JPH02179419A - Hot-wire airflow sensor and manufacture thereof - Google Patents

Hot-wire airflow sensor and manufacture thereof

Info

Publication number
JPH02179419A
JPH02179419A JP63335308A JP33530888A JPH02179419A JP H02179419 A JPH02179419 A JP H02179419A JP 63335308 A JP63335308 A JP 63335308A JP 33530888 A JP33530888 A JP 33530888A JP H02179419 A JPH02179419 A JP H02179419A
Authority
JP
Japan
Prior art keywords
glass
wire
alumina
air flow
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63335308A
Other languages
Japanese (ja)
Other versions
JPH0687022B2 (en
Inventor
Shigeo Tsuruoka
鶴岡 重雄
Ken Takahashi
研 高橋
Hiroatsu Tokuda
博厚 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63335308A priority Critical patent/JPH0687022B2/en
Publication of JPH02179419A publication Critical patent/JPH02179419A/en
Publication of JPH0687022B2 publication Critical patent/JPH0687022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To simplify manufacture and to improve reliability by covering a hollow part with a composite of which the outer layer is formed of glass of a softening point 800 deg.C or above and the inner layer of glass and ceramics, and by burying a coiled metal wire in the inner wall of the hollow part. CONSTITUTION:A sensor 1 is made to be a heating resistor by making a current flow through a coiled platinum wire 2. This wire 2 is wound round in the shape of a coil virtually around the center line in the axial direction of a hollow part 6, and lead wires 3 of a platinum-iridium alloy are connected to the opposite ends of said wire by connecting parts 21 respectively. The hollow part 6 is sealed hermetically with a glass member 5 of a softening point 800 deg.C or above as an outer layer and with a composite member 4 of glass and alumina as an inner layer, and the lead wires 3 are supported by the members 4 and 5. By constructing the sensor in this way, the manufacture can be simplified and the reliability can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車内燃機関の吸入空気量の検出などに使
用される熱線式空気流量センサ及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hot-wire air flow sensor used for detecting the intake air amount of an automobile internal combustion engine, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

熱線式空気流量計は、センサとして発熱抵抗体が用いら
れ、この発熱抵抗体を空気流中に置(ことで、その空気
流量が測定される。即ち、空気流速によって発熱抵抗体
の放散熱量が変化するのを利用し、空気流量の変化に応
じて発熱抵抗体の温度を一定に保つようにその電流を変
化させ、この電流を検出することで間接的に空気流量を
測定するようにしたものである。このような空気流量計
は、可動部分がなく、しかも空気流量を直接測定できる
ため、自動車内燃機関の空燃比制御用などに広く採用さ
れている。
A hot wire air flowmeter uses a heating resistor as a sensor, and the heating resistor is placed in an air flow (thereby, the air flow rate is measured. In other words, the amount of heat dissipated by the heating resistor is determined by the air flow velocity). The current is changed to keep the temperature of the heating resistor constant as the air flow rate changes, and the air flow rate is indirectly measured by detecting this current. This kind of air flow meter has no moving parts and can directly measure the air flow rate, so it is widely used for controlling the air-fuel ratio of automobile internal combustion engines.

その熱線式空気流量センサにおける発熱抵抗体としては
、例えば実開昭56−96326号公報に記載のように
、極めて細い例えば直径が数十ミクロンの白金などの金
属ワイヤを、セラミックスなどのボビンに巻回したボビ
ン方式のものがある。
As the heating resistor in the hot wire type air flow sensor, for example, as described in Japanese Utility Model Application Publication No. 56-96326, an extremely thin metal wire made of platinum or the like with a diameter of several tens of microns is wound around a bobbin made of ceramic or the like. There is one that uses a spinning bobbin method.

また、特開昭62−83622号公報に記載のように、
発熱抵抗体となる金属ワイヤを金属芯線に巻回し、ガラ
スコーティングした後、酸により金属芯線だけをエツチ
ング除去したボビンレス方式のものも知られている。
In addition, as described in Japanese Patent Application Laid-Open No. 62-83622,
A bobbinless method is also known in which a metal wire serving as a heating resistor is wound around a metal core wire, coated with glass, and then only the metal core wire is etched away using acid.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ボビン方式のものでは、ボビン自体を加熱する熱、及び
ボビンに伝わって支持体に伝わる熱量が無視できず、特
に空気流量の変化に対し過渡応答が遅れるため、自動車
の急加速、減速時にサージングが発生するという問題が
あった。
With the bobbin type, the heat that heats the bobbin itself and the amount of heat that is transmitted to the bobbin and then to the support cannot be ignored, and the transient response to changes in air flow is delayed, so surging occurs when the car suddenly accelerates or decelerates. There was a problem that occurred.

これに対して、ボビンレス方式のものでは、ボビンがな
いため、応答性は優れている。しかじながら、金属ワイ
ヤを巻回した金属芯線を、コーティングしたガラスの焼
成後に酸によってエツチング除去する作業が煩雑である
。また、金属芯綿を除去する際の酸によるエツチングに
よって、ガラス表面が荒れ、使用環境下で空気中の塵埃
やイオン性物質などが付着して特性を劣化させるので、
信頼性が低下する問題があった。
On the other hand, the bobbinless type has excellent responsiveness because there is no bobbin. However, the process of removing the metal core wire around which the metal wire is wound by etching with acid after firing the coated glass is complicated. In addition, etching with acid when removing the metal core cotton will roughen the glass surface, and dust and ionic substances in the air will adhere to it under the usage environment, deteriorating its properties.
There was a problem of decreased reliability.

本発明の目的は、これら従来の問題を解決し、応答性は
優れていながらも、エツチングを不要にして製造の簡単
化を図ると共に、信頼性も向上するようにした熱線式空
気流量センサ及びその製造方法を提供するにある。
The object of the present invention is to solve these conventional problems and provide a hot wire air flow sensor that has excellent responsiveness, simplifies manufacturing by eliminating the need for etching, and improves reliability. To provide a manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため本発明は、外層が800゛C以
上の軟化点のガラス、内層がガラスとセラミックスの複
合物で空洞部を覆うと共に、両端がそれぞれ外部に電気
的に引出されたコイル状の金属ワイヤを、前記空洞部の
内壁面に埋込んだ状態で配設したものである。
In order to achieve the above object, the present invention covers a cavity with an outer layer of glass having a softening point of 800°C or higher, an inner layer of a composite of glass and ceramics, and a coil-like structure with both ends electrically drawn out to the outside. A metal wire is embedded in the inner wall surface of the cavity.

上記構成部材の内セラミックスは、A1□Q3. Si
O□。
Among the above structural members, ceramics are A1□Q3. Si
O□.

SiC,MgOなどの単体又はこれらの複合成分からな
り、その代表例としてAl5o、を挙げるが、A1□0
゜以外のいずれのセラミックスを用いることも可能であ
る。また、前記外層のガラス部材が内層のアルミナ又は
アルミナとガラスの混合部材に浸透してなるガラスとア
ルミナの複合部材が十分な強度を保持すると共に、高寸
法精度の前記熱線式空気流量センサを得るために、前記
複合部材中に含まれるアルミナが30〜70の体積率を
有するようにしたものである。
It consists of simple substances such as SiC, MgO, etc. or composite components thereof, and Al5o is given as a representative example, but A1□0
It is also possible to use any ceramic other than ゜. Further, the glass and alumina composite member obtained by penetrating the outer layer glass member into the inner layer alumina or a mixed member of alumina and glass maintains sufficient strength and provides the hot wire type air flow sensor with high dimensional accuracy. Therefore, the alumina contained in the composite member has a volume fraction of 30 to 70.

更に、本発明は、昇華性を有する芯線、例えばモリブデ
ン(Mo)芯線に発熱抵抗体の金属ワイヤを巻回す工程
と、巻回した前記ワイヤの両端の引出し部を除いて、前
記ワイヤの表面の内層部にアルミナ又はアルミナとガラ
スの混合部材を多孔性を有する状態に、外層部に軟化点
がモリブデンの昇華温度より高い800°C以上の特性
を有するガラス部材を多孔性を有する状態に付着して覆
う工程と、これらを加熱して、まず外層のガラス部材が
多孔性を失わない状態でモリブデン芯線を昇華除去し、
その後に外層のガラス部材が流動する温度以上に加熱し
、外層部のガラス部材が内層部の多孔性を有するアルミ
ナ又はアルミナとガラスの混合部材の空隙に浸透して、
ガラスとアルミナを複合化する二段階の焼成を1回の熱
処理で行う工程とを少なくとも備えるようにしたもので
ある。
Furthermore, the present invention provides a step of winding a metal wire of a heating resistor around a core wire having sublimation property, for example, a molybdenum (Mo) core wire, and a step of winding a metal wire of a heat generating resistor around a core wire having sublimation property, for example, a core wire of molybdenum (Mo), and a step of winding a metal wire of a heating resistor on a core wire having sublimation properties, and a step of winding a metal wire of a heating resistor on a core wire having a sublimation property, and a step of winding a metal wire of a heating resistor on a core wire having a sublimation property, and a step of winding a metal wire of a heating resistor on a core wire having a sublimation property. A porous alumina or a mixture of alumina and glass is attached to the inner layer, and a porous glass member having a softening point of 800°C or higher, which is higher than the sublimation temperature of molybdenum, is attached to the outer layer. The molybdenum core wire is sublimated and removed while the outer glass member does not lose its porosity by heating them.
Thereafter, the outer layer glass member is heated to a temperature higher than that at which it flows, and the outer layer glass member penetrates into the voids of the porous alumina or alumina and glass mixed member of the inner layer.
The method includes at least a step of performing two-step firing to composite glass and alumina in one heat treatment.

〔作 用〕[For production]

本発明においては、発熱抵抗体の金属ワイヤを昇華性を
有するモリブデン芯線にコイル状に巻回し、先端部に電
気引出し部となる金属リード線を溶接し、内層にアルミ
ナ又はアルミナとガラスの混合部材を、外層に軟化点が
800°C以上の特性を有するガラス部材を付着した後
焼成して一体化するが、モリブデン芯線は導電性があり
リード線間を短絡してしまうので、まず800°C以上
に加熱してモリブデン芯線を昇華除去してしまい、その
後に外層のガラス部材が流動する以上の温度に高め、外
層のガラス部材を内層のアルミナ又はアルミナとガラス
混合部材に浸透させ、内層をガラスとアルミナの複合部
材とする二段階の焼成を行う。
In the present invention, the metal wire of the heating resistor is wound into a coil around a sublimable molybdenum core wire, a metal lead wire that becomes an electrical lead-out part is welded to the tip, and the inner layer is made of alumina or a mixture of alumina and glass. A glass member with a softening point of 800°C or higher is attached to the outer layer and then baked to integrate them. However, since the molybdenum core wire is conductive and will short-circuit between the lead wires, it is first heated at 800°C. The molybdenum core wire is sublimated and removed by heating to a temperature higher than that, and then the temperature is raised to a temperature higher than that at which the outer glass member flows, and the outer layer glass member permeates into the inner layer alumina or the alumina and glass mixture member, and the inner layer becomes glass. A two-step firing process is performed to create a composite material of aluminum and alumina.

そのため、外層に付着するガラス部材はモリブデン芯線
の昇華除去を妨げないために、モリブデンの昇華連敗時
に十分な多孔性を維持する必要があり、軟化点がモリブ
デンの昇華温度より高い800°C以上の特性を有する
ことが必要である。
Therefore, in order not to prevent the sublimation removal of the molybdenum core wire, the glass member attached to the outer layer must maintain sufficient porosity during continuous failure of sublimation of molybdenum. It is necessary to have the characteristics.

金属ワイヤとしては例えば耐熱性、耐食性の高い白金線
が、リード線には白金イリジウム合金が用いられる。ま
た、モリブデンは高温で酸化して約795℃で昇華する
が、モリブデン芯線を昇華する場合は十分な酸素を補給
し、その昇華揮散を妨げないために、内層のアルミナ部
材またはアルミナとガラスの混合部材、及び外層のガラ
ス部材は十分な空隙を有していることが必要である。こ
のモリブデン芯線を昇華除去する際に、外層のガラス部
材がモリブデンの昇華温度より低い温度で流動するもの
である場合は、モリブデンの昇華以前に表面を覆ってし
まうので、芯綿が内部に残ってしまう。また、外層のガ
ラスがモリブデンの昇華温度より低い温度で流動しない
ものでも、軟化点がモリブデンの昇華温度より低い特性
を有するものは、昇華する酸化モリブデンの影響を受け
て流動性が低下し、アルミナまたはアルミナとガラスの
混合部材への浸透が不十分となり、緻密なガラスとアル
ミナの複合層が得られなくなってしまう。
For example, a platinum wire with high heat resistance and corrosion resistance is used as the metal wire, and a platinum-iridium alloy is used for the lead wire. In addition, molybdenum oxidizes at high temperatures and sublimates at about 795°C, but when sublimating molybdenum core wires, sufficient oxygen must be supplied and the inner layer of alumina material or a mixture of alumina and glass must be used to prevent sublimation and volatilization. It is necessary that the member and the outer layer glass member have sufficient voids. When removing this molybdenum core wire by sublimation, if the outer layer glass material flows at a temperature lower than the sublimation temperature of molybdenum, the surface will be covered before the molybdenum sublimes, so the core cotton will remain inside. Put it away. In addition, even if the outer layer glass does not flow at a temperature lower than the sublimation temperature of molybdenum, if the softening point is lower than the sublimation temperature of molybdenum, the fluidity will decrease due to the influence of sublimating molybdenum oxide, and the alumina Alternatively, the alumina and glass may not penetrate sufficiently into the mixed member, making it impossible to obtain a dense composite layer of glass and alumina.

そこで、軟化点が800℃以上の特性を有するガラスを
外層として付着すれば、昇華する酸化モリブデンの影響
が少なく、モリブデン芯線の昇華除去後にガラスがアル
ミナまたはアルミナとガラスの混合部材の空隙に浸透し
、ガラスとアルミナの緻密な複合層を1回の熱処理で得
ることができる。
Therefore, if glass with a softening point of 800°C or higher is attached as an outer layer, the influence of sublimated molybdenum oxide will be reduced, and after sublimation and removal of the molybdenum core wire, the glass will penetrate into the voids of the alumina or alumina and glass mixed member. , a dense composite layer of glass and alumina can be obtained in one heat treatment.

このため、芯線除去に際してのエツチング工程を不要と
し、作業の簡略化を図ることができる。また、エツチン
グ荒れによる信幀性低下の問題も解消できる。
This eliminates the need for an etching step when removing the core wire, thereby simplifying the work. Furthermore, the problem of reduced reliability due to etching roughness can be solved.

ここで、昇華性を有するモリブデン芯線に巻回された金
属ワイヤの両端に金属リード線を溶接し、表面にガラス
部材だけを付着した場合は、モリブデン芯線が昇華除去
された後の空洞部を溶融したガラス部材が埋めるばかり
なく、ガラスの表面強力でコイル状に巻いた金属ワイヤ
が収縮変形してしまう。しかし、内層にアルミナ部材ま
たはアルミナとガラスの混合部材、外層にガラス部材を
付着させておけば、アルミナが骨格となってガラスが浸
透するので、緻密なガラスとアルミナの複合部材を得る
ことができる。
Here, if metal lead wires are welded to both ends of a metal wire wound around a sublimable molybdenum core wire and only a glass member is attached to the surface, the hollow part after the molybdenum core wire has been sublimed and removed is melted. Not only will the glass member be buried, but the strong surface of the glass will cause the coiled metal wire to shrink and deform. However, if an alumina material or a mixed material of alumina and glass is attached to the inner layer and a glass material is attached to the outer layer, the alumina becomes a skeleton and the glass penetrates, making it possible to obtain a dense composite material of glass and alumina. .

また、ガラスとアルミナ混合部材の一層だけを付着させ
、焼成して複合部材を得る場合には、軟化流動したガラ
スで空隙部を埋めて緻密化するため、あらかじめ混合し
たガラス部材の流動で複合化部材に収縮が生じて寸法管
理が困難となるばかりでなく、コイル状金属形状及び寸
法が変化してしまうなどしてセンサ特性のばらつきを生
じる原因となるので好ましくない。そのため、内層にア
ルミナ又はアルミナとガラスの混合部材、外層にガラス
部材を付着して焼成するが、付着するアルミナ部材の体
積率が高いとガラス部材のアルミナ部材への浸透性が悪
く、得られる複合部材は低強度となる。また、アルミナ
部材の体積率が低いとガラス部材のアルミナ部材への浸
透性は良いものの、得られる複合部材に占めるガラス部
材の比率が高くなり、前述したように収縮によるコイル
状金属ワイヤの形状及び寸法変化を生じてしまう。
In addition, when only one layer of glass and alumina mixed material is attached and fired to obtain a composite member, the softened and fluidized glass fills the voids and becomes densified. This is not preferable because it not only causes shrinkage of the member, making dimensional control difficult, but also causes variation in sensor characteristics due to changes in the shape and dimensions of the coiled metal. Therefore, alumina or a mixture of alumina and glass is attached to the inner layer, and a glass member is attached to the outer layer and then fired. However, if the volume percentage of the attached alumina material is high, the permeability of the glass member into the alumina material is poor, and the resulting composite material is The member has low strength. In addition, when the volume fraction of the alumina member is low, although the permeability of the glass member into the alumina member is good, the proportion of the glass member in the resulting composite member increases, and as mentioned above, the shape of the coiled metal wire due to shrinkage and This will cause dimensional changes.

実験的に検討した結果、ガラスと複合化するアルミナの
体積率が70〜30%であれば、外層に付着したガラス
部材の内層に付着したアルミナ又はアルミナとガラス混
合部材への浸透性が良好で、かつ必要十分な強度のガラ
スとアルミナの複合部材を内層に、外層をガラスで被覆
した精度の良い熱線式空気流量センサが得られることを
確認した。
As a result of experimental studies, if the volume percentage of alumina composited with glass is 70 to 30%, the permeability to the alumina attached to the inner layer of the glass member attached to the outer layer or to the alumina and glass mixed member is good. It was confirmed that a highly accurate hot-wire air flow sensor can be obtained with an inner layer made of a composite material of glass and alumina with sufficient strength, and an outer layer coated with glass.

ここで、ガラス、アルミナ又はアルミナとガラス混合部
材などを付着する方法の一つに電気泳動法による付着(
電着)があるが、電解質として硝酸アルミニウム、硝酸
マグネシウムを用い、有機溶媒としてエチルアルコール
を用いた懸濁液がある。もちろんこれ以外の電解質、有
機溶媒を用いても電着は可能なのでこれに限定するもの
でないが、本発明による熱線式空気流量センサの製造に
は前記の硝酸アルミニウム、硝酸マグネシウム、エチル
アルコールの懸濁液が扱いやすい、このように硝酸アル
ミニウム、硝酸マグネシウムの溶液にガラス粉末を懸濁
させるとガラス成分が溶出して電着液を不安定にし、電
着層が不均一となる。
Here, one of the methods for attaching glass, alumina, or a mixture of alumina and glass is by electrophoresis (deposition by electrophoresis).
Electrodeposition), but there is also a suspension using aluminum nitrate or magnesium nitrate as the electrolyte and ethyl alcohol as the organic solvent. Of course, electrodeposition is possible using electrolytes and organic solvents other than those described above, so electrodeposition is not limited to these. When glass powder is suspended in a solution of aluminum nitrate and magnesium nitrate, which is easy to handle, the glass component dissolves, making the electrodeposition solution unstable and making the electrodeposition layer non-uniform.

そのため、電着液管理の点からアルミナと混合するガラ
スは安定性の高い種類を選定する必要がある。
Therefore, from the viewpoint of electrodeposition solution management, it is necessary to select a highly stable type of glass to be mixed with alumina.

例えば、外層に軟化点がモリブデンの昇華温度より低い
ガラス部材、内層に軟化点がモリブデンの昇華温度より
低いガラスとアルミナの複合部材で構成した熱線式空気
流量センサを得ようとする場合には、前述したように軟
化点がモリブデンの昇華温度より低いガラス部材は昇華
するモリブデンと反応して本来の特性を失なって流動性
が著しく低下し、内層アルミナ空隙への浸透が不十分と
なってしまう。従って、内層となるアルミナ又はアルミ
ナとガラスの混合部材を電着して焼成し、モリブデン芯
線を除去した後に外周にガラスを付着して再度焼成し、
外層のガラスを内層のアルミナ空隙に十分浸透させてア
ルミナとガラス部材を複合化する2回の熱処理が必要と
なる。この方法によれば、1回目熱処理後の内層部分に
ガラスを付着する取扱い強度が必要である。内層部分を
アルミナ単層とした場合、焼成温度がアルミナの焼結温
度より低いのでモリブデン芯線昇華除去後の強度が低い
。そのため、内層部分にガラスとアルミナ混合部材を電
着して1回焼成後強度を高めるが、前述したようにガラ
スとアルミナ混合電着液は不安定である。
For example, when trying to obtain a hot wire air flow sensor composed of a glass member with a softening point lower than the sublimation temperature of molybdenum in the outer layer and a composite member of glass and alumina with a softening point lower than the sublimation temperature of molybdenum in the inner layer, As mentioned above, glass members whose softening point is lower than the sublimation temperature of molybdenum react with the sublimating molybdenum and lose their original properties, resulting in a significant drop in fluidity and insufficient penetration into the inner alumina voids. . Therefore, the inner layer of alumina or a mixture of alumina and glass is electrodeposited and fired, and after removing the molybdenum core wire, glass is attached to the outer periphery and fired again.
Two heat treatments are required to fully infiltrate the outer layer glass into the alumina voids in the inner layer to form a composite of alumina and the glass member. According to this method, handling strength is required to adhere the glass to the inner layer portion after the first heat treatment. When the inner layer portion is a single layer of alumina, the sintering temperature is lower than the sintering temperature of alumina, so the strength after removing the molybdenum core wire by sublimation is low. Therefore, a mixed glass and alumina material is electrodeposited on the inner layer portion to increase the strength after firing once, but as described above, the mixed electrodeposition solution of glass and alumina is unstable.

本発明によれば、モリブデン芯線の昇華除去と、外層の
ガラス部材が内層のアルミナ部材空隙に浸透してアルミ
ナとガラス部材の複合化を1回の熱処理で行えるので、
電着する内層はアルミナ単相であってもなんら差しつか
えない。従って、アルミナのみの粉末を懸濁させた安定
性の高い電着液を使用でき、電着液の管理が容易なので
作業性が高い、もちろん、電着する内層はガラスとアル
ミナの混合部材であっても、高強度、高精度の熱線式空
気流量センサを得ることができる。
According to the present invention, the sublimation removal of the molybdenum core wire and the infiltration of the outer layer glass member into the inner layer alumina member voids to form a composite of alumina and the glass member can be performed in a single heat treatment.
There is no problem even if the inner layer to be electrodeposited is a single phase alumina. Therefore, a highly stable electrodeposition solution containing only alumina powder suspended can be used, and the electrodeposition solution can be easily managed, resulting in high workability.Of course, the inner layer to be electrodeposited is a mixture of glass and alumina. However, a high-strength, high-precision hot wire air flow sensor can be obtained.

こうして得られる熱線式空気流量センサでは、金属ワイ
ヤに通電することにより発生した熱が従来のボビン式の
ようにボビンに伝わって支持体に逃げることがなく、は
とんどが空気に伝達される。
In the hot wire type air flow sensor obtained in this way, the heat generated by energizing the metal wire is not transmitted to the bobbin and escaped to the support body as in the conventional bobbin type, but is mostly transmitted to the air. .

従って、ボビンレス方式特有の高い応答性が得られる。Therefore, high responsiveness unique to the bobbinless method can be obtained.

また、軟化点が800°C以上の特性を持ち、耐食性、
耐熱衝撃性に優れたガラスを用いて被覆しているので、
使用環境によってセンサ性能を低下させることもないの
で、信輔性の高い熱線式空気流量針が得られる。
It also has a softening point of over 800°C, corrosion resistance,
Because it is coated with glass that has excellent thermal shock resistance,
Since the sensor performance does not deteriorate depending on the usage environment, a highly reliable hot wire type air flow needle can be obtained.

そこで、本発明の実施例を図面を参照して説明する。Therefore, embodiments of the present invention will be described with reference to the drawings.

〔実施例1〕 第1図は本発明の熱線式空気流量センサの一実施例を示
す一部切欠断面図である。
[Embodiment 1] FIG. 1 is a partially cutaway sectional view showing an embodiment of the hot wire type air flow sensor of the present invention.

第1図において、熱線式空気流量センサ1はコイル状の
白金ワイヤ2に電流を流すことによって、発熱抵抗体と
したものである。白金ワイヤ2は、空洞部6の軸方向中
心線を略中心としてコイル状に巻回され、その両端には
それぞれ白金イリジウム合金のリード線3が接続部21
で接続されている。
In FIG. 1, a hot wire type air flow sensor 1 is made into a heating resistor by passing a current through a coiled platinum wire 2. The platinum wire 2 is wound into a coil shape approximately centered on the axial center line of the cavity 6, and a lead wire 3 made of platinum iridium alloy is connected to the connecting portion 21 at each end of the platinum wire 2.
connected with.

空洞部6は、外層としてガラス部材5、内層としてガラ
スとアルミナの複合部材4によって密封された構造であ
り、リード線3はそのガラス部材5、複合部材4で支持
されている。また、白金ワイヤ2は内層のガラスとアル
ミナの複合部材4の内壁面に埋込んだ状態で配置されて
おり、従って白金ワイヤ2は複合部材4で強固に支持さ
れた構造である。
The cavity 6 has a sealed structure with a glass member 5 as an outer layer and a composite member 4 of glass and alumina as an inner layer, and the lead wire 3 is supported by the glass member 5 and the composite member 4. Further, the platinum wire 2 is embedded in the inner wall surface of the inner layer of the composite member 4 of glass and alumina, so that the platinum wire 2 is firmly supported by the composite member 4.

次に、熱線式空気流量センサ1の製造方法について、第
2図を参照しながら説明する。
Next, a method for manufacturing the hot wire air flow sensor 1 will be described with reference to FIG.

まず、第2図(a)に示すように、自動巻線機によって
白金ワイヤ2をモリブデン芯線7の外周に螺旋状に巻回
する。本実施例では、直径30μmの白金ワイヤ2を直
径0.5 mm+のモリブデン芯線7に巻回した。次に
、第2図(ロ)に示すように、モリブデン芯綿7を所定
の長さ(本実施例では4IIII11)に切断し、白金
ワイヤ2の両端部にそれぞれ白金イリジウム合金のリー
ド線3を接続部21で溶接する。
First, as shown in FIG. 2(a), platinum wire 2 is spirally wound around the outer periphery of molybdenum core wire 7 using an automatic winding machine. In this example, a platinum wire 2 with a diameter of 30 μm was wound around a molybdenum core wire 7 with a diameter of 0.5 mm+. Next, as shown in FIG. 2(B), the molybdenum core cotton 7 is cut into a predetermined length (4III11 in this example), and lead wires 3 made of platinum-iridium alloy are attached to both ends of the platinum wire 2. Welding is performed at the connecting portion 21.

この場合、リード線3としては、直径0.13mmのも
のを使用した。
In this case, the lead wire 3 used had a diameter of 0.13 mm.

この後、白金ワイヤ2を巻回したモリブデン芯線7の周
囲に、電気泳動法によりアルミナ部材を充填率が約50
%となるように付着し、更にその上面に浸漬法によりガ
ラス部材を付着した。そして、このようにして得られた
ものを酸化性雰囲気炉で焼成することによって、第2図
(C)に示すように、モリブデン芯線7が昇華除去され
て空洞部6となった。また、その空洞部6の周囲にアル
ミナとガラスの複合部材4と、ガラス部材5の2層を形
成できた。
Thereafter, around the molybdenum core wire 7 around which the platinum wire 2 is wound, an alumina member is applied by electrophoresis at a filling rate of about 50.
%, and a glass member was further attached to the top surface by a dipping method. Then, by firing the product thus obtained in an oxidizing atmosphere furnace, the molybdenum core wire 7 was sublimed and removed to form a cavity 6, as shown in FIG. 2(C). Moreover, two layers, the composite member 4 of alumina and glass and the glass member 5, could be formed around the cavity 6.

ここで用いたガラス部材5は、Alzos  Sing
系ガラスで、温度860°Cでの粘度が10”″ポアズ
、1180°Cでの粘度が104ポアズの特性を有する
。そして、第2図(C)の焼成において、温度が上昇す
るにつれモリブデン芯線7の酸化が進んでl’loo 
3となり、温度が795°Cに達するとhoo、が昇華
するが、温度860℃での粘度が107・6ポアズ即ち
軟化点が860″Cの特性を有するガラス部材5は空隙
を保持するため、l’1oosの昇華物はアルミナ部材
及びガラス部材5の空隙から揮散する。850’Cで5
時間保持してモリブデン芯線の昇華除去を完了させた後
温度が1200”Cに達すると、ガラス部材5の粘度が
104ポアズ以下となりアルミナ部材の空隙への浸透を
始め、1200°Cで2時間保持して焼成を終了したが
、アルミナ部材の空隙に完全にガラス部材5が浸透し、
緻密なガラスとアルミナの複合部材4を形成すると共に
、ガラス部材5で覆った熱線式空気流量センサ1を得た
。この熱線式空気流量センサ1は、第2図(d)に拡大
して示すように、コイル状に巻回した白金ワイヤ2の内
側迄ガラス部材5が覆っているので、白金ワイヤ2をよ
り強固に支持することができた。
The glass member 5 used here is made by Alzos Sing.
The glass has a viscosity of 10'' poise at a temperature of 860°C and a viscosity of 104 poise at a temperature of 1180°C. In the firing shown in FIG. 2(C), as the temperature rises, the oxidation of the molybdenum core wire 7 progresses and l'loo
3, and when the temperature reaches 795°C, hoo sublimates, but since the glass member 5, which has a viscosity of 107.6 poise at a temperature of 860°C, that is, a softening point of 860″C, retains voids, The sublimate of l'1oos volatilizes from the voids of the alumina member and the glass member 5.
When the temperature reaches 1200"C after completing sublimation removal of the molybdenum core wire by holding for a time, the viscosity of the glass member 5 becomes 104 poise or less and begins to penetrate into the voids of the alumina member, and is held at 1200°C for 2 hours. However, the glass member 5 completely penetrated into the voids of the alumina member.
A hot wire type air flow sensor 1 was obtained in which a dense composite member 4 of glass and alumina was formed and covered with a glass member 5. As shown in an enlarged view in FIG. 2(d), this hot wire type air flow sensor 1 has a glass member 5 that covers the inside of the platinum wire 2 wound into a coil, thereby making the platinum wire 2 stronger. was able to support.

本方法によれば、従来のボビンレス方式に比べ、芯線を
エツチング除去するための煩雑な作業がなくなると共に
、昇華性を有する金属芯yA7の昇華除去と、ガラス部
材5とアルミナ部材の複合化が1回の焼成で行うことが
できるので、作業性が大幅に向上した。
According to this method, compared to the conventional bobbinless method, the complicated work of etching and removing the core wire is eliminated, and the sublimation removal of the metal core yA7 with sublimation property and the composite formation of the glass member 5 and the alumina member are performed in one step. Since the firing can be done in one go, work efficiency has been greatly improved.

この熱線式空気流量センサlを用いた熱線式空気流量計
の具体例を第3図に示す。なお、この具体例では、熱線
式空気流量センサ1と同じものが測温抵抗体8として空
気温度測定に用いられている。熱線式空気流量センサ1
と測温抵抗体8は、第3図に示すように吸入空気のメイ
ン通路81及びバイパス通路82を有して成るボディ8
3のバイパス通路82中の支持体9に固定される。
A specific example of a hot wire air flow meter using this hot wire air flow sensor 1 is shown in FIG. In this specific example, the same one as the hot wire type air flow rate sensor 1 is used as the resistance temperature detector 8 to measure the air temperature. Hot wire air flow sensor 1
As shown in FIG. 3, the body 8 has a main passage 81 and a bypass passage 82 for intake air.
It is fixed to the support body 9 in the bypass passage 82 of No. 3.

第4図は、熱線式空気流量計の検出回路の具体例で、熱
線式空気流量センサ1、測温抵抗体8、オペアンプ10
.11.パワートランジスタ12、コンデンサ13、抵
抗器14〜18で構成されている。またパワートランジ
スタ12(7?コレクタ端子19にはバッテリー(図示
せず)の(+)極が、抵抗器14のアース端子20には
バッテリーの(=)の極が、そして抵抗器14と熱線式
空気流量センサ1の接続点31には、本熱線式空気流量
針の出力信号を使ってエンジン制御を行うマイクロコン
ピュータ(図示せず)の入力端子がそれぞれ接続される
Figure 4 shows a specific example of a detection circuit for a hot wire air flow meter, including a hot wire air flow sensor 1, a resistance temperature detector 8, and an operational amplifier 10.
.. 11. It is composed of a power transistor 12, a capacitor 13, and resistors 14-18. In addition, the (+) pole of a battery (not shown) is connected to the power transistor 12 (7? collector terminal 19), the (=) pole of the battery is connected to the earth terminal 20 of the resistor 14, and the resistor 14 and the hot wire type The connection points 31 of the air flow sensor 1 are connected to input terminals of a microcomputer (not shown) that controls the engine using the output signal of the hot wire air flow needle.

このような構成において、パワートランジスタ12によ
って熱線式空気流量センサ1に電流を供給して加熱し、
測温抵抗体8より常に一定の温度だけ高くなるように制
御する。この測温抵抗体8には発熱が無視できる程度の
微小電流しか流さず、これにより吸入空気温度を検出す
るようにして吸入空気の温度補正用として使用している
。ここで空気流が熱線式空気流量センサ1に当ると、検
出回路の動作によって熱線式空気流量センサ1と測温抵
抗体8の温度差が常に一定になるように制御される。従
って、空気流量が変化すると熱線式空気流量センサ1を
流れる電流が変化し、その電流に応じて抵抗器14に現
われる電圧降下で空気流量が測定されることになる。
In such a configuration, the power transistor 12 supplies current to the hot wire air flow sensor 1 to heat it,
The temperature is controlled so that the temperature is always higher than that of the resistance temperature detector 8 by a certain amount. Only a minute current, which generates negligible heat, is passed through the resistance temperature detector 8, and the temperature of the intake air is detected using this current, which is used for correcting the temperature of the intake air. Here, when the airflow hits the hot wire air flow sensor 1, the detection circuit operates to control the temperature difference between the hot wire air flow sensor 1 and the temperature sensing resistor 8 to be always constant. Therefore, when the air flow rate changes, the current flowing through the hot wire air flow sensor 1 changes, and the air flow rate is measured by the voltage drop that appears across the resistor 14 in accordance with the current.

第5図に、本実施例の熱線式空気流量計の応答特性を示
す。空気流量を低流盟約20kg/hから高流量約20
0kg/hに切換えた時の熱線式空気流量計の電圧を測
定し、流量に換算して縦軸に示した。同図から明らかな
ように、従来のボビン式に比べて最終値到達時間が大幅
に向上しており、従来のボビンレス方式と同等であるこ
とがわかる。
FIG. 5 shows the response characteristics of the hot wire air flowmeter of this example. Air flow rate ranges from low flow rate of approximately 20 kg/h to high flow rate of approximately 20 kg/h.
The voltage of the hot wire air flowmeter when switched to 0 kg/h was measured, converted to flow rate, and shown on the vertical axis. As is clear from the figure, the time required to reach the final value is significantly improved compared to the conventional bobbin type, and is equivalent to the conventional bobbinless type.

このため、自動車の急加速や減速時においても、真の空
気量変化に追従して熱線式空気流量計が信号を出せるた
め、適切なインジェクタの噴射量を決定でき、サージン
グの問題は解消できる。
Therefore, even when a car suddenly accelerates or decelerates, the hot-wire air flow meter can output a signal following the true change in air volume, making it possible to determine the appropriate amount of injection from the injector and solving the problem of surging.

このように応答性が向上したのは、熱線式空気流量セン
サ1の白金ワイヤ2に発生する熱が、従来のボビン式の
ようにボビンを加熱したりボビンを伝わって支持体に逃
げることがなく、空気量の変化に正確に反応するためで
ある。
The reason for this improved response is that the heat generated in the platinum wire 2 of the hot wire air flow sensor 1 does not heat the bobbin or escape to the support through the bobbin as in the conventional bobbin type. , in order to respond accurately to changes in air volume.

また、本実施例の熱線式空気流量計は、従来のボビンレ
ス方式に比べて信頬性が高い。これは、本実施例の熱線
式空気流量センサは、耐腐食性、耐熱衝撃性の優れた特
性を有するガラスで被覆しているので使用中の空気など
の耐環境性が良いことと、従来のボビンレス方式では酸
によるエツチングでガラス表面が荒れていたが、本実施
例では表面が平滑であるためである。
Further, the hot wire type air flow meter of this embodiment has higher reliability than the conventional bobbinless type. This is because the hot wire air flow sensor of this example is coated with glass that has excellent corrosion resistance and thermal shock resistance, so it has good resistance to environments such as air during use, and This is because in the bobbinless method, the glass surface was rough due to etching with acid, but in this example, the surface was smooth.

[実施例2] 実施例1と同様にして、自動巻線機により直径30μm
の白金線2を直径0.5皿のモリブデン芯綿7に巻回し
、センサ1個分の長さ4fflII+に切断した両端部
に直径0.13m+nの白金イリジウム合金のリード線
3を21で溶接し、電気泳動法によりアルミナとガラス
の混合部材を充填率が約50%となるように付着し、更
に浸漬法でガラス部材5を付着した。
[Example 2] In the same manner as in Example 1, a diameter of 30 μm was obtained using an automatic winding machine.
The platinum wire 2 was wound around a molybdenum core cotton 7 with a diameter of 0.5 dish, and the lead wire 3 of platinum-iridium alloy with a diameter of 0.13 m+n was welded to both ends of the cut piece, which was cut to a length of 4fflII+ for one sensor. A mixed member of alumina and glass was deposited by electrophoresis so that the filling rate was approximately 50%, and a glass member 5 was further deposited by dipping.

ここで、混合部材はガラス20%とアルミナ80%の混
合比率としたが、このガラス部材はへ1□001−5i
n系ガラスで、温度860“Cでの粘度が10’・6ポ
アズ、1180°Cでの粘度が104ポアズの特性を有
するもので、ガラス部材5と同一部材とした。これらを
酸化性雰囲気炉で焼成すると、モリブデン芯線7の酸化
が進みMoo、となり、温度が795°Cを越えるとM
ob、が昇華除去される。850°Cで5時間保持して
モリブデン芯線の昇華除去を完了させた後1200°C
で2時間保持して焼成を終了したが、アルミナとガラス
の混合部材中のガラス部材が同一部材のガラス部材5の
浸透を容易にするため、実施例Iで得たと同等以上に緻
密なアルミナとガラスの複合部材4を形成すると共に、
表面を平滑なガラス部材で覆った熱線式空気流量センサ
1を得た。
Here, the mixing ratio of the mixed member was 20% glass and 80% alumina, and this glass member was
It is an n-type glass and has a viscosity of 10'·6 poise at a temperature of 860"C and a viscosity of 104 poise at 1180°C, and was made the same member as glass member 5. These were placed in an oxidizing atmosphere furnace. When the molybdenum core wire 7 is fired at
ob, is sublimed and removed. After holding at 850°C for 5 hours to complete the sublimation removal of the molybdenum core wire, it was heated to 1200°C.
The firing was completed by holding the alumina and glass mixture for 2 hours. However, in order to facilitate the penetration of the glass member 5, which is the same material, the alumina and glass mixture were made of alumina that was denser than that obtained in Example I. While forming the glass composite member 4,
A hot wire air flow sensor 1 whose surface was covered with a smooth glass member was obtained.

この熱線式空気流量センサを用いた熱線式空気流量計の
特性を測定したところ、実施例1で述べたと同様の結果
を得た。
When the characteristics of a hot wire air flow meter using this hot wire air flow sensor were measured, results similar to those described in Example 1 were obtained.

〔実施例3〕 以下、第1図に示すガラス部材とセラミックス部材につ
いて、種々な組成のガラス部材及び種々な種類のセラミ
ックス部材を用いて実施したが、それらのガラス部材が
軟化点が800°C以上の特性を有するものであり、セ
ラミックス部材又はセラミックスとガラスの混合部材に
ガラスが浸透して成る複合部材のセラミックスの体積率
が30〜70%であれば、第1図に示す熱線式空気流量
センサ1を得ることができた。
[Example 3] The following experiments were conducted using glass members and ceramic members of various compositions and various types of ceramic members shown in Fig. 1. If the ceramic material has the above characteristics and the ceramic volume percentage of the composite material made by infiltrating glass into a ceramic material or a mixed material of ceramic and glass is 30 to 70%, the hot wire air flow rate shown in Fig. 1 is as follows. I was able to obtain sensor 1.

本実施例では、セラミックス部材又はセラミックスとガ
ラスの混合部材を電気泳動法、あるいはガラス部材5を
浸漬法で付着したが、電気泳動法や浸漬性以外であって
も、例えばペースト状にして付着する方法であっても、
第1図に示す熱線式空気流量センサ1を得ることができ
る。
In this embodiment, the ceramic member or the mixed member of ceramics and glass was attached by electrophoresis, or the glass member 5 was attached by dipping. However, other methods other than electrophoresis or dipping may also be used, for example, in the form of a paste. Even if the method
A hot wire air flow sensor 1 shown in FIG. 1 can be obtained.

従って本発明は、実施例で述べた以外であっても、本発
明で述べた特性を有するガラス部材全般と、本発明で述
べた特徴を有するセラミックス部材又はセラミックスと
ガラスの複合部材全般に適用でき、電気泳動性以外の方
法で被覆して発熱抵抗体を得る方法全般に適用できる。
Therefore, the present invention can be applied to glass members in general having the characteristics described in the present invention, and ceramic members or composite members of ceramics and glass in general having the characteristics described in the present invention, even if other than those described in the examples. It can be applied to all methods of obtaining heating resistors by coating with methods other than electrophoretic.

〔発明の効果〕〔Effect of the invention〕

以上説明したことから明らかなように、本発明の熱線式
空気流量センサによれば、表面を耐腐食性、耐衝撃性に
優れたガラスで被覆したので、空気中の塵埃、イオン性
物質などによって特性が劣化することがなく、高い信顧
性を維持することができる。また、内部が空洞であるた
め、従来のボビンレス方式の応答性と同等の高い応答性
を得ることができる。
As is clear from the above explanation, according to the hot wire type air flow sensor of the present invention, the surface is coated with glass having excellent corrosion resistance and impact resistance, so that dust, ionic substances, etc. in the air Characteristics do not deteriorate and high reliability can be maintained. Furthermore, since the inside is hollow, it is possible to obtain high responsiveness equivalent to that of a conventional bobbinless system.

更に、本発明の製造方法によれば、酸による煩雑なエツ
チング作業を不要としたばかりでなく、昇華性を有する
金属芯線の昇華除去と、ガラスとセラミックスの複合化
を1回の焼成で行うことができるため、作業性を大幅に
向上することができる。
Furthermore, according to the manufacturing method of the present invention, not only does the complicated etching work using acid become unnecessary, but also the sublimation removal of the sublimable metal core wire and the composite formation of glass and ceramics can be performed in one firing. As a result, work efficiency can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の熱線式空気流量センサの一実施例を示
す一部切欠断面図、第2図(a)、 (b)、 (C)
。 (d)は本発明における熱線式空気流量センサの製造方
法の一実施例を示す工程図、第3図は熱線式空気流量セ
ンサを用いた熱線式空気流量計の具体例を示す構成図、
第4図はその空気流量計の検出回路の具体例を示す回路
図、第5図は応答特性を従来と本発明とで比較して示す
特性図である。 1・・・熱線式空気流量センサ、2・・・白金ワイヤ、
3・・・リード線、4・・・複合部材、5・・・ガラス
部材、6・・・空洞部、7・・・モリブデン芯線。
Fig. 1 is a partially cutaway sectional view showing an embodiment of the hot wire air flow sensor of the present invention, Fig. 2 (a), (b), (C)
. (d) is a process diagram showing an example of the method for manufacturing a hot wire air flow sensor according to the present invention; FIG. 3 is a configuration diagram showing a specific example of a hot wire air flow meter using the hot wire air flow sensor;
FIG. 4 is a circuit diagram showing a specific example of the detection circuit of the air flow meter, and FIG. 5 is a characteristic diagram showing a comparison of response characteristics between the conventional method and the present invention. 1... Hot wire air flow sensor, 2... Platinum wire,
3... Lead wire, 4... Composite member, 5... Glass member, 6... Cavity part, 7... Molybdenum core wire.

Claims (3)

【特許請求の範囲】[Claims] (1)外層が800℃以上の軟化点のガラス、内層がガ
ラスとセラミックスの複合物で空洞部を覆うと共に、両
端がそれぞれ外部に電気的に引出されたコイル状の金属
ワイヤを、前記空洞部の内壁面に埋込んだ状態で配設し
たことを特徴とする熱線式空気流量センサ。
(1) The outer layer is glass with a softening point of 800°C or higher, the inner layer is a composite of glass and ceramics, and the cavity is covered with a coiled metal wire, both ends of which are electrically drawn out to the outside. A hot wire type air flow sensor characterized by being disposed embedded in the inner wall surface of.
(2)前記内層の複合物中に含まれるセラミックスは、
30〜70%の体積率を有することを特徴とする特許請
求の範囲第1項記載の熱線式空気流量センサ。
(2) The ceramics contained in the composite of the inner layer are:
The hot wire air flow sensor according to claim 1, characterized in that it has a volume fraction of 30 to 70%.
(3)昇華性を有する金属芯線に金属ワイヤを巻回する
工程、この金属芯線に金属ワイヤを巻回したものにセラ
ミックスまたはセラミックスとガラスの混合部材を付着
し、更にこの表面にガラス部材を付着して覆う工程、こ
のようにして得られたものを焼成することによって、前
記金属芯線を昇華除去すると共に、前記ガラス部材を前
記セラミックスまたはセラミックスとガラスの混合部材
の隙間に浸透させて複合化する工程を有することを特徴
とする熱線式空気流量センサの製造方法。
(3) The process of winding a metal wire around a sublimable metal core wire, attaching a ceramic or a mixed member of ceramics and glass to the metal wire wound around the metal core wire, and then attaching a glass member to the surface of the metal wire. and a covering step, by firing the product obtained in this way, the metal core wire is sublimated and removed, and the glass member is infiltrated into the gap between the ceramic or a mixed member of ceramics and glass to form a composite. 1. A method for manufacturing a hot wire air flow sensor, comprising the steps of:
JP63335308A 1988-12-29 1988-12-29 Hot wire air flow sensor and method of manufacturing the same Expired - Fee Related JPH0687022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63335308A JPH0687022B2 (en) 1988-12-29 1988-12-29 Hot wire air flow sensor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63335308A JPH0687022B2 (en) 1988-12-29 1988-12-29 Hot wire air flow sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02179419A true JPH02179419A (en) 1990-07-12
JPH0687022B2 JPH0687022B2 (en) 1994-11-02

Family

ID=18287068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63335308A Expired - Fee Related JPH0687022B2 (en) 1988-12-29 1988-12-29 Hot wire air flow sensor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0687022B2 (en)

Also Published As

Publication number Publication date
JPH0687022B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
US5020214A (en) Method of manufacturing a hot wire air flow meter
CA1117789A (en) Temperature compensated resistive exhaust gas sensor construction
US4354912A (en) Solid electrochemical sensor
EP0166408B1 (en) Gas sensor and method of producing the same
US4280890A (en) Electrochemical sensor for oxygen concentration determination in gases and method of making the same
US4881407A (en) Hot wire air flow meter
JPH02179419A (en) Hot-wire airflow sensor and manufacture thereof
JPH0754263B2 (en) Heat wire type air flow meter and manufacturing method thereof
JPH0495720A (en) Hot-wire type air flow sensor
JPH04127022A (en) Heater
JPH01307624A (en) Hot-wire type air flow rate sensor and its manufacture
JPH05312615A (en) Heat-wire type air flow sensor and manufacture thereof
JPS58109846A (en) Element for oxygen detection and its preparation
JPH02120624A (en) Production of detection element
US3681734A (en) Heat sensing probe
JP2714064B2 (en) Air-fuel ratio detector
JP2567931B2 (en) Wirewound resistance element
JP3668059B2 (en) Method for manufacturing heater-integrated oxygen sensor element
US2866060A (en) Electrical resistance thermometer of low heat capacity
US20220051848A1 (en) Method for assembling a metal part and a ceramic part, and electrical device, in particular a capacitive sensor, produced by said method
JPS6326767Y2 (en)
JPH033180B2 (en)
JPS5814052A (en) Oxygen detector for molten steel
CN113814608A (en) Brazing filler metal, preparation method, sensor and brazing method
JPS5998501A (en) Thermistor for high temperature and method of producing same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees