JPH02179851A - Heat resisting steel for monolythic use - Google Patents

Heat resisting steel for monolythic use

Info

Publication number
JPH02179851A
JPH02179851A JP33191588A JP33191588A JPH02179851A JP H02179851 A JPH02179851 A JP H02179851A JP 33191588 A JP33191588 A JP 33191588A JP 33191588 A JP33191588 A JP 33191588A JP H02179851 A JPH02179851 A JP H02179851A
Authority
JP
Japan
Prior art keywords
resistance
steel
heat
oxidation
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33191588A
Other languages
Japanese (ja)
Inventor
Eikichi Kawai
河合 栄吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP33191588A priority Critical patent/JPH02179851A/en
Publication of JPH02179851A publication Critical patent/JPH02179851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To improve the blister resistance, gas corrosion resistance, heat- and cold-resisting durability, and oxidation resistance of the steel by combinedly adding La and Ce into a steel and also specifying respective contents of Cr, Al, Ti, etc. CONSTITUTION:A heat resisting steel has a composition which consists of, by weight ratio, <=0.3% C, <=1.5% Si, <=1.5% Mn, 19.0-25.0% Cr, 5.0-8.0% Al, 0.01-0.50% Ce, 0.01-0.50% La, <=0.04% Ti, and the balance Fe with impurity elements and in which (La+Ce) is regulated to 0.02-0.80%. If necessary, 0.05-2.0% Co, 0.10-2.0% Ni, and. 0.05-0.20% V are incorporated to the above composition. This steel is used for a honeycomb structure for monolithic catalyst device. By the above composition, blister in the case of 1100 deg.C and 600hr is reduced to <= about 1%, and abnormal oxidation does not occur until >=1000hr elapse in exhaust gas of 950 deg.C, and further, >= about 3000 times heat- and cold-resisting durability and >= about 600hr oxidation resistance can be satisfactorily satisfied.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は排気ガス浄化装置として用いられるモノリス型
触媒装置のハニカム構造体を構成するモノリス用耐熱鋼
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat-resistant steel for a monolith forming a honeycomb structure of a monolith catalyst device used as an exhaust gas purification device.

[従来の技術] 自動車の排出ガス規制の強化に伴い、自動車には排出ガ
ス浄化装置が取り付けられるようになった。排出ガス浄
化の方式には、サーマルリアクタ方式、希薄燃焼方式、
エンジンモデイフィケーション方式および触媒方式など
があるが、過半数が触媒方式を採用している。
[Background Art] With the tightening of automobile exhaust gas regulations, automobiles have come to be equipped with exhaust gas purification devices. Exhaust gas purification methods include thermal reactor method, lean burn method,
There are engine modification methods and catalytic methods, but the majority use the catalytic method.

自動車用触媒としては、Pt、Pd系触媒が用いられて
おり、触媒の形状としては粒状とモノリスに大別される
。モノリス触媒は搭載性、暖気性に優れている反面、経
済性、耐衝撃性において粒状触媒に劣ると言われている
Pt and Pd-based catalysts are used as catalysts for automobiles, and the shape of the catalysts is roughly divided into granular and monolithic. Although monolithic catalysts have excellent installation and warm-up properties, they are said to be inferior to granular catalysts in terms of economy and impact resistance.

モノリス触媒にはセラミックス製のものと金属製のもの
がある。セラミックス製のものはセラミックスをハニカ
ム状に焼成したものを担体とし、これを金属筒に収めた
ものを基体とし、担体にpt等の触媒金属を担持させた
γ−A I 203粉を付着させたものである。しかし
、このセラミックス製モノリスは機械的な衝撃に弱く、
排気抵抗が大きい等の欠点があるので、近時は金属製モ
ノリスが注目されている。
Monolithic catalysts include those made of ceramics and those made of metal. For ceramic products, the carrier is made by firing ceramics into a honeycomb shape, the carrier is placed in a metal cylinder, and the γ-A I 203 powder supporting a catalyst metal such as PT is attached to the carrier. It is something. However, this ceramic monolith is vulnerable to mechanical shock.
Recently, metal monoliths have been attracting attention because they have drawbacks such as high exhaust resistance.

金属製モノリス触媒コンバータは、F e −Cr −
A1系@熱材(20Cr−6AI)を数十ミクロンの厚
さの箔に圧延し、この箔を波板状に加工したものと平板
とを交互に積層するか、ロール状に巻くなどして、ハニ
カム構造体としこれを金属筒に収めたものを基体とし、
高温酸化によってA1□03皮膜を生ぜしめたものに、
pt等の触媒金属を担持させたγ−AI203をコーテ
ィングにより付着させるものである。
The metal monolith catalytic converter is Fe-Cr-
A1 type @ thermal material (20Cr-6AI) is rolled into a foil with a thickness of several tens of microns, and this foil is processed into a corrugated sheet and a flat sheet are alternately laminated, or the foil is wound into a roll. , the base is a honeycomb structure housed in a metal tube,
A1□03 film is formed by high-temperature oxidation,
γ-AI203 supporting a catalyst metal such as PT is deposited by coating.

[発明が解決しようとする課ffl] 従来、この金属製モノリスに使用されるFe−Cr−A
l系電熱材(20Cr−6Al)は、未だ高温耐食性が
充分でない、すなわち、触媒コンバータは1000℃前
後の排気ガスにより加熱と冷却が繰り返されるので、箔
全体が酸化されハニカム構造体がセル方向に5〜10%
膨れてハニカム構造体が金属筒から前後にはみ出す、そ
のため、ハニカム構造体が変形し、触媒金属を担持した
コーティングが剥離し、触媒コンバータの寿命が短くな
る。
[Issues to be solved by the inventionffl] Conventionally, Fe-Cr-A used in this metal monolith
L-based electrical heating materials (20Cr-6Al) still do not have sufficient high-temperature corrosion resistance. In other words, the catalytic converter is repeatedly heated and cooled by exhaust gas at around 1000°C, so the entire foil is oxidized and the honeycomb structure tends to move toward the cells. 5-10%
The honeycomb structure swells and protrudes forward and backward from the metal tube, which deforms the honeycomb structure and peels off the coating that supports the catalyst metal, shortening the life of the catalytic converter.

また、耐ガス腐食性(950”C排気ガス中)、耐冷熱
耐久性(1000℃と常温の加熱冷却の繰り返し)、耐
酸化性(1100’C)も充分でなく、耐ガス腐食性で
は30時間で、耐冷熱耐久性はS。
In addition, gas corrosion resistance (950'C in exhaust gas), cold and heat resistance (repeated heating and cooling at 1000°C and room temperature), and oxidation resistance (1100'C) are not sufficient, and gas corrosion resistance is 30°C. In terms of time, cold and heat resistance is S.

0回で、耐酸化性は150時間でそれぞれ異常酸化によ
り、ハニカム構造体を構成する箔の表面にこぶ状の酸化
スケールを生じ、コーティングの剥離と通気性の阻害を
起こすという不都合がある。
The oxidation resistance is 0 times and the oxidation resistance is 150 hours. Due to abnormal oxidation, lump-like oxide scales are formed on the surface of the foil constituting the honeycomb structure, which causes the coating to peel off and impede air permeability.

本発明は従来のモノリス用耐熱鋼の前記のごとき問題点
に鑑みてなされたもので、耐ふくれ性(1ioo℃、6
00時間)が1%以下、耐ガス腐食性が1000時間以
上、耐冷熱耐久性が3000回以上、耐酸化性が600
時間以上の要求特性を満足するモノリス用耐熱鋼を提供
することを目的とする。
The present invention was made in view of the above-mentioned problems of conventional heat-resistant steel for monoliths.
00 hours) is 1% or less, gas corrosion resistance is 1000 hours or more, cold and heat resistance is 3000 times or more, oxidation resistance is 600
The objective is to provide a heat-resistant steel for monoliths that satisfies the required characteristics over time.

[課題を解決するための手段〕 前記の課題を解決するため、モノリス用耐熱鋼の耐ふく
れ性に及ぼす各種元素の影響について、鋭意研究が重ね
られた。その結果、希土類元素特にLaとCeを複合添
加すると、耐ふくれ性が著しく改善されることが見出だ
された。また、耐ガス耐食性はC「添加量の増加と希土
類の添加により改善されること、および耐酸化性につい
てはCrとA1添加量の増加と希土類の添加およびTi
の低減により改善されるとの知見を得た。さらに、耐冷
熱耐久性は希土類特にCeの添加により向上することが
見出だされた0本発明はこれらの新たな知見に基づき完
成されたものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, intensive research has been carried out on the influence of various elements on the blistering resistance of heat-resistant steel for monoliths. As a result, it has been found that the combined addition of rare earth elements, particularly La and Ce, significantly improves the blistering resistance. In addition, gas corrosion resistance can be improved by increasing the amount of C added and adding rare earth elements, and oxidation resistance can be improved by increasing the amount of Cr and A1 added, adding rare earth elements, and adding Ti.
We obtained the knowledge that this can be improved by reducing the Furthermore, it has been found that the cold and heat resistance durability is improved by adding rare earth elements, particularly Ce. The present invention was completed based on these new findings.

本発明のモノリス用耐熱鋼は第1発明鋼として、重量比
でC;0.3%以下、Si:1.5%以下、Mn;1.
5%以下、Cr;19.0〜25.0%、Al;5゜0
〜8.0%、Ce;0.01〜0.50%、La;0 
The heat-resistant steel for monoliths of the present invention is the first invention steel, and has a weight ratio of C: 0.3% or less, Si: 1.5% or less, Mn: 1.
5% or less, Cr; 19.0-25.0%, Al; 5°0
~8.0%, Ce; 0.01~0.50%, La; 0
.

01〜0.50%、La+Ce・0.02〜0.80%
、Ti;0.04%以下を含有し、残部Feとその不純
物元素からなることを要旨とする。また、第2発明鋼は
第1発明鋼の冷間加工性を改善するため、さらにCo;
0.05〜2.0 %、Ni;0.10〜2゜0%、V
、0.05〜0.20%を含有し、残部Feとその不純
物元素からなることを要旨とする。
01~0.50%, La+Ce・0.02~0.80%
, Ti: 0.04% or less, and the remainder consists of Fe and its impurity elements. Moreover, in order to improve the cold workability of the first invention steel, the second invention steel further includes Co;
0.05~2.0%, Ni; 0.10~2゜0%, V
, 0.05 to 0.20%, and the remainder consists of Fe and its impurity elements.

[作用〕 本発明のモノリス用耐熱鋼は、CeおよびLaを複合添
加することにより、耐ふくれ性が著しく改善され、11
00℃で600時間のふくれが1%以下になる。また、
Cr含有量を高め、CeおよびLaの希土類元素を添加
したことにより、耐ガス腐食性が改善され、950”C
の排ガス中1000時間以上になるまで異常酸化が起こ
らない。
[Function] The heat-resistant steel for monoliths of the present invention has markedly improved blistering resistance due to the combined addition of Ce and La.
Blistering after 600 hours at 00°C is less than 1%. Also,
By increasing the Cr content and adding rare earth elements Ce and La, gas corrosion resistance is improved and the 950"C
Abnormal oxidation does not occur until more than 1000 hours in the exhaust gas.

また、AIおよびCrの含有量を増加したことにより、
充分な耐酸化性を与える厚さのA1□O1が生成する。
In addition, by increasing the content of AI and Cr,
A thickness of A1□O1 is produced that provides sufficient oxidation resistance.

さらに、添加されたCeおよびLaはAl2O、皮膜を
安定化する。そのため、1100”Cで600時間以上
保持しても異常酸化が起こらない。
Furthermore, the added Ce and La stabilize the Al2O film. Therefore, abnormal oxidation does not occur even if held at 1100''C for 600 hours or more.

耐冷熱耐久性は希土類特にCeの添加より、著しく改善
され、1000’Cと常温の加熱冷却の繰り返し数が3
000回以上になるまで、異常酸化による膨れが生じな
い。
The cold and heat resistance durability is significantly improved by adding rare earth elements, especially Ce, and the number of repetitions of heating and cooling at 1000'C and room temperature is 3.
Blistering due to abnormal oxidation does not occur until 000 times or more.

次に本発明の化学成分の組成範囲の限定理由について説
明する。
Next, the reason for limiting the composition range of the chemical components of the present invention will be explained.

C:0.3%以下 Cは鋼中に不可避的に含有される元素であり、高すぎる
と組織がマルテンサイト化してしまう。
C: 0.3% or less C is an element that is inevitably contained in steel, and if it is too high, the structure will become martensite.

また、含有されるC「と炭化物が形成されると、耐食性
を低下させるので、低ければ低いほど良く、その上限を
0.3%とした。
In addition, if carbide is formed with the contained C, the corrosion resistance will be lowered, so the lower the content, the better, and the upper limit was set at 0.3%.

Si;1.5%以下 Siは一般的に耐酸化性を向上させる効果を有し、フェ
ライトを安定化させる。しかし、1.5%を超えて含有
されると靭性を低下し冷間加工性を阻害するので、その
上限を1.5%とした。
Si: 1.5% or less Si generally has the effect of improving oxidation resistance and stabilizes ferrite. However, if the content exceeds 1.5%, the toughness decreases and cold workability is inhibited, so the upper limit was set at 1.5%.

Mn;1.5%以下 Mnは製鋼時の脱酸剤として添加されSを固定するが、
1.5%を超えて含有されると、靭性を低下するので、
上限を1.5%とした。
Mn: 1.5% or less Mn is added as a deoxidizing agent during steelmaking and fixes S, but
If the content exceeds 1.5%, the toughness will be reduced.
The upper limit was set at 1.5%.

Coco 、05〜2.0% Coを添加すると再結晶を防止し、結晶粒が微細化し冷
間加工性が向上する。前記効果を得るためには0.05
%以上の添加が必要である。しかし、2.0%を超えて
添加されても、その効果が飽和するとともに、高価とな
るので上限を2.0%とした。
Coco, 05-2.0% Adding Co prevents recrystallization, refines crystal grains, and improves cold workability. To obtain the above effect, 0.05
It is necessary to add more than %. However, even if it is added in excess of 2.0%, the effect will be saturated and the price will increase, so the upper limit was set at 2.0%.

Ni;0.10〜2,0% Niを添加すると再結晶を防止し、結晶粒が微細化し冷
間加工性が向上する。前記効果を得るためには0.1%
以上の添加が必要である。しかし、2.0%を超えて添
加されても、その効果が飽和するとともに、高価となる
ので上限を2.0%とした。
Ni: 0.10 to 2.0% Adding Ni prevents recrystallization, refines crystal grains, and improves cold workability. To obtain the above effect, 0.1%
The above additions are necessary. However, even if it is added in excess of 2.0%, the effect will be saturated and the price will increase, so the upper limit was set at 2.0%.

Cr;19.0〜25.0% Crは鋼に耐酸化性と耐ガス腐食性を付与する元素であ
り、19.0%以上含有されないと、充分な耐ガス腐食
性が得られない。しかし、25%を超えて含有されると
、冷間加工性を阻害しσ相が析出するので、上限を25
%とした。
Cr: 19.0 to 25.0% Cr is an element that imparts oxidation resistance and gas corrosion resistance to steel, and unless it is contained in an amount of 19.0% or more, sufficient gas corrosion resistance cannot be obtained. However, if the content exceeds 25%, the cold workability will be inhibited and the σ phase will precipitate, so the upper limit should be set to 25%.
%.

A1・5.0〜8.0% A1は鋼の表面にA I20 z皮1摸を形成させるに
最も重要な元素である。 A I20 y皮膜を形成さ
せ充分な耐酸化性を得るためには5.0%以上の添加が
必要である。しかし、8.0%を超えて含有されると、
熱間圧延性が困難となるので、上限を8゜0%とした。
A1・5.0~8.0% A1 is the most important element for forming an A I20 z skin on the surface of steel. In order to form an A I20 y film and obtain sufficient oxidation resistance, it is necessary to add 5.0% or more. However, if the content exceeds 8.0%,
Since hot rolling properties become difficult, the upper limit was set at 8.0%.

V;0.005〜0.2% ■は結晶粒を微細化し冷間加工性を向上するので0.0
05%以上が添加される。しかし、0.2%を超えて添
加されると、熱間で割れ易いので、上限を0.2%とし
た。
V: 0.005 to 0.2% ■ is 0.0 because it refines the crystal grains and improves cold workability.
0.5% or more is added. However, if it is added in an amount exceeding 0.2%, it tends to crack under hot conditions, so the upper limit was set at 0.2%.

Ce・0.01〜0.5% Ceは耐ふくれ性を改善する元素であり、この効果を得
るためには少なくとも0.01%以上添加する必要があ
る。しかし、0.5%を超えて添加されると、熱間加工
性が劣化するので、上限を0.5%とした。
Ce・0.01-0.5% Ce is an element that improves blistering resistance, and in order to obtain this effect, it is necessary to add at least 0.01% or more. However, if added in excess of 0.5%, hot workability deteriorates, so the upper limit was set at 0.5%.

La;0.01〜0.5% Laは耐酸化性を向上させる元素であり、この効果を得
るためには少なくとも0.01%以上添加する必要があ
る。しかし、0.5%を超えて添加すると熱間加工が不
可能となるので、上限を015%とした。
La: 0.01 to 0.5% La is an element that improves oxidation resistance, and in order to obtain this effect, it is necessary to add at least 0.01% or more. However, if added in excess of 0.5%, hot working becomes impossible, so the upper limit was set at 0.15%.

La+Ce;0.03〜0.8% LaとCeを複合添加するとA I203保護皮膜が安
定化されるが、この効果を得るためには少なくとも合計
で0.03%以上添加する必要がある。
La+Ce: 0.03 to 0.8% The combined addition of La and Ce stabilizes the AI203 protective film, but in order to obtain this effect, it is necessary to add at least 0.03% or more in total.

しかし、その合計添加量が0.8%を超えて添加される
と、熱間圧延で割れが生ずるので、その上限を合計で0
.8%とした。
However, if the total amount added exceeds 0.8%, cracks will occur during hot rolling, so the upper limit should be set to 0.8%.
.. It was set at 8%.

Ti;0.04%以下 T;はA120i保護皮膜を不安定化し耐酸化性を劣化
するので、出来るだけ少ないほうが望ましく、その上限
を0.04%以下とした。
Ti: 0.04% or less Since T; destabilizes the A120i protective film and deteriorates oxidation resistance, it is desirable that it be as small as possible, and its upper limit is set to 0.04% or less.

[実施例] 次に本発明の実施例を従来例および比較例と共に説明し
、本発明の効果を明らかにする。
[Example] Next, an example of the present invention will be described together with a conventional example and a comparative example to clarify the effects of the present invention.

第1表はこれら供試鋼の化学成分を示す、第1表におい
て、A〜H鋼は本発明鋼であり、A〜D鋼は第1発明、
E−H鋼は第2発明である。工〜M鋼は比較鋼であり、
IW4はCeおよびLaを含有せず、J鋼はCeおよび
Laの含有量が高く、K鋼はTiの含有量が高く、L鋼
はA1の含有量が低く、M鋼はC「含有量が低いもので
ある。また、N鋼は従来鋼である。
Table 1 shows the chemical composition of these test steels. In Table 1, steels A to H are steels of the present invention, steels A to D are steels of the first invention,
E-H steel is the second invention. M-M steel is comparative steel,
IW4 does not contain Ce and La, J steel has a high content of Ce and La, K steel has a high content of Ti, L steel has a low content of A1, and M steel has a low content of C. In addition, N steel is a conventional steel.

(以  下  余  白  ) 第1表に示した供試鋼を50μ鋼の箔に加工した後、耐
ふくれ性、耐ガス腐食性、耐冷熱耐久性、耐酸化性につ
いて試験した。
(Left below) The test steels shown in Table 1 were processed into 50μ steel foils, and then tested for blistering resistance, gas corrosion resistance, cold and heat resistance, and oxidation resistance.

耐ふくれ性は箔をハニカム構造体に形成した後、110
0℃の排ガスを600時間通過させて、セル方向の伸び
を測定した。
The blistering resistance is 110 after forming the foil into a honeycomb structure.
The elongation in the cell direction was measured by passing exhaust gas at 0° C. for 600 hours.

耐ガス腐食性については、950℃の排ガス中に保持し
、異常酸化が発生する時間を測定した。
Regarding gas corrosion resistance, the sample was kept in exhaust gas at 950°C and the time required for abnormal oxidation to occur was measured.

耐冷熱耐久性については、1000℃と常温との間の加
熱冷却を繰り返し、異常酸化の発生する回数を測定した
Regarding cold and heat resistance durability, heating and cooling between 1000° C. and room temperature were repeated, and the number of times abnormal oxidation occurred was measured.

耐酸化性については、1100℃酸化性雰囲気中に保持
し、異常酸化の発生する時間を測定した。
Regarding oxidation resistance, the sample was kept in an oxidizing atmosphere at 1100°C and the time for abnormal oxidation to occur was measured.

得られた結果は第2表に示した。The results obtained are shown in Table 2.

(以下余白) 第2表から明らかなように、CeおよびLaを含有しな
い比較[1mは耐ふくれ性が13%になったほか耐ガス
腐食性等の特性についても極端に劣り、比較鋼に鋼はT
i含有量が多いため耐酸化性に劣るほか他の特性につい
ても劣り、比較鋼り鋼はA1含有量が低いので耐ふくれ
性では優れているものの耐ガス腐食性および耐酸化性に
劣り、比較鋼M鋼はC「含有量が低いので同様に耐ガス
腐食性および耐酸化性に劣る。なお、比較鋼J鋼はCe
およびLa含有量が高過ぎて冷間加工の段階で割れを生
じ箔に加工することが不可能であった。
(Left below) As is clear from Table 2, the comparison steel that does not contain Ce and La [1m] has a blistering resistance of 13% and is also extremely inferior in properties such as gas corrosion resistance. is T
Due to the high i content, it is inferior in oxidation resistance and other properties, while the comparative steel has a low A1 content, so although it is excellent in blistering resistance, it is inferior in gas corrosion resistance and oxidation resistance. Since steel M has a low C content, it similarly has poor gas corrosion resistance and oxidation resistance. Comparative steel J has a low C content.
Also, the La content was too high, causing cracks during cold working, making it impossible to process into foil.

また、従来鋼は耐ふくれ性が13%と高く、他の耐熱特
性においても劣る。
Furthermore, conventional steel has a high blistering resistance of 13% and is inferior in other heat resistance properties.

これに対して本発明鋼であるA〜H鋼は耐ふくれ性がい
ずれも1%以下に抑えられたほか、耐ガス腐食性は11
00〜1550時間、耐冷熱耐久性は3000〜520
0回、耐酸化性は600〜1000時間といずれの特性
についても優れた結果が得られ、本発明の効果が確認さ
れた。
On the other hand, steels A to H, which are the steels of the present invention, had a blistering resistance of 1% or less, and a gas corrosion resistance of 11%.
00-1550 hours, cold and heat resistance 3000-520
0 times and oxidation resistance for 600 to 1000 hours, excellent results were obtained for all properties, confirming the effects of the present invention.

[発明の効果] 本発明のモノリス用耐熱鋼は以上説明したように、耐ふ
くれ性を改善するためCeおよびLaを添加し、AIお
よびC「の添加量を増加することにより耐ガス腐食性と
耐酸化性を向上させ、Ceの添加により耐冷熱耐久性を
改善したものであって、モノリス用耐熱鋼としての要求
特性で゛ある耐ふくれ性(1100℃、600時間)が
1%以下、耐ガス腐食性が1000時間以上、耐冷熱耐
久性が3000回以上、耐酸化性が600時間以上を充
分に満足するものである。
[Effects of the Invention] As explained above, the heat-resistant steel for monoliths of the present invention has gas corrosion resistance and gas corrosion resistance by adding Ce and La to improve blistering resistance and increasing the amount of AI and C. It has improved oxidation resistance and cold and heat resistance by adding Ce, and has a blistering resistance (1100℃, 600 hours) of 1% or less, which is a required property as a heat-resistant steel for monoliths. It fully satisfies gas corrosion resistance of 1000 hours or more, cold and heat resistance durability of 3000 times or more, and oxidation resistance of 600 hours or more.

Claims (2)

【特許請求の範囲】[Claims] (1)重量比でC;0.3%以下、Si;1.5%以下
、Mn;1.5%以下、Cr;19.0〜25.0%、
Al;5.0〜8.0%、Ce;0.01〜0.50%
、Li;0.01〜0.50%、La+Ce;0.02
〜0.80%、Ti;0.04%以下を含有し、残部F
eとその不純物元素からなることを特徴とするモノリス
用耐熱鋼。
(1) Weight ratio of C: 0.3% or less, Si: 1.5% or less, Mn: 1.5% or less, Cr: 19.0 to 25.0%,
Al; 5.0-8.0%, Ce; 0.01-0.50%
, Li; 0.01-0.50%, La+Ce; 0.02
~0.80%, Ti; Contains 0.04% or less, balance F
A heat-resistant steel for monoliths characterized by consisting of e and its impurity elements.
(2)重量比でC;0.3%以下、Si;1.5%以下
、Mn;1.5%以下、Cr;19.0〜25.0%、
Al;5.0〜8.0%、Ce;0.01〜0.50%
、La;0.01〜0.50%、La+Ce;0.02
〜0.80%、Ti;0.04%以下を含有し、さらに
Co;0.05〜2.0%、Ni;0.10〜2.0%
、V;0.05〜0.20%を含有し、残部Feとその
不純物元素からなることを特徴とするモノリス用耐熱鋼
(2) Weight ratio of C: 0.3% or less, Si: 1.5% or less, Mn: 1.5% or less, Cr: 19.0 to 25.0%,
Al; 5.0-8.0%, Ce; 0.01-0.50%
, La; 0.01 to 0.50%, La+Ce; 0.02
~0.80%, Ti; 0.04% or less, further Co; 0.05 to 2.0%, Ni; 0.10 to 2.0%.
, V; 0.05 to 0.20%, and the remainder consists of Fe and its impurity elements.
JP33191588A 1988-12-29 1988-12-29 Heat resisting steel for monolythic use Pending JPH02179851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33191588A JPH02179851A (en) 1988-12-29 1988-12-29 Heat resisting steel for monolythic use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33191588A JPH02179851A (en) 1988-12-29 1988-12-29 Heat resisting steel for monolythic use

Publications (1)

Publication Number Publication Date
JPH02179851A true JPH02179851A (en) 1990-07-12

Family

ID=18249057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33191588A Pending JPH02179851A (en) 1988-12-29 1988-12-29 Heat resisting steel for monolythic use

Country Status (1)

Country Link
JP (1) JPH02179851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128693A (en) * 1992-10-13 1994-05-10 Nippon Yakin Kogyo Co Ltd Ferritic stainless steel excellent in oxidation resistance, toughness, and hot workability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128693A (en) * 1992-10-13 1994-05-10 Nippon Yakin Kogyo Co Ltd Ferritic stainless steel excellent in oxidation resistance, toughness, and hot workability

Similar Documents

Publication Publication Date Title
CA1341232C (en) Semi-finished products of ferritic steel
EP0516097B1 (en) Iron-chromium-aluminium alloy, catalytic substrate comprising the same and method of preparation
JP5522330B2 (en) Ferritic stainless steel foil
JP5600012B2 (en) Ferritic stainless steel with excellent oxidation resistance and secondary work brittleness resistance, as well as steel and secondary work products
EP2554700B1 (en) Stainless steel foil and catalyst carrier for exhaust gas purification device using the foil
EP0516267B1 (en) High-aluminium-containing ferritic stainless steel
JP2001316773A (en) Heat resistant ferritic stainless steel for catalyst carrier excellent in weldability and workability
JPS63266044A (en) High al rolled metallic foil for catalyst carrier
EP2695962B1 (en) Stainless steel foil and catalyst carrier for exhaust emission control system using said foil
EP3527683B1 (en) Stainless steel sheet and stainless steel foil
JP3247162B2 (en) Fe-Cr-Al-based alloy excellent in oxidation resistance and foil thereof
JP3200160B2 (en) Fe-Cr-Al alloy excellent in oxidation resistance and high-temperature embrittlement resistance, catalyst carrier using the same, and method for producing alloy foil
JP5012313B2 (en) Alloy carrier and catalyst carrier for exhaust gas purifier
JPH02254136A (en) Heat-resistant and oxidation-resistant fe-cr-al series alloy having excellent manufacturability
JPH02179851A (en) Heat resisting steel for monolythic use
JP4078881B2 (en) Austenitic stainless steel sheet for heat exchanger
JPH06212363A (en) Fe-cr-al series alloy steel excellent in high temperature oxidation resistance and high temperature durability
JPH08299808A (en) Production of metal carrier for catalyst excellent in oxidation resistance and durability
JP2002507249A (en) Ferritic stainless steel and its use as a substrate for catalytic converters
EP0625585A1 (en) Fe-Cr-Al alloy foil having high oxidation resistance for a substrate of a catalytic converter and method of manufacturing same
JPH04350148A (en) Fe-cr-al alloy excellent in durability and catalyst carrier using it
JP3901224B2 (en) Catalyst metal carrier
JPH0336241A (en) Heat resisting steel for monolithic use
JP3320831B2 (en) Fe-Cr-Al alloy with excellent high temperature strength and oxidation resistance
JP3283286B2 (en) Fe-Cr-Al alloy foil for highly heat-resistant metal carrier for automobile exhaust gas purification catalyst