JPH02179455A - Total organic carbon analyzer - Google Patents

Total organic carbon analyzer

Info

Publication number
JPH02179455A
JPH02179455A JP33547488A JP33547488A JPH02179455A JP H02179455 A JPH02179455 A JP H02179455A JP 33547488 A JP33547488 A JP 33547488A JP 33547488 A JP33547488 A JP 33547488A JP H02179455 A JPH02179455 A JP H02179455A
Authority
JP
Japan
Prior art keywords
sample
carbon dioxide
carbon
detector
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33547488A
Other languages
Japanese (ja)
Other versions
JP2666448B2 (en
Inventor
Masami Matsui
松居 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP33547488A priority Critical patent/JP2666448B2/en
Publication of JPH02179455A publication Critical patent/JPH02179455A/en
Application granted granted Critical
Publication of JP2666448B2 publication Critical patent/JP2666448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To make the amount of specimen injection constant regardless of the concentration of carbon and to make it possible to perform highly reliable measurement by connecting a flow-path switching mechanism between a carbon dioxide transformer and non-dispersion type infrared-ray gas detector, and selecting a flow path. CONSTITUTION:When a specified amount of sample solution is injected into a combustion furnace, organic and inorganic carbons in the solution are transformed into carbon dioxide gas. The carbon dioxide gas intactly passes through an inorganic carbon reaction furnace 12 and flows into a non-dispersion type infrared-ray gas detector 31 through a path which is selected with a range switching mechanism 20. After the concentration of the gas is measured, the same sample is injected into the reaction furnace 12 by the same amount. Only the inorganic carbon in the sample is transformed into carbon dioxide gas. The carbon dioxide gas flows into the detector 31 through the mechanism 20. The mechanism 20 can select a path through which the sample can directly flows in and a path wherein the sample is divided at a constant ratio so that one is made to flow directly and the other is made to flow through a carbon- dioxide-gas absorbing pipe 27. When the sample has the high concentration, the sample is diluted so as to prevent the decrease in accuracy of the detector 31. Thus the accurate measurement can be performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水溶液に含まれている全有機炭素、無機炭素
、及び全炭素を炭酸ガスに変換して分析する装置に(資
)する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides an apparatus for converting all organic carbon, inorganic carbon, and all carbon contained in an aqueous solution into carbon dioxide gas for analysis.

(従来技術) 水溶液中の有機炭素の測定は、通常試料・となる溶液を
燃焼炉、及び反応炉に全有機炭素と無機炭素を炭酸ガス
に変換し、この炭酸ガスを非分散型赤外線ガス検出器に
より検出しているが、非分散型赤外線検出器の実用的な
検出範囲が限られているので、溶液中の全有機炭素濃度
に応じて試料の注入量を調整して検出器に流入する炭酸
ガスの濃度を測定レンジ内に収めるための操作を必要と
する。
(Prior art) To measure organic carbon in an aqueous solution, the sample solution is usually placed in a combustion furnace and a reaction furnace to convert all organic carbon and inorganic carbon into carbon dioxide gas, which is then detected using non-dispersive infrared gas detection. However, since the practical detection range of non-dispersive infrared detectors is limited, the injection amount of the sample is adjusted according to the total organic carbon concentration in the solution and flows into the detector. Operation is required to keep the concentration of carbon dioxide gas within the measurement range.

(解決すべき課題) このため、試料注入用のマイクロシリンジを複数種類用
意したり、さらには各マイクロシリンジ毎の計量誤差を
補正するための検を線作成作業が必要になるという問題
がある。
(Problems to be Solved) Therefore, there are problems in that it is necessary to prepare multiple types of microsyringes for sample injection, and furthermore, it is necessary to create a test line to correct measurement errors for each microsyringe.

(課題を解決するための手段) このような問題を解消するために本発明においでは、炭
酸ガス変換炉と非分散型赤外線ガス検出器との間に流路
切換弁を接続し、前記炭酸ガス変換炉からの流体を前記
検出器にMWi流入させる流路と、一定比率に分配させ
て一方を前記検出器に、他方を炭酸ガス吸収手段を介し
て前記検出器に流入させる流路とを選択可能とした。
(Means for Solving the Problems) In order to solve such problems, in the present invention, a flow path switching valve is connected between the carbon dioxide conversion furnace and the non-dispersive infrared gas detector, and the carbon dioxide gas is Selecting a flow path that allows MWi of fluid from the conversion furnace to flow into the detector, and a flow path that distributes the fluid at a fixed ratio so that one of the fluids flows into the detector and the other flow into the detector via the carbon dioxide absorption means. made possible.

(実施例) そこで、以下に本発明の詳細を図示した実施例に基づい
て説明する。
(Example) The details of the present invention will be described below based on illustrated examples.

第1図は、本発明の一寅施例を示すものであって、図中
符号工は炭酸ガス変換炉で、上部に試料注入口1を備え
、一端に高純度空気源2が、他端に排出口3を有する容
器4を有機炭素を熱分解させて高純度空気と反応させる
に足る温度、例えば680℃に加熱する加熱炉5に収容
してなる燃焼炉6と、上端に試料注入ロアを備え、一端
にドレンセパレータ8を介して燃焼炉6の排出口3に、
他端にドレンセパレータ9を介して後述するレンジ切換
機構20が接続して触媒15を収容する容器10を、例
えば150℃に加熱する炉11に収容してなる無機炭素
反応炉12を備え、燃焼炉6により試料に含まれる全て
の炭素を、また反応炉12では無機炭素だけを選択的に
炭酸ガスに変換するように構成されている。
FIG. 1 shows one embodiment of the present invention, in which the reference symbol in the figure is a carbon dioxide conversion furnace, which is equipped with a sample inlet 1 at the top, a high-purity air source 2 at one end, and a high-purity air source 2 at the other end. A combustion furnace 6 is constructed by housing a container 4 having a discharge port 3 in a heating furnace 5 that heats it to a temperature sufficient to thermally decompose organic carbon and react with high-purity air, for example 680°C, and a sample injection lower at the upper end. and is connected to the exhaust port 3 of the combustion furnace 6 via a drain separator 8 at one end,
The other end is connected to a range switching mechanism 20 (described later) through a drain separator 9, and an inorganic carbon reactor 12 is provided in which a container 10 containing a catalyst 15 is housed in a furnace 11 that heats it to, for example, 150°C. The furnace 6 is configured to selectively convert all carbon contained in the sample, and the reactor 12 selectively converts only inorganic carbon into carbon dioxide gas.

図中符号2oは、前述のレンジ切換機構で、複数の流路
、この実施例では8つの流路を選択できる流路切換弁2
1¥!、介して炭酸ガス変換炉Iと非分散型ガス分析計
31を接続するとともに、第1、第2、第3の切換流路
(図中それぞれ・・・・・・により示す)を形成して、
第1の流路切換路(・・・)には分析系全体の管路抵抗
を変えない程度の管22を、また第2、第3の切換流路
(−=== ’)にはそれぞれ管路抵抗の異なる抵抗管
23.24を接続するとともに、抵抗管23.24の流
入側上流から管路25.26により炭酸ガス吸収剤、例
えばソーダアスベストを収容した炭酸ガス吸収管27を
介して非分散型赤外線ガス検出器31に流入するように
構成されでいる。なお、図中符号32は出力装置tu示
す。
Reference numeral 2o in the figure is the range switching mechanism described above, and a flow path switching valve 2 that can select a plurality of flow paths, eight flow paths in this embodiment.
1 yen! , to connect the carbon dioxide conversion furnace I and the non-dispersive gas analyzer 31, and to form first, second, and third switching channels (indicated by ... in the figure, respectively). ,
The first flow switching channel (...) is equipped with a tube 22 that does not change the pipe resistance of the entire analysis system, and the second and third switching channels (-===') are each Resistance pipes 23 and 24 having different pipe resistances are connected, and a carbon dioxide absorption pipe 27 containing a carbon dioxide absorbent, for example, soda asbestos is connected from the inflow side upstream of the resistance pipes 23 and 24 through a pipe 25 and 26. The gas is configured to flow into a non-dispersive infrared gas detector 31 . Note that the reference numeral 32 in the figure indicates the output device tu.

この実施例においで、マイクロシリンジによりサンプル
である溶液を規定量、燃焼炉6に注入すると、サンプル
中の有機及び無機炭素は、キャリアガスを兼ねる高純度
空気の酸素と酸化反応して炭酸ガス1こ変換される。こ
の炭酸ガスは、無機炭素反応炉12をそのまま通過して
高純度空気とともにレンジ切換機構20に流入し、選択
されている流路、今の場合には第1流路を経由して稀釈
を受けることなく非分散型赤外線ガス検出器31に流入
する。
In this example, when a specified amount of the sample solution is injected into the combustion furnace 6 using a microsyringe, the organic and inorganic carbon in the sample undergoes an oxidation reaction with oxygen in the high-purity air that also serves as a carrier gas, resulting in carbon dioxide gas 1. This will be converted. This carbon dioxide gas passes through the inorganic carbon reactor 12 as it is, flows into the range switching mechanism 20 together with high-purity air, and is diluted via the selected flow path, in this case the first flow path. The gas flows into the non-dispersive infrared gas detector 31 without any interference.

全有機炭素についでの濃度測定が終了した段階で、同一
のサンプルを同−j1だけ無機炭素反応炉12.12に
注入する。サンプルに含まれている無機炭素は、触媒1
5の作用を受けて炭酸ガスに変換され、燃焼炉6を経由
して流入する高純度空気によりレンジ切換機構20を経
て検出器31に流入する。
When the concentration measurement for total organic carbon is completed, the same sample is injected by -j1 into the inorganic carbon reactor 12.12. The inorganic carbon contained in the sample is the catalyst 1.
5 is converted into carbon dioxide gas, and the high purity air flowing through the combustion furnace 6 flows into the detector 31 through the range switching mechanism 20.

これら第1、第2の工程により測定された濃度し、と1
2はそれぞれ全炭素濃度と無機炭素濃度を表わしでいる
から、その差分(LI   12)を演算することによ
り、サシプル中の有機炭素の濃度を求めることができる
The concentrations measured by these first and second steps are:
Since 2 represents the total carbon concentration and inorganic carbon concentration, the concentration of organic carbon in the sacsiple can be determined by calculating the difference (LI 12).

一方、高い濃度、例えば10倍の濃度で有機炭素を含む
溶液の分析にあっては、前述の場合と同一の計量が可能
なマイクロシリンジを用いて同一量計量する一方、レン
ジ切換機構20を第2、もしくは第3の流路に切換えて
10倍の希釈率を選択する。
On the other hand, when analyzing a solution containing organic carbon at a high concentration, for example, 10 times the concentration, the same amount is measured using a microsyringe that can perform the same measurement as in the case described above, while the range switching mechanism 20 is Switch to the second or third flow path and select a dilution rate of 10 times.

この状態でサンプルを燃焼炉6に注入すると、ここで発
生した炭酸ガスは、無機炭素反応炉12を経由してレン
ジ切換機構20の一方の抵抗管、例えば23に流入する
When the sample is injected into the combustion furnace 6 in this state, the carbon dioxide gas generated here flows into one resistance pipe, for example 23, of the range switching mechanism 20 via the inorganic carbon reaction furnace 12.

ところで、この抵抗管23の上流側には管路25により
バイパス路が形成されているため、抵抗管23の流体抵
抗日、と管路25及び炭酸ガス吸収管27の流体抵抗R
2により定まる分配比R,/ (R,十R) 、R2/
 (R,十R) (こより分配される。これにより、レ
ンジ切換機構20に流入した炭酸ガスの内、R2/ (
R,+R)だ(丈か検出器に、また残りのR1/(日、
十R)は炭酸ガス吸収管27により吸収され、高純度空
気だ1すとなって検出器31に流入する。
By the way, since a bypass path is formed by the pipe line 25 on the upstream side of the resistance pipe 23, the fluid resistance R of the resistance pipe 23 and the fluid resistance R of the pipe line 25 and the carbon dioxide absorption pipe 27 are
Distribution ratio R, / (R, 10R) determined by 2, R2/
(R, 10R) (distributed from this. As a result, among the carbon dioxide gas that has flowed into the range switching mechanism 20, R2/ (
R, +R) (length or detector, and the remaining R1/(day,
10R) is absorbed by the carbon dioxide absorption tube 27 and flows into the detector 31 as a high-purity air stream.

言うまでもなく、高純度空気中に含まれる炭酸ガスの量
は、極〈わずがであるから、検出器31に流入する気体
の流量に変化は殆ど生じない。
Needless to say, since the amount of carbon dioxide gas contained in high-purity air is extremely small, there is almost no change in the flow rate of gas flowing into the detector 31.

これにより、炭酸ガスは抵抗管23の流体抵抗により定
まる稀釈率でもって検出器に注入することどなるから、
検出器31は高い精度で濃度測定を実行する。
As a result, carbon dioxide gas is injected into the detector at a dilution rate determined by the fluid resistance of the resistance tube 23.
Detector 31 performs concentration measurements with high accuracy.

このようにして、全炭素につり1での測定が終了した段
階で、レンジ切換機構20を変更することなく、同一サ
ンプルを同一量だけ無機炭素反応炉12に注入する。こ
れにより、サシプル中の無機炭素も同一の稀釈率でもっ
て検出されることになる。
In this way, at the stage when the measurement at 1 per total carbon is completed, the same amount of the same sample is injected into the inorganic carbon reactor 12 without changing the range switching mechanism 20. As a result, inorganic carbon in the sacsiple can also be detected at the same dilution rate.

このようにして得られた2つの測定結果の差分を稀釈率
で補正することにより、非分散型赤外線ガス検出器30
が精度の低下を来すような高濃度のサンプルであっても
高い精度で測定することが可能となる。
By correcting the difference between the two measurement results obtained in this way with the dilution rate, the non-dispersive infrared gas detector 30
It becomes possible to measure with high accuracy even a highly concentrated sample that would cause a decrease in accuracy.

なお、この英施例においては、無機炭素の測定時にも稀
釈を行っているが、無機炭素の濃度が低い場合には通常
の測定、つまり管22を経由させて測定すればよい。
In this example, dilution is also performed when measuring inorganic carbon, but if the concentration of inorganic carbon is low, normal measurement, that is, measurement via tube 22 may be sufficient.

[寅施例] 工場排液をPH2に調製したのものを300マイクロリ
ツトルずつサンプルとするとともに、レンジ切換機構に
より稀釈率を10倍に設定して全有機炭素について3回
測定を行ったところ、第2図Hに示したように濃度16
9.9ppmの値を得ることができた。
[Example] Using 300 microliters of factory effluent prepared to pH 2 as a sample, the dilution rate was set to 10 times using the range switching mechanism, and total organic carbon was measured three times. As shown in Figure 2H, concentration 16
A value of 9.9 ppm could be obtained.

他方、比較のため同一の排液を前述の1 /10、つま
り30マイクロリツトルずつ用いて従来法、つまり稀釈
を行うことなく測定したところ、濃度170.41)P
Iという測定結果(IIりを得た。なお、図中Iは、全
有機炭素濃度200ppmの標準液による測定結果を示
す。
On the other hand, for comparison, when the same waste liquid was measured using the above-mentioned 1/10, that is, 30 microliters, using the conventional method, that is, without dilution, the concentration was 170.41)P.
A measurement result of I (II) was obtained. In the figure, I indicates a measurement result using a standard solution with a total organic carbon concentration of 200 ppm.

このことから、本発明によれば、計量すべきサンプル量
を多くすることができて、少なくとも従来法よりも高い
精度でのサンプル計量が可能となる。
Therefore, according to the present invention, it is possible to increase the amount of sample to be measured, and at least it is possible to measure the sample with higher accuracy than the conventional method.

(効果) 以上説明したように本発明においては、炭酸ガス変換炉
と非分散型赤外線ガス検出器との間に流路切換弁を接続
し、前記炭酸ガス変換炉からの流体を前記検出器に直接
流入させる流路と、一定比率に分配させて一方を前記検
出器に、他方を炭酸ガス吸収手段を介して前記検出器に
流入させる流路を選択可能としたので、試料中の炭素濃
度に関わりなく試料の注入量を一定化することができ、
計量ミスやを防止して信頼性の高い測定を可能ならしめ
る。
(Effects) As explained above, in the present invention, a flow path switching valve is connected between a carbon dioxide conversion furnace and a non-dispersive infrared gas detector, and fluid from the carbon dioxide conversion furnace is directed to the detector. Since it is possible to choose between a channel that allows direct flow into the sample and a channel that distributes the flow into the detector at a fixed ratio and the other flow channel through the carbon dioxide absorption means, the carbon concentration in the sample can be controlled. The injection amount of the sample can be kept constant regardless of the
To prevent measurement errors and enable highly reliable measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一寅施例を示す構成図、第2図は同上
装置及び従来装置による分析結果の一例を示す図である
。 ■・・・・炭酸ガス変換炉 2・・・・高純度ガス源 6・・・・燃焼炉 12・・・・無機炭素反応炉 20・・・・レンジ切換機構 23.24・・・・抵抗管 27・・・・炭酸ガス吸収管
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 is a diagram showing an example of analysis results using the same device and a conventional device. ■...Carbon dioxide conversion furnace 2...High purity gas source 6...Combustion furnace 12...Inorganic carbon reactor 20...Range switching mechanism 23, 24...Resistance Pipe 27... Carbon dioxide absorption pipe

Claims (1)

【特許請求の範囲】[Claims] 炭酸ガス変換炉と非分散型赤外線ガス検出器との間に流
路切換弁を接続し、前記炭酸ガス変換炉からの流体を前
記検出器に直接流入させる流路と、一定比率で分配させ
て一方を前記検出器に、他方を炭酸ガス吸収手段を介し
て前記検出器に流入させる流路とを選択可能とした全有
機炭素分析装置。
A flow path switching valve is connected between the carbon dioxide conversion furnace and the non-dispersive infrared gas detector, and the fluid from the carbon dioxide conversion furnace is distributed at a fixed ratio with a flow path that directly flows into the detector. A total organic carbon analyzer in which one can be selected from a flow path that flows into the detector and the other flow path that flows into the detector via a carbon dioxide absorption means.
JP33547488A 1988-12-29 1988-12-29 Total organic carbon analyzer Expired - Lifetime JP2666448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33547488A JP2666448B2 (en) 1988-12-29 1988-12-29 Total organic carbon analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33547488A JP2666448B2 (en) 1988-12-29 1988-12-29 Total organic carbon analyzer

Publications (2)

Publication Number Publication Date
JPH02179455A true JPH02179455A (en) 1990-07-12
JP2666448B2 JP2666448B2 (en) 1997-10-22

Family

ID=18288970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33547488A Expired - Lifetime JP2666448B2 (en) 1988-12-29 1988-12-29 Total organic carbon analyzer

Country Status (1)

Country Link
JP (1) JP2666448B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274139A (en) * 2004-03-22 2005-10-06 Horiba Ltd Measuring intrument for specific component in sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274139A (en) * 2004-03-22 2005-10-06 Horiba Ltd Measuring intrument for specific component in sample
JP4486837B2 (en) * 2004-03-22 2010-06-23 株式会社堀場製作所 Device for measuring the concentration of specific components in fuel oil

Also Published As

Publication number Publication date
JP2666448B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
TW421843B (en) Protection of semiconductor fabrication and similar sensitive processes
US5205988A (en) Apparatus for measuring gaseous aldehyde
JP3265830B2 (en) Total organic carbon meter
US10761018B2 (en) System and method for impurity detection in beverage grade gases
US5246668A (en) Air sampling and analysis system
JP2006275801A (en) Component analyzer of exhaust gas
EP0611965B1 (en) Carbon analyzer for both aqueous solutions and solid samples
EP1207390B1 (en) Analyzing system for high accuracy nitrogen determination
CN104792704A (en) Continuous synchronous real-time on-line determination method and instrument for three indexes of TOC, TN and TP
JPH02179455A (en) Total organic carbon analyzer
JP3299089B2 (en) Gas analyzer
JP2002031628A (en) Element analyzer
US5312761A (en) Method for measuring trace quantity of oxygen in gas
KR102414181B1 (en) Total organic carbon analyzer
KR20010067371A (en) Method for analyzing impurities contained in gas and apparatus therefor
JPH0827273B2 (en) Carbon measuring device
JPS61104256A (en) Apparatus for analysis of total volatile organic compound
CN215866549U (en) Sulfur content analytical equipment in gas
JPH0961361A (en) Continuous ammonia concentration measuring device
CN217484270U (en) Detection device for directly measuring non-methane total hydrocarbon content
JPH089634Y2 (en) Atmospheric CH ▲ Bottom 4 ▼ Concentration measuring device
JPH06118075A (en) Ammonia analyzer
JP5423662B2 (en) Water quality analyzer
JP3957333B2 (en) Special material gas component concentration measuring device for semiconductors
USRE31438E (en) Infrared ray gas analyzing apparatus