JPH02179506A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH02179506A
JPH02179506A JP63335087A JP33508788A JPH02179506A JP H02179506 A JPH02179506 A JP H02179506A JP 63335087 A JP63335087 A JP 63335087A JP 33508788 A JP33508788 A JP 33508788A JP H02179506 A JPH02179506 A JP H02179506A
Authority
JP
Japan
Prior art keywords
circumferential
groove
tire
tread
land
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63335087A
Other languages
Japanese (ja)
Inventor
Takashi Kukimoto
久木元 隆
Naoto Yamagishi
直人 山岸
Shinji Usui
臼井 伸二
Yasutoshi Aoki
青木 康年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP63335087A priority Critical patent/JPH02179506A/en
Publication of JPH02179506A publication Critical patent/JPH02179506A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • B60C11/042Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section
    • B60C11/047Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section the groove bottom comprising stone trapping protection elements, e.g. ribs

Abstract

PURPOSE:To improve deflected abrasion resistance while suppressing the occurrence of rib tear by forming a pair of circumferential grooves halving a land part divided by a main groove, thereby forming a different level area, and disposing a plurality of platform parts in the circumferential grooves. CONSTITUTION:A tire 1 has a plurality of circumferentially extending continuous main grooves formed on the outer surface of a tread part 5, or a wheel tread 6. Thus, the wheel tread 6 is divided into a plurality of circumferentially extending land parts, namely a center rib 8a on the tire equatorial face 9 and side ribs Bb on the both sides thereof. In this case, at least a pair of circumferential grooves 11 extending continuously in the circumferential direction are formed on the wheel tread 6 of the side ribs 8b, whereby a different level area 12 independent from the side ribs 8b is formed. On each circumferential groove 11, a plurality of platform parts 16 protruded in the radial direction from the bottom to partly bury the inside of the circumferential groove 11 are disposed. The side walls of the land part 8 and the different level area 12 is mutually connected by the platform parts.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、周方向に連続して延びる主溝と、この主溝
によって区分された陸部とを路面に有する空気入りタイ
ヤに間する。
The present invention provides a pneumatic tire having a main groove continuously extending in the circumferential direction and a land portion divided by the main groove on the road surface.

【1立且遣 一般に空気入りタイヤに生じる摩耗現象については、路
面状況に依存するが、最近の著しく整備が進められた高
速自動車道などにおける長時間走行の下では、タイヤの
踏面接地域において路面から作用する外力(タイヤ入力
)の如何によって路面形状に変化が生じ、これによって
摩耗に遅速差が発生し、摩耗の速い二分で加速度的な累
加促進が進展してリバーウェア、リブパンチ等の偏摩耗
となるのである。 このような偏摩耗を低減させるため、従来、種々の提案
がされており、例えば、クラウン形状を変化させて偏摩
耗を低減させるものとしては米国特許第4155313
2号明細書に記載されているものがあり、また、リブの
両端にサイズを配列して偏摩耗を低減させるものとして
は米国特許第3550865号明細書に記載されている
ものがある。 が しかしながら、このような従来のタイヤは、偏摩耗自身
を阻止することができず、単にその発生を遅延させるに
過ぎないため、走行後はどなく偏摩耗が発生するという
問題点がある。また、前述のような提案を実施すると、
タイヤ入力の負担が他の部位に移り、該部位に偏摩耗が
生じることもあるという問題点がある。 るため このような問題点を解決すべく鋭意研究を重ねた結果、
有効な偏摩耗防+h対策を確立することができたため1
本出願人は特願昭82−285248号(昭和62年l
θ月22日出1ll)において、タイヤの踏面上でその
まわりに沿って連続してのびる主溝と、この主溝によっ
て区分された陸部を有する重荷重用空気入りタイヤであ
って2上記陸部に、踏面の断面輪郭線に対し段下りをな
し、踏面のまわりに沿い連続する一対の細溝又はサイズ
によって陸部を二分してそれから独立する段差領域から
なり、この段差領域の表面はタイヤに作用する荷重の支
持を司る踏面接地域内で路面とすべり接触する、偏摩耗
犠牲部を設けて成ることを特徴とする、偏摩耗を防止し
た重荷重用空気入りタイヤ、を提案した。このものは、
タイヤ走行時、段差領域の表面が踏面接地域内で路面と
すべり接触するため、該段差領域に極めて大きな制動方
向剪断力が発生し、結果として、段差領域の両側の陸部
における剪断力が駆動側へシフトアップされ、この結果
、全ての陸部に駆動方向剪断力が作用するようになるの
である。ここで、駆動方向剪断力を受けている路面の摩
耗速度は制動方向剪断力を受けている路面の摩耗速度よ
り著しく遅いため、制動方向剪断力を受けている段差領
域のみが犠牲となって摩耗し、陸部の摩耗が防止される
のである。 ここで、前述のように路面に周溝を形成すると、陸部の
面積が減少してネガティブ比が高くなるため、空気入り
タイヤの耐摩耗性が低下する。 このため、周溝のyt幅は可能な限り狭い方がよいが、
周溝の溝幅を狭くすると、周溝の溝底の曲率半径が小さ
くなって応力が集中し易くなる。この結果、走行時に横
力等を受けて陸部と段差領域とが相対的に変位する(周
溝が開く)と、この周溝の溝底に容易にクラックが入っ
てリブティアが発生するという問題がある。 この発明は、このような課題を解決することを目的とす
るもので1周方向に連続して延びる主溝と、この主溝に
よって区分された陸部とを路面に有する空気入りタイヤ
において1周方向に連続して延び前記陸部を二分する少
なくとも一対の周溝を前記踏面に形成することにより、
これら対をなす周溝間の路面に、陸部から独立し、その
半径方向外端面が路面の断面輪郭線より半径方向内側に
位置するとともに、通常走行時、踏面接地域に位置する
半径方向外端面が路面にすべり接触する偏摩耗犠牲部と
しての段差領域を画成し、かつ。 前記対をなす周溝のうち、少なくとも幅狭側の周溝内に
周方向に離れた複数のプラットホーム部を設け、該プラ
ットホーム部によって陸部の側壁と段差領域の側壁とを
互いに連結するようにした空気入りタイヤである。 1月 前述のように各周溝の溝幅を可能な限り狭くすると、周
溝の溝底における曲率半径が小さくなるため、横力等を
受けたとき、これら周溝の溝底に大きな応力集中が発生
すると考えられる。しかしながら、この発明においては
、少なくとも幅狭側の周溝内にプラットホーム部を設け
、該プラットホーム部によって陸部の側壁と段差領域の
側壁とを互いに連結するようにしたたため、横力等を受
けた際、陸部と段差領域とは同一方向にほぼ同量だけ変
位するようになり1両者の相対的変位量が小さくなる。 この結果、前記横力等に基ずく周溝の溝底における応力
集中が小さくなり、リブティアが抑制される。ここで、
前述のようにプラットホーム部を少なくとも幅狭側の周
溝に設けたのは、幅狭側の周溝の溝底曲率半径が幅広側
の周溝の溝底曲率半径より小さく、この結果、同一の横
力等を受けた場合には幅狭側の周溝の溝底に応力がより
大きく集中するので、該幅狭側の周溝のクラック発生を
とりあえず防止するためである。なお、この発明におい
ては、プラットホーム部を幅広側の周溝にも設けてもよ
く、また、溝幅が同一の場合にはいずれか一方または双
方の周溝に設ければよい、また、前述したプラットホー
ム部を介して段差領域は陸部に連結されるため、該段差
領域の曲げ剛性が向上し、これにより、前述した偏摩耗
性犠牲部としての効果も向上する。なお、このプラット
ホーム部を周方向に連続し、周溝の溝深さを浅くすると
、摩耗中、後期において段差領域が偏摩耗犠牲部として
機能しなくなるため、この発明では該プラットホームを
局方向に離して複数個設け、これらプラットホーム間に
元の溝深さの周溝を残して、摩耗中、後期においても充
分偏摩耗性犠牲部として機能するようにしている。 実」1例 以下、この発明の一実施例を図面に基づいて説明する。 第1.2.3図において、 1はバス、トラック等の従
動輪または遊輪に装着される重荷重用の空気入りラジア
ルタイヤであり、このタイヤ lのトレッド部5の外表
面、即ち踏面θには周方向に延びる連続した主溝7が複
数本(この実施例では2本)形成されている。この結果
、踏面Bはこれら主溝7により周方向に延びる3木の陸
部8、即ち、タイヤ赤道面θ上に位置する中央リブ8a
と、中央リブ8aの両側に位置する側方リブ8bとに区
分される。ここで、前記主溝7はタイヤ赤道面9と平行
な周方向直溝であるが、この主溝7は公知のジグザグ状
溝であってもよい、また、前記陸部Bはここでは周方向
に連続し直線状に延びるリブであるが、この陸部8は横
溝または補助溝などによってさらに区分されたいわゆる
ブロックあるいはこれを含むリブ−ブロック複合のもの
でもよい、前記側方リブ8bの踏面6には周方向に連続
して延びる少なくとも一対、この実施例では一対の周溝
11がそれぞれ形成され、これらの対をなす周溝】1は
当該位置において前記側力リブ8bを軸方向に二分する
。これらの周溝11は陸部8.即ち側方リブ8bのネガ
ティブ比を高めタイヤ1の耐摩耗性を低下させるため、
これら周溝11の溝幅Wは狭いほど、即ち、10mm以
下であることが好ましく、この実施例では対をなす周溝
11の平均溝幅Wは同一で41である。ここで、各周溝
11はタイヤ赤道面8と平行な周方向直溝であるが、こ
れらの周溝11は公知のジグザグ状溝であってもよい、
このように側方リブ8bに周溝11を形成すると、対を
なす周溝11間の踏面8に前記側方リブ8bから独立し
た段差領域12が画成される。ここで、各段差領域12
は周方向に連続して延びる直線状の細リブであるが、こ
の段差領域12はジグザグ状であってもよく、また、軸
方向に延びる横溝、サイズ等によりブロックに分割され
ていてもよい、前記各段差領域12はその半径方向外端
面13が前記踏面6の断面輪郭線より半径方向内側に位
置している。そして、各段差領域12の半径方向外端面
13はタイヤ lの走行によって踏面接地域に到達した
とき、陸部8と同様に路面と接触するが、この半径方向
外端面13における1周長は陸部8の外面における1周
長より短いため、該半径方向外端面13は路面にすべり
接触し、大きな制動方向の剪断力を受ける。 また、前記周溝11のうち、少なくとも幅狭側の周溝、
この実施例では両方の周溝11内に、それぞれ溝底から
半径方向に突出しこれら周溝11内の一部を埋める複数
のプラットホーム部1Bを設け、これらプラットホーム
部113を周方向に等距離離して配置している。この結
果、前記陸部8、即ち中央、側方リブ8a、8bの側壁
と段差領域12の側壁とはこれらプラットホーム部IB
によって互いに連結されている。このようにプラットホ
ーム部18を少なくとも幅狭側の周溝に設けるようにし
たのは、幅狭側の周溝の溝底曲率半径が幅広側の周溝の
溝底曲率半径より小さく、この結果、同一の横力等を受
けた場合には幅狭側の周溝の溝底に応力がより大きく集
中するので、該幅狭側の周溝のクラック発生をとりあえ
ず防止するためである。また、前記プラットホーム部1
8を周方向に離して複数個設けたのは、仮にこのプラッ
トホーム部を周方向に連続して設け、結果的に周溝の溝
深さを浅くすると、摩耗中、後期において段差領域12
が偏摩耗犠牲部として機能しなくなるからであり、前述
のようにすればプラットホーム部18間に元の溝深さの
周溝11が残るので、摩耗中、後期においても充分に偏
摩耗犠牲部として機能することができるのである。ここ
で、これらプラットホーム部1eの溝底からの高さHは
周溝11の溝深さDの25%から50%の範囲内である
ことが好ましい、その理由は25%未満であると、横力
等を受けたときの陸部8と段差領域12との相対的変位
を抑制する効果が充分ではなく、一方、50%を超える
と、周溝11内を水が周方向に移動しずらくなり排水性
能が低下するからである。また、これらプラットホーム
部1Bの周方向長さLは51以上であることが好ましい
、その理由は、 5mm未満であると、陸部8と段差領
域12との相対的変位を抑制する効果が充分ではないか
らである。 次に、この発明の一実施例の作用について説明する。 前述したタイヤ lをトラック、バス等に装着して走行
させると、該タイヤ1は路面と接地する領域において押
し潰され、大略矩形の踏面接地域が形成されるが、この
踏面接地域内においては前記陸部8の外面および段差領
域12の半径方向外端面13は共に路面に接地する。こ
こで、前記段差領域12の半径方向外端面13は踏面6
の断面輪郭線より半径方向内側に位置しているため、段
差領域12の半径方向外端面13における1周長は陸部
8の外面における1周長より短いが、前述のように段差
領域12の半径方向外端面13および陸部8の外面は踏
面接地域に到達したとき共に接地するため、この段差領
域12の半径方向外端面13は路面に引き摺られながら
すべり接触することになる。この結果1段差領域12に
タイヤ1の転勤を制動する向きの、即ち制動方向の極め
て大きな剪断力が発生する。ここで、タイヤ lの踏面
6の一部に、即ち段差領域12に大きな制動方向剪断力
が偏在すると、残りのタイヤ 1の踏面6、即ち段差領
域12の両側の陸部8の剪断力が結果として駆動側にシ
フトアップされる。この結果、陸部8に作用する剪断力
は陸部8のいずれの二分においても駆動方向のものとな
る。ここで、駆動方向剪断力を受けている踏面Bの摩耗
速度は制動方向剪断力を受けている踏面eの摩耗速度よ
り著しく遅いため、前述のように制動方向剪断力を受け
ている段差領域12のみが犠牲となって摩耗し、陸部8
の偏摩耗が防止される。また、前述のように各周溝11
の溝@(平均溝幅W)を可能な限り狭くすると、各周溝
11の溝底における曲率半径が小さくなるため、横力等
を受けたとき、これら周11!illの溝底に大きな応
力集中が発生すると考えられる。しかしながら、この実
施例では両層溝11内に複数のプラットホーム部1Bを
設け、これらのプラットホーム部16によって陸部8、
ここでは中央、側方リブ8a、 8bの側壁と段差領域
12の側壁とを互いに連結している。このため、タイヤ
 lに横力等が作用したとき、中央、側方リブ8a、8
bと段差領域12とは同一方向にほぼ同量だけ変位し、
両者の相対的変位量が小さくなる。この結果、受ける横
力等が大きなものでも周溝11の溝底に発生する応力集
中はあまり大きくならず、リブティアが確実に抑制され
る。また、段差領域12と中央、側方リブ8a、8bと
はプラットホーム部1Bを介して連結されているので、
該段差領域12の曲げ剛性が向上し、これにより、段差
領域12の偏摩耗犠牲部としての効果も増大する。 次に、試験例を説明する。この試験に当っては、前記実
施例で説明した供試タイヤと、供試タイヤの周溝11、
段差領域12の代わりに主溝7と同様の主溝21を設け
た第4.5図に示すような比較タイヤ1と、供試タイヤ
の周溝11からプラットホーム部を取り除いた第6.7
図に示すような比較タイヤ2と、を?fIllIシた。 ここで、各タイヤのタイヤサイズはIIR22,5であ
り、使用リムは8.25X 22.5であった0次に、
このような各タイヤに7゜25Kg/cjの内圧を充填
するとともに、積載率が100%である2D−4車(平
ボディートラック)の前輪に該タイヤをそれぞれ装着し
た後、高速道路と一般道路との比が7対3の走行路(全
舗装)を8万Km走行させた0次に、前記走行の終了し
た時点において、各タイヤのトレッド端における偏摩耗
の発生幅を測定した。その結果は供試タイヤでは10m
mであったのに対し、比較タイヤlでは32■、比較タ
イヤ2では18+smであった。また、前記走3行の終
了した時点において、供試タイヤおよび比較タイヤ2の
全周溝11におけるリブティアを測定し、その合計を求
めた。その結果は、供試タイヤでは7?mmであったの
に対し、比較タイヤ2では134emであった。このよ
うに、この発明を適用した供試タイヤは耐偏摩耗性を向
上させながらリブティアを抑制することができる。 i且立皇j 以上説明したように、この発明によれば、リブティアの
発生を抑制しなから耐偏摩耗性、耐摩耗性を向上させる
ことができる。
[1] In general, the wear phenomenon that occurs in pneumatic tires depends on the road surface conditions, but when driving for long periods of time on expressways that have recently been significantly improved, the wear phenomenon that occurs in pneumatic tires generally occurs when the tire treads on the road surface. The shape of the road surface changes depending on the external force (tire input) that acts on it, and this causes a difference in the speed and slowness of wear, leading to accelerated cumulative acceleration in the two parts where wear is faster, resulting in uneven wear of river wear, rib punches, etc. It becomes. In order to reduce such uneven wear, various proposals have been made in the past. For example, U.S. Pat. No. 4,155,313 proposes reducing uneven wear by changing the crown shape.
There is a method described in the specification of No. 2, and there is a method described in the specification of US Pat. No. 3,550,865 that reduces uneven wear by arranging the sizes at both ends of the rib. However, such conventional tires cannot prevent uneven wear itself, but merely delay its occurrence, so there is a problem in that uneven wear inevitably occurs after driving. Also, if the above suggestions are implemented,
There is a problem in that the burden of tire input is shifted to other parts, and uneven wear may occur in those parts. As a result of intensive research to solve these problems,
Because we were able to establish an effective uneven wear prevention +h measure1
The present applicant is Japanese Patent Application No. 82-285248 (1988).
A heavy-duty pneumatic tire having a main groove that extends continuously along the circumference of the tread surface of the tire, and a land area separated by this main groove, wherein the above-mentioned land area is The land section is divided into two by a pair of narrow grooves or sizes that descend from the cross-sectional contour of the tread and are continuous along the circumference of the tread. We have proposed a pneumatic tire for heavy loads that prevents uneven wear and is characterized by having an uneven wear sacrifice part that makes sliding contact with the road surface within the tread area that supports the applied load. This thing is
When the tire runs, the surface of the step area slides into contact with the road surface within the tread surface area, so an extremely large shearing force in the braking direction is generated in the step area, and as a result, the shear force on the land on both sides of the step area is driven. As a result, a shearing force in the driving direction is applied to all land parts. Here, the wear rate of the road surface receiving shear force in the driving direction is significantly slower than the wear rate of the road surface receiving shear force in the braking direction, so only the step area receiving shear force in the braking direction is sacrificed and wears out. Therefore, wear of the land portion is prevented. Here, when the circumferential groove is formed on the road surface as described above, the area of the land portion decreases and the negative ratio increases, resulting in a decrease in the wear resistance of the pneumatic tire. For this reason, it is better that the yt width of the circumferential groove is as narrow as possible;
When the groove width of the circumferential groove is narrowed, the radius of curvature of the groove bottom of the circumferential groove becomes small, making it easier for stress to concentrate. As a result, when the land portion and the step area are relatively displaced (opening of the circumferential groove) due to lateral force while driving, the bottom of the circumferential groove easily cracks, resulting in rib tears. There is. The present invention aims to solve such problems, and is directed to a pneumatic tire that has a main groove that extends continuously in one circumferential direction and a land section that is divided by this main groove on the road surface. By forming at least a pair of circumferential grooves on the tread surface that extend continuously in the direction and bisect the land portion,
The road surface between these pairs of circumferential grooves is independent from the land, and its radially outer end surface is located radially inward from the cross-sectional contour line of the road surface, and during normal driving, the radially outer end surface is located in the tread area. A step area is defined as an uneven wear sacrifice part where the end surface slides into contact with the road surface, and. A plurality of platform portions spaced apart in the circumferential direction are provided in at least the narrow side circumferential groove of the pair of circumferential grooves, and the platform portions connect the side wall of the land portion and the side wall of the stepped region to each other. It is a pneumatic tire. JanuaryAs mentioned above, if the groove width of each circumferential groove is made as narrow as possible, the radius of curvature at the groove bottom of the circumferential groove will become smaller, so when lateral force etc. are applied, a large stress concentration will occur at the groove bottom of these circumferential grooves. is thought to occur. However, in this invention, a platform portion is provided in at least the circumferential groove on the narrow side, and the platform portion connects the side wall of the land portion and the side wall of the step area to each other, so that it is subjected to lateral force etc. At this time, the land portion and the stepped region are displaced by approximately the same amount in the same direction, and the relative displacement amount between the two becomes small. As a result, stress concentration at the groove bottom of the circumferential groove due to the lateral force etc. is reduced, and rib tear is suppressed. here,
As mentioned above, the platform portion is provided at least in the circumferential groove on the narrow side because the radius of curvature of the bottom of the circumferential groove on the narrow side is smaller than that of the circumferential groove on the wide side. This is to prevent the generation of cracks in the circumferential groove on the narrow side for the time being, since stress is more concentrated at the bottom of the circumferential groove on the narrow side when a lateral force or the like is applied. In addition, in this invention, the platform part may be provided also in the circumferential groove on the wide side, and if the groove widths are the same, it may be provided in either one or both circumferential grooves. Since the step region is connected to the land portion via the platform portion, the bending rigidity of the step region is improved, and thereby the effect as the uneven wear sacrifice portion described above is also improved. In addition, if this platform part is continuous in the circumferential direction and the groove depth of the circumferential groove is made shallow, the step area will no longer function as an uneven wear victim part in the later stages of wear, so in this invention, the platform is separated in the direction A plurality of such platforms are provided, and a circumferential groove of the original groove depth is left between these platforms, so that it can sufficiently function as a sacrificial part for uneven wear even during and in the later stages of wear. EMBODIMENT OF THE INVENTION Hereinafter, one embodiment of the present invention will be described based on the drawings. In Figure 1.2.3, 1 is a pneumatic radial tire for heavy loads that is installed on the driven wheels or idle wheels of buses, trucks, etc. The outer surface of the tread portion 5 of this tire 1, that is, the tread surface θ, has a A plurality of (two in this embodiment) continuous main grooves 7 extending in the circumferential direction are formed. As a result, the tread B has three land portions 8 extending in the circumferential direction by these main grooves 7, that is, a central rib 8a located on the tire equatorial plane θ.
and side ribs 8b located on both sides of the central rib 8a. Here, the main groove 7 is a straight groove in the circumferential direction parallel to the tire equatorial plane 9, but the main groove 7 may be a known zigzag groove. The land portion 8 may be a so-called block further divided by horizontal grooves or auxiliary grooves, or a rib-block composite including the same.The tread surface 6 of the side rib 8b At least one pair of circumferential grooves 11 (in this embodiment, a pair of circumferential grooves 11 in this embodiment) are formed that extend continuously in the circumferential direction, and these pairs of circumferential grooves 1 divide the side force rib 8b into two in the axial direction at the relevant position. . These circumferential grooves 11 form the land portion 8. That is, in order to increase the negative ratio of the side ribs 8b and reduce the wear resistance of the tire 1,
It is preferable that the groove width W of these circumferential grooves 11 is narrower, that is, 10 mm or less, and in this embodiment, the average groove width W of the pair of circumferential grooves 11 is the same, 41 mm. Here, each circumferential groove 11 is a circumferential straight groove parallel to the tire equatorial plane 8, but these circumferential grooves 11 may be a known zigzag groove.
When the circumferential grooves 11 are formed in the side ribs 8b in this manner, a step region 12 independent from the side ribs 8b is defined on the tread surface 8 between the pair of circumferential grooves 11. Here, each step area 12
is a linear thin rib that extends continuously in the circumferential direction, but this stepped region 12 may have a zigzag shape, or it may be divided into blocks by a horizontal groove extending in the axial direction, size, etc. The radially outer end surface 13 of each step region 12 is located radially inward from the cross-sectional contour line of the tread surface 6. The radial outer end surface 13 of each step region 12 comes into contact with the road surface in the same way as the land portion 8 when the tire l reaches the tread surface area due to running of the tire l, but one circumference of this radial outer end surface 13 is Since it is shorter than one circumference of the outer surface of the portion 8, the radially outer end surface 13 comes into sliding contact with the road surface and is subjected to a large shearing force in the braking direction. Further, among the circumferential grooves 11, at least a circumferential groove on the narrow side,
In this embodiment, a plurality of platform portions 1B are provided in both circumferential grooves 11, respectively, protruding from the groove bottom in the radial direction and filling a portion of the circumferential grooves 11, and these platform portions 113 are spaced equidistantly apart in the circumferential direction. It is placed. As a result, the side walls of the land portion 8, i.e., the central and lateral ribs 8a, 8b and the side wall of the step area 12 are connected to the platform portion IB.
are connected to each other by. The reason why the platform portion 18 is provided at least in the circumferential groove on the narrow side is that the radius of curvature of the bottom of the circumferential groove on the narrow side is smaller than the radius of curvature of the bottom of the circumferential groove on the wide side. This is to prevent the generation of cracks in the circumferential groove on the narrow side for the time being, since stress is more concentrated at the bottom of the circumferential groove on the narrow side when the same lateral force or the like is applied. Further, the platform section 1
The reason why a plurality of grooves 8 are provided spaced apart in the circumferential direction is that if these platform parts were provided continuously in the circumferential direction and the groove depth of the circumferential groove was made shallow as a result, the step area 12 would be formed at a later stage during wear.
This is because the circumferential groove 11 of the original groove depth will remain between the platform parts 18 as described above, so that it will not function as an uneven wear victim part even during wear and in the later stages. It can function. Here, it is preferable that the height H of these platform portions 1e from the groove bottom is within the range of 25% to 50% of the groove depth D of the circumferential groove 11. The effect of suppressing the relative displacement between the land portion 8 and the stepped region 12 when subjected to force, etc. is not sufficient, and on the other hand, if it exceeds 50%, it becomes difficult for water to move in the circumferential direction within the circumferential groove 11. This is because drainage performance deteriorates. Further, it is preferable that the circumferential length L of these platform portions 1B is 51 mm or more, because if it is less than 5 mm, the effect of suppressing the relative displacement between the land portion 8 and the stepped region 12 will not be sufficient. That's because there isn't. Next, the operation of one embodiment of the present invention will be explained. When the tire 1 described above is mounted on a truck, bus, etc. and driven, the tire 1 is crushed in the area where it makes contact with the road surface, forming a roughly rectangular tread area. Both the outer surface of the land portion 8 and the radially outer end surface 13 of the stepped region 12 contact the road surface. Here, the radially outer end surface 13 of the stepped region 12 is the tread surface 6.
Since it is located radially inward from the cross-sectional contour line of the step region 12, one circumference of the step region 12 at the radially outer end surface 13 is shorter than one circumference of the outer surface of the land portion 8; Since the radially outer end surface 13 and the outer surface of the land portion 8 touch the ground together when reaching the tread surface region, the radially outer end surface 13 of this stepped region 12 comes into sliding contact with the road surface while being dragged. As a result, an extremely large shearing force is generated in the one-step difference region 12 in the direction of braking the displacement of the tire 1, that is, in the braking direction. Here, when a large shearing force in the braking direction is unevenly distributed on a part of the tread 6 of the tire 1, that is, the step region 12, the shearing force on the remaining tread 6 of the tire 1, that is, the land portions 8 on both sides of the step region 12 is is shifted up to the drive side. As a result, the shearing force acting on the land portion 8 is in the driving direction in both halves of the land portion 8. Here, since the wear rate of the tread surface B receiving the shear force in the driving direction is significantly slower than the wear rate of the tread surface e receiving the shear force in the braking direction, as described above, the step area 12 receiving the shear force in the braking direction Only the land part 8 is sacrificed and worn out.
uneven wear is prevented. In addition, as described above, each circumferential groove 11
When the groove @ (average groove width W) is made as narrow as possible, the radius of curvature at the groove bottom of each circumferential groove 11 becomes smaller, so when receiving a lateral force etc., these circumferential grooves 11! It is thought that a large stress concentration occurs at the groove bottom of the ill. However, in this embodiment, a plurality of platform parts 1B are provided in the double-layer groove 11, and these platform parts 16 connect the land parts 8,
Here, the side walls of the central and lateral ribs 8a, 8b and the side walls of the stepped region 12 are connected to each other. Therefore, when a lateral force or the like is applied to the tire l, the center and side ribs 8a, 8
b and the stepped region 12 are displaced by approximately the same amount in the same direction,
The relative displacement between the two becomes smaller. As a result, even if the received lateral force or the like is large, the stress concentration generated at the groove bottom of the circumferential groove 11 does not become too large, and rib tear is reliably suppressed. Furthermore, since the stepped region 12 and the center and side ribs 8a and 8b are connected via the platform portion 1B,
The bending rigidity of the stepped region 12 is improved, thereby increasing the effect of the stepped region 12 as a victim of uneven wear. Next, a test example will be explained. In this test, the test tire explained in the above example, the circumferential groove 11 of the test tire,
A comparison tire 1 as shown in FIG. 4.5 in which a main groove 21 similar to the main groove 7 was provided instead of the step region 12, and a tire No. 6.7 in which the platform portion was removed from the circumferential groove 11 of the test tire.
Comparison tire 2 as shown in the figure? fIllIshita. Here, the tire size of each tire was IIR22.5, and the rim used was 8.25X22.5.
After filling each tire with an internal pressure of 7°25Kg/cj and installing the tires on the front wheels of a 2D-4 vehicle (flat body truck) with a loading rate of 100%, the tires can be used on expressways and general roads. The tire was run for 80,000 km on a road with a ratio of 7:3 (all paved), and at the end of the run, the width of uneven wear at the tread edge of each tire was measured. The result was 10m for the test tire.
m, whereas it was 32 sm for comparative tire 1 and 18+sm for comparative tire 2. In addition, at the end of the three runs, the rib tear in the entire circumferential groove 11 of the test tire and comparative tire 2 was measured, and the total was determined. The result was 7 for the test tire. mm, whereas in comparison tire 2 it was 134 em. In this way, the test tire to which the present invention is applied can suppress rib tear while improving uneven wear resistance. As explained above, according to the present invention, uneven wear resistance and abrasion resistance can be improved while suppressing the occurrence of rib tears.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す空気入りタイヤのト
レッド部の平面図、第2図はその子午線断面図、wIJ
3図は第1図のI−I矢視断面図、第4図は試験に使用
した比較タイヤlのトレッド部の平面図、第5図はその
子午線断面図、第6図は試験に使用した比較タイヤ2の
トレッド部の平面図、第7図はその子午線断面図である
。 l・・・空気入りタイヤ 8・・・路面?・・・主溝 
      8・・・陸部11・・・周溝      
12・・・段差領域13・・・半径方向外端面 16・
・・プラットホーム部特許出願人  株式会社ブリデス
トン 代理人  弁理士  多 1)敏 雄 第1図 第3図 12・・・段差領域 13・・・半径方向外端面 16・・・プラ、トホーム部 第 図 第 図
FIG. 1 is a plan view of a tread portion of a pneumatic tire showing an embodiment of the present invention, and FIG. 2 is a meridian cross-sectional view thereof, wIJ
Figure 3 is a cross-sectional view taken along the line I-I in Figure 1, Figure 4 is a plan view of the tread portion of the comparative tire l used in the test, Figure 5 is a meridian cross-sectional view thereof, and Figure 6 is the tire used in the test. A plan view of the tread portion of comparative tire 2, and FIG. 7 is a meridian cross-sectional view thereof. l...Pneumatic tires 8...Road surface? ...Main groove
8...Land part 11...Surrounding groove
12... Step region 13... Radial direction outer end surface 16.
...Platform part patent applicant Brideston Co., Ltd. Agent Patent attorney Tadashi 1) Toshio Fig. 1 Fig. 3 12... Step region 13... Radial outer end surface 16... Plastic, platform part Fig. 1 figure

Claims (1)

【特許請求の範囲】[Claims] 周方向に連続して延びる主溝と、この主溝によって区分
された陸部とを踏面に有する空気入りタイヤにおいて、
周方向に連続して延び前記陸部を二分する少なくとも一
対の周溝を前記踏面に形成することにより、これら対を
なす周溝間の踏面に、陸部から独立し、その半径方向外
端面が踏面の断面輪郭線より半径方向内側に位置すると
ともに、通常走行時、踏面接地域に位置する半径方向外
端面が路面にすべり接触する偏摩耗犠牲部としての段差
領域を画成し、かつ、前記対をなす周溝のうち、少なく
とも幅狭側の周溝内に周方向に離れた複数のプラットホ
ーム部を設け、該プラットホーム部によって陸部の側壁
と段差領域の側壁とを互いに連結するようにしたことを
特徴とする空気入りタイヤ。
A pneumatic tire having a main groove extending continuously in the circumferential direction and a land section separated by the main groove on the tread surface,
By forming at least a pair of circumferential grooves on the tread surface that extend continuously in the circumferential direction and bisect the land portion, the tread surface between the pair of circumferential grooves has a radially outer end surface that is independent of the land portion. The step area is located radially inward from the cross-sectional contour line of the tread, and defines a step region as an uneven wear victim part where the radially outer end surface located in the tread surface area slides into contact with the road surface during normal driving, and A plurality of platform portions spaced apart in the circumferential direction are provided in at least the narrow side circumferential groove of the pair of circumferential grooves, and the platform portions connect the side wall of the land portion and the side wall of the stepped region to each other. A pneumatic tire characterized by:
JP63335087A 1988-12-29 1988-12-29 Pneumatic tire Pending JPH02179506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63335087A JPH02179506A (en) 1988-12-29 1988-12-29 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63335087A JPH02179506A (en) 1988-12-29 1988-12-29 Pneumatic tire

Publications (1)

Publication Number Publication Date
JPH02179506A true JPH02179506A (en) 1990-07-12

Family

ID=18284626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63335087A Pending JPH02179506A (en) 1988-12-29 1988-12-29 Pneumatic tire

Country Status (1)

Country Link
JP (1) JPH02179506A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114802U (en) * 1991-03-27 1992-10-09 オーツタイヤ株式会社 Tire tread structure
US5547005A (en) * 1991-11-05 1996-08-20 Sumitomo Rubber Industries, Ltd. Radial tire with enhanced bead durability
JP2006527685A (en) * 2003-06-16 2006-12-07 ソシエテ ド テクノロジー ミシュラン Tread pattern with at least one insertion element
JP2007062691A (en) * 2005-09-02 2007-03-15 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2008110692A (en) * 2006-10-31 2008-05-15 Yokohama Rubber Co Ltd:The Pneumatic tire
JP4707861B2 (en) * 2001-04-02 2011-06-22 株式会社ブリヂストン Heavy duty tire

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114802U (en) * 1991-03-27 1992-10-09 オーツタイヤ株式会社 Tire tread structure
US5547005A (en) * 1991-11-05 1996-08-20 Sumitomo Rubber Industries, Ltd. Radial tire with enhanced bead durability
JP4707861B2 (en) * 2001-04-02 2011-06-22 株式会社ブリヂストン Heavy duty tire
JP2006527685A (en) * 2003-06-16 2006-12-07 ソシエテ ド テクノロジー ミシュラン Tread pattern with at least one insertion element
US7380577B2 (en) * 2003-06-16 2008-06-03 Michelin Recherche Et Technique S.A. Tread pattern having at least one inserted element
JP4685770B2 (en) * 2003-06-16 2011-05-18 ソシエテ ド テクノロジー ミシュラン Tread pattern with at least one insertion element
JP2007062691A (en) * 2005-09-02 2007-03-15 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2008110692A (en) * 2006-10-31 2008-05-15 Yokohama Rubber Co Ltd:The Pneumatic tire
US8225832B2 (en) 2006-10-31 2012-07-24 The Yokohama Rubber Co., Ltd. Pneumatic tire

Similar Documents

Publication Publication Date Title
KR950008772B1 (en) Heavy duty penumatic tires preventing uneden wearing
JP3533757B2 (en) Pneumatic tire
US3286756A (en) Automobile tire
AU766391B2 (en) Tire having sacrificial bridging
JP3035172B2 (en) Radial tire
JP2613448B2 (en) Pneumatic tire
JP4053662B2 (en) Pneumatic radial tire
JP2698396B2 (en) Pneumatic tires for trucks and buses
JP2738549B2 (en) Pneumatic radial tire for heavy loads
JPH0872508A (en) Heavy load pneumatic tire
JPH02179506A (en) Pneumatic tire
JPH04143105A (en) Pneumatic radial tire
EP1685982B1 (en) Pneumatic tire
CN109982870B (en) Tread for a civil engineering machine tyre comprising an improved ventilation cavity
JP2744612B2 (en) Pneumatic tires for heavy loads that prevent uneven wear
JP2001191736A (en) Pneumatic tire
JPH05607A (en) Pneumatic tire
JPH0159121B2 (en)
JP2700808B2 (en) Pneumatic tire
JP3200162B2 (en) Pneumatic tire
JP2795894B2 (en) Radial tire for high internal pressure and heavy load
JP3404130B2 (en) Pneumatic tire
JP2744611B2 (en) Heavy duty pneumatic tires
JP2754228B2 (en) Pneumatic tire
JPH07215015A (en) Tire