変曲点をもつ三次曲線となるが、現実的には
理論上の温度特性を目標として設計しても副振動や微少
の切断角度差等の僅かな影響によりその温度特性に歪み
を来す。そして、このようなもの中には、温度補償発振
器用の水晶振動子としては温度特性を補償しきれず醍用
できないものがある。しかし、本発明を適用すれば、理
論値から多少逸脱した温度特性ものでも、温度特性を部
分的に補償して充分に利用でき、メーカとして経済的に
非常に有利にする効果を奏する。
In other words, the temperature characteristics of the crystal resonator 3 are theoretically equal to room temperature 2.
It is a cubic curve with an inflection point near 5°C, but in reality, even if it is designed with the theoretical temperature characteristics as the target, the temperature characteristics will be distorted due to slight effects such as secondary vibrations and slight differences in cutting angles. come. Some of these crystal resonators cannot be used as crystal resonators for temperature-compensated oscillators because their temperature characteristics cannot be fully compensated for. However, if the present invention is applied, even if the temperature characteristics deviate somewhat from the theoretical values, the temperature characteristics can be partially compensated for and fully utilized, resulting in a significant economic advantage for the manufacturer.

また、温度感応電圧発生回路は温度補償発振器の温度補
償素子として説明したが、一部領域の温度を検出するセ
ンサとして適用できることは勿論である。
Further, although the temperature sensitive voltage generation circuit has been described as a temperature compensation element of a temperature compensation oscillator, it can of course be applied as a sensor for detecting the temperature of a partial area.

(発明の効果) 本発明は、温度感応電圧発生回路を周囲温度に感応する
第1感温素子によりバイアス電圧を設定されて温度T1
時にOFFからONとなる第1トランジスタと、第2感
温素子によりバイアス電圧を設定されて温度T3時にO
NからOFFになる第2トランジスタとを接続して、温
度T□からT2のとき動作期間とするスイッチング回路
から形成したので、一部温度領域のときのみ感応電圧を
発生して特に温度補償発振器の補償電圧として利用でき
、その場合生産性を向上する効果を得ろことができろ。
(Effects of the Invention) The present invention provides a temperature-sensitive voltage generating circuit in which a bias voltage is set by a first temperature-sensing element that is sensitive to ambient temperature.
The bias voltage is set by the first transistor, which changes from OFF to ON, and the second temperature sensing element, and the voltage changes to O at temperature T3.
Since the switching circuit is connected to a second transistor that turns off from N to T2, and the switching circuit is activated when the temperature is T□ to T2, it generates a sensitive voltage only in a certain temperature range, making it particularly useful for temperature-compensated oscillators. It can be used as a compensation voltage, in which case the effect of improving productivity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明する1品度感応電圧発
生回路の図、第2図はサーミスタの温度抵抗特性図、第
3図(a)(b)(c)は同実施例の温度感応電圧発生
回路の作用を説明するスイッチング特性図、第4図は同
実施例の温度電圧特性図、第5図(a)は同実施例を利
用した温度補償素子の図、第5図(b)は同温度補償素
子の温度界隈特性図、第6図は同温度補償素子を用いた
)品度補償発振器の概略構成図である。 第7図は本発明の他の実施例を説明する温度感応電圧発
生回路の図、第8図(a)(b)(C)は同実施例の温
度感応電圧発生回路の作用を説明するスイッチング特性
図、第9図は同実施例の温度電圧特性図、第10図(a
)は同実施例を利用した潤度?ltl償素子の図、第1
0図(b)は同温度補償素子の温度容量特性図、第11
図は同温度補償素子を用いた温度補償発振器の概略構成
図である。 第12図は本発明の他の実施例を説明する温度補償発振
器の概略構成図である。 第13図は従来例を説明する温度補償発振器の概略構成
図、第14y4は温度特性図、第15図は第14図の曲
線(イ)の拡大図である。 第9閃 第10閏 (a) 第11閃 笑1つ冗 (b) 第12!!1
Fig. 1 is a diagram of a one-grade sensitive voltage generation circuit explaining one embodiment of the present invention, Fig. 2 is a temperature resistance characteristic diagram of a thermistor, and Fig. 3 (a), (b), and (c) are the same embodiment. FIG. 4 is a temperature-voltage characteristic diagram of the same embodiment. FIG. 5(a) is a diagram of a temperature compensation element using the same embodiment. (b) is a temperature range characteristic diagram of the same temperature compensation element, and FIG. 6 is a schematic configuration diagram of a quality compensation oscillator (using the same temperature compensation element). FIG. 7 is a diagram of a temperature-sensitive voltage generating circuit explaining another embodiment of the present invention, and FIGS. 8(a), (b), and (C) are switching diagrams explaining the operation of the temperature-sensitive voltage generating circuit of the same embodiment. The characteristic diagram, FIG. 9, is the temperature-voltage characteristic diagram of the same example, and FIG. 10 (a
) is the moisture content using the same example? Diagram of ltl compensator, 1st
Figure 0(b) is the temperature capacity characteristic diagram of the same temperature compensation element, No. 11.
The figure is a schematic configuration diagram of a temperature compensated oscillator using the same temperature compensation element. FIG. 12 is a schematic diagram of a temperature compensated oscillator illustrating another embodiment of the present invention. FIG. 13 is a schematic configuration diagram of a temperature compensated oscillator explaining a conventional example, 14y4 is a temperature characteristic diagram, and FIG. 15 is an enlarged diagram of the curve (a) in FIG. 14. 9th flash 10th leap (a) 11th flash 1st leap (b) 12th! ! 1

Claims (3)

【特許請求の範囲】[Claims] (1)周囲温度に感応して抵抗値の変化する第1感温素
子によりバイアス電圧を設定して温度T_1時にOFF
からONとなる第1トランジスタと、周囲温度に感応し
て抵抗値の変化する第2感温素子によりバイアス電圧を
設定して温度T_2時にONからOFFになる第2トラ
ンジスタとを具備し、前記第1トランジスタと第2トラ
ンジスタとにより温度T_1からT_2のとき動作期間
となるスイッチング回路を形成し、前記スイッチング回
路の動作期間のみ感応電圧を発生させるようにしたこと
を特徴とする温度感応電圧発生回路。
(1) Set the bias voltage using the first temperature sensing element whose resistance value changes in response to the ambient temperature, and turn it off at temperature T_1.
a first transistor that turns on at a temperature of T_2, and a second transistor that turns off from on at a temperature T_2 by setting a bias voltage using a second temperature sensing element whose resistance value changes in response to ambient temperature; 1. A temperature-sensitive voltage generating circuit, characterized in that one transistor and a second transistor form a switching circuit that operates during a temperature range from T_1 to T_2, and generates a sensitive voltage only during the operating period of the switching circuit.
(2)前記感応電圧は温度補償水晶発振器の水晶振動子
に接続した電圧可変容量素子に印加されて水晶発振器の
周波数温度特性を補償する補償電圧であることを特徴と
する特許請求の範囲第1項記載の温度感応電圧発生回路
(2) The sensitive voltage is a compensation voltage applied to a voltage variable capacitance element connected to a crystal resonator of a temperature-compensated crystal oscillator to compensate for the frequency-temperature characteristics of the crystal oscillator. Temperature-sensitive voltage generation circuit described in .
(3)特許請求の範囲第1項記載の温度感応電圧発生回
路の出力端に電圧可変容量素子を接続し、水晶発振器の
周波数温度特性の補償用としたことを特徴とする温度補
償素子。
(3) A temperature compensation element, characterized in that a voltage variable capacitance element is connected to the output terminal of the temperature-sensitive voltage generation circuit according to claim 1, and is used for compensating the frequency-temperature characteristics of a crystal oscillator.
JP33504988A 1988-07-25 1988-12-31 Temperature sensitive voltage generating circuit and temperature compensating element using the same Expired - Fee Related JP2750886B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63335050A JPH02180410A (en) 1988-07-25 1988-12-31 Temperature compensating multi-frequency oscillator
JP33504988A JP2750886B2 (en) 1988-12-31 1988-12-31 Temperature sensitive voltage generating circuit and temperature compensating element using the same
US07/382,107 US5004988A (en) 1988-07-25 1989-07-19 Quartz crystal oscillator with temperature-compensated frequency characteristics
KR1019890010419A KR930002036B1 (en) 1988-07-25 1989-07-22 Quartz crystal oscillator with temperature-compensated frequency characteristics
EP89113579A EP0352695B1 (en) 1988-07-25 1989-07-24 Quartz crystal oscillator with temperature-compensated frequency characteristics
DE68915355T DE68915355T2 (en) 1988-07-25 1989-07-24 Quartz oscillator with temperature compensated frequency characteristics.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33504988A JP2750886B2 (en) 1988-12-31 1988-12-31 Temperature sensitive voltage generating circuit and temperature compensating element using the same

Publications (2)

Publication Number Publication Date
JPH02180409A true JPH02180409A (en) 1990-07-13
JP2750886B2 JP2750886B2 (en) 1998-05-13

Family

ID=18284172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33504988A Expired - Fee Related JP2750886B2 (en) 1988-07-25 1988-12-31 Temperature sensitive voltage generating circuit and temperature compensating element using the same

Country Status (1)

Country Link
JP (1) JP2750886B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031533A (en) * 2000-07-13 2002-01-31 Microstone Corp Gyro sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031533A (en) * 2000-07-13 2002-01-31 Microstone Corp Gyro sensor

Also Published As

Publication number Publication date
JP2750886B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
US5473289A (en) Temperature compensated crystal oscillator
US4978930A (en) Low voltage VCO temperature compensation
US5883550A (en) Crystal oscillator with a temperature-compensating analog circuit
US5004988A (en) Quartz crystal oscillator with temperature-compensated frequency characteristics
US7248127B2 (en) Crystal oscillator
JP2003046335A (en) Temperature compensation crystal oscillator
JPH11122074A (en) Automatic time constant correction circuit for filter circuit
US5999063A (en) Temperature-compensated crystal oscillator using square-law converter circuits for lower and higher temperature sides
JPH02180409A (en) Temperature sensitive voltage generating circuit and temperature compensating element using same
JP2002135051A (en) Piezoelectric oscillator
JP2602727B2 (en) Piezoelectric oscillator
JPS641969B2 (en)
JP4259174B2 (en) Temperature compensated piezoelectric oscillator
JP2975411B2 (en) Temperature compensated piezoelectric oscillator
JP2750904B2 (en) Compensation voltage generation circuit for temperature compensated oscillator
JP2002198736A (en) Temperature compensation crystal oscillator
JP2001060828A (en) Temperature compensation oscillator
JP3949482B2 (en) Oscillator with temperature compensation function
JP3272659B2 (en) Temperature compensated piezoelectric oscillator with frequency correction circuit
JPS5934166Y2 (en) crystal oscillation circuit
JPH0235804A (en) Temperature compensating crystal oscillator
KR910003750Y1 (en) Temperature compensation circuit for crystal oscillator
JP4314982B2 (en) Temperature compensated piezoelectric oscillator
JPS6024704A (en) Temperature compensating oscillator
JPH02218231A (en) Radio selective call receiver

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees