JPH0217911A - Combustible waste removing apparatus of internal combustion engine - Google Patents

Combustible waste removing apparatus of internal combustion engine

Info

Publication number
JPH0217911A
JPH0217911A JP63166910A JP16691088A JPH0217911A JP H0217911 A JPH0217911 A JP H0217911A JP 63166910 A JP63166910 A JP 63166910A JP 16691088 A JP16691088 A JP 16691088A JP H0217911 A JPH0217911 A JP H0217911A
Authority
JP
Japan
Prior art keywords
perovskite
filter
carrier
composite oxide
combustible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63166910A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Ogura
義次 小倉
Toru Suzaki
須崎 徹
Mareo Kimura
希夫 木村
Tadashi Suzuki
正 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP63166910A priority Critical patent/JPH0217911A/en
Publication of JPH0217911A publication Critical patent/JPH0217911A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently remove combustible particles by forming a porous layer of composite oxide represented by general formula A1-xA'xB1-yB'yO3 (wherein A is a rare earth metal element, and B and B' are Cr, Mn, Fe, Co or Cu) on the surface of carrier. CONSTITUTION:A porous layer of perovskite composite oxide represented by general formula A1-xA'xB1-yB'yO3 (wherein A is a rare earth metal element, A' is an alkaline earth element, x is 0<=x<=1 and y is 0<=y<=1) such as La0.8Sr0.2 CoO3 is formed to the surface of a carrier having filter function and a particulate in exhaust gas is collected by the carrier. By heating this carrier, the particulate is burnt and the carrier is regenerated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の可燃性排出物の除去装置に係る。[Detailed description of the invention] [Industrial application field] The present invention relates to a device for removing combustible emissions from an internal combustion engine.

主としてカーボン微粒子からなるパティキュレートが閉
塞してフィルタ機能が低下することを抑制、防止するた
めにフィルターに各種の触媒を担持してパティキュレー
トをより低温で燃焼し、フィルターの再生性を向上させ
ることは知られている。
In order to suppress and prevent the filter function from being degraded due to blockage of particulates, which are mainly made up of fine carbon particles, various catalysts are supported on the filter to burn the particulates at a lower temperature and improve the regeneration performance of the filter. is known.

このフィルタの再生性の向上のための触媒としては、白
金族金属や卑金属等各種のものが提案され、白金族金属
では白金(Pt)、卑金属では銅(Cu)が比較的良好
な再生性を有するとされている。
Various catalysts such as platinum group metals and base metals have been proposed to improve the regeneration performance of this filter. Platinum (Pt) is a platinum group metal, and copper (Cu) is a base metal that has relatively good regeneration performance. It is said that it has.

またパティキュレート燃焼用を主眼とはしていないが、
複合酸化物系触媒として特公昭54−38598号公報
に見られるCr5CuN11.4010や特公昭56−
52619号公報に見られるCo、〜8Mn1〜2Cu
O,。等も提案されている。さらに、フィルタの再生手
段として、ヒータ・バーナ等の外部着火手段による方法
や吸・排気絞り等により排ガス温度をパティキュレート
の燃焼温度以上に上昇させる方法等も採用される。
Although it is not primarily intended for particulate combustion,
As composite oxide catalysts, Cr5CuN11.4010, which is found in Japanese Patent Publication No. 54-38598, and Japanese Patent Publication No. 56-1989
Co, ~8Mn1~2Cu found in Publication No. 52619
O. etc. have also been proposed. Furthermore, as a means for regenerating the filter, a method using an external ignition means such as a heater/burner, a method of raising the exhaust gas temperature to a temperature higher than the combustion temperature of particulates by using an intake/exhaust throttle, etc. are also adopted.

〔従来の技術〕[Conventional technology]

ディーゼルパティキュレート補集用フィルタに〔発明が
解決しようとする課題〕 しかしながら、上記のいずれの触媒でも、まだ着火性や
パティキュレート燃焼性の面で満足できる効果は得られ
ていない。さらに、フィルタ材は再生時にパティキュレ
ートの燃焼熱により1000℃程度あるいはそれ以上の
高温に曝されるが、上記触媒のいづれもこの様な高温条
件下で著しく劣化するという問題もある。
For filters for collecting diesel particulates [Problems to be Solved by the Invention] However, none of the above-mentioned catalysts has yet achieved satisfactory effects in terms of ignitability and particulate combustibility. Furthermore, during regeneration, the filter material is exposed to high temperatures of about 1000° C. or higher due to the heat of combustion of particulates, and there is a problem in that all of the above-mentioned catalysts deteriorate significantly under such high temperature conditions.

そこで本発明者は、上記問題点を解決するために、先に
、一般式A、−,xA′xB1 、B、−、B’ 、0
3(式中、Aは希土類元素から選ばれた一種以上の元素
、A′はアルカリ土類元素から選ばれた一種以上の元素
、B、B’はCr 、Mn 、 Fe 、Co 、Ni
  、Cuから選ばれ、0≦x≦1.0≦y≦1である
。)で表わされるペロブスカイト型複合酸化物をフィル
タ機能を有する担体にコーティングして成ることを特徴
とするディーゼルパティキュレート補集用フィルタを開
示した(特願昭62−300147号明細書)。
Therefore, in order to solve the above problems, the present inventor first developed the general formula A, -, xA'xB1 , B, -, B', 0
3 (wherein A is one or more elements selected from rare earth elements, A' is one or more elements selected from alkaline earth elements, B, B' are Cr, Mn, Fe, Co, Ni
, Cu, and 0≦x≦1.0≦y≦1. ) has been disclosed (Japanese Patent Application No. 62-300147), which is characterized by coating a carrier having a filter function with a perovskite-type composite oxide represented by the following.

ペロブスカイト系複合酸化物は、基本的な酸化活性は高
く、例えば最も高活性なものはパティキュレートとペロ
ブスカイト粉末とを混合して熱分析すると270℃で着
火できるほどである。しかしながら、ハニカムフィルタ
にコーティングし、ガス温を一定速度で上昇させた場合
には420℃に、またガス温を200℃一定としかつフ
ィルタ上流側端面部に設置された電気ヒータで加熱した
場合には高い燃焼率を得るためにフィルター内で熱勾配
が生じるのでフィルタ端面部を475℃に、加熱する必
要があり、その高活性を充分発揮できていなかった。
Perovskite-based composite oxides have high basic oxidation activity; for example, the most active one can be ignited at 270° C. when particulates and perovskite powder are mixed and thermally analyzed. However, when a honeycomb filter is coated and the gas temperature is raised at a constant rate, the temperature reaches 420°C, and when the gas temperature is kept constant at 200°C and heated with an electric heater installed on the upstream end of the filter. In order to obtain a high combustion rate, a thermal gradient is generated within the filter, so it is necessary to heat the end face of the filter to 475°C, and its high activity cannot be fully demonstrated.

これは、熱分析を行った場合にはペロブスカイトとパテ
ィキュレートとを乳鉢で均一に混合しており、パティキ
ュレートとの接触効率が理想に近いことから低い温度で
着火することができたと考えられる。これに対し、ハニ
カムフィルタにペロブスカイトをコーティングし、パテ
ィキュレートを補集した実験ではパティキュレートとペ
ロブスカイトとの接触度が不足し、充分な酸化活性が発
揮できないようである。また、再生手段として外部ヒー
タを用いた再生法では、通常低流速でヒータに通電され
るためフィルタ内に熱勾配ができ、より再生しにくくな
るようである。
This is thought to be because when thermal analysis was performed, perovskite and particulates were uniformly mixed in a mortar, and the contact efficiency with the particulates was close to ideal, so ignition was possible at a low temperature. On the other hand, in experiments in which a honeycomb filter was coated with perovskite and particulates were collected, the degree of contact between the particulates and perovskite was insufficient, and sufficient oxidation activity did not seem to be exhibited. Furthermore, in a regeneration method using an external heater as a regeneration means, since the heater is normally energized at a low flow rate, a thermal gradient is created within the filter, making regeneration more difficult.

そこで、本発明は、ペロブスカイト系複合酸化物の高い
酸化活性が充分に発揮されるように改良した可燃性排出
物の燃焼除去装置を開発することを目的とする。
Therefore, an object of the present invention is to develop an improved combustion removal device for combustible waste so that the high oxidation activity of perovskite-based composite oxides can be fully exhibited.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するために、一般式A、−,
xA′xB1 、BI−、B’ y03(式中、Aは希
土類元素から選ばれた一種以上の元素、A′はアルカリ
土類元素から選ばれた一種以上の元素、B、B’はCr
 。
In order to achieve the above object, the present invention provides general formulas A, -,
xA'xB1, BI-, B' y03 (wherein A is one or more elements selected from rare earth elements, A' is one or more elements selected from alkaline earth elements, B, B' are Cr
.

Mn 、 Fe 、 Co 、 Ni  、 Cuから
選ばれた一種以上の元素、0≦x≦1.0≦y≦1であ
る。)で表わされるペロブスカイト系複合酸化物の多孔
層をフィルター機能を有する担体表面に形成して成るこ
とを特徴とする内燃機関の可燃性排出物の除去装置を提
供する。
One or more elements selected from Mn, Fe, Co, Ni, and Cu, and 0≦x≦1.0≦y≦1. Provided is a device for removing combustible exhaust from an internal combustion engine, characterized in that a porous layer of a perovskite complex oxide represented by the following formula is formed on the surface of a carrier having a filter function.

フィルタ機能を有する担体は、慣用のパティキュレート
補集用フィルタの担体のいずれでもよく、例えば、コー
ジェライト、アルミナ、ムライト、チタン酸アルミニウ
ムなどのセラミックスあるいはメタルのハニカム構造体
や多孔構造、メタルメツシュ、ワイヤーメツシュ、のほ
か、単に粒子を詰めたフィルタではその粒子も担体であ
る。
The carrier having a filter function may be any of the carriers of conventional particulate collection filters, such as ceramics such as cordierite, alumina, mullite, and aluminum titanate, or metal honeycomb structures, porous structures, metal meshes, and wires. In addition to meshes, in filters that are simply filled with particles, the particles are also carriers.

一般式A、−,xA′xB1 、B、−、B’ 、0.
で表わされるペロブスカイト型複合酸化物は、A、xA
′xB1 、B、B’を所望の組成で含む溶液、通常酸
性溶液、代表的には硝酸溶液にアルカリを加えて−A、
xA′xB1  、B、B’の水酸化物を共沈させ、乾
燥後、焼成して得ることができる。
General formula A, -, xA'xB1, B, -, B', 0.
The perovskite complex oxide represented by A, xA
'xB1, B, B' in a desired composition by adding an alkali to a solution, usually an acidic solution, typically a nitric acid solution -A,
It can be obtained by co-precipitating the hydroxides of xA'xB1, B, and B', drying, and then firing.

このようにして得られるペロブスカイト系複合酸化物の
多孔質層を担体表面に形成するには、溶剤及び有機バイ
ンダ、必要に応じて添加剤を用い、ペロブスカイト系複
合酸化物粉末と粒子径1〜30j!m1好ましくは5−
〜15−の可燃性物質を混合してスラリー状とし、担体
上にコーティングした後、乾燥・焼成すればよい。可燃
性物質は焼成温度(約400〜1000℃)で完全に燃
焼消失するものであればよいが、例えば、不定形カーボ
ン、ナイロン、ポリプロピレン等の樹脂粉末、石炭微粉
、などを好ましく用いることができる。可燃性物質の粒
子径が1趨より小さいとパティキユレートと複合酸化物
との接触度が満足できるほどに向上できず、30pmよ
り大きいと複合酸化物層が分断され、逆に接触度が低下
する。
In order to form a porous layer of the perovskite composite oxide obtained in this manner on the surface of the carrier, a solvent, an organic binder, and additives as necessary are used to form a perovskite composite oxide powder and a particle size of 1 to 30J. ! m1 preferably 5-
~15- combustible substances may be mixed to form a slurry, coated on a carrier, and then dried and fired. The combustible substance may be any substance that is completely destroyed by combustion at the firing temperature (approximately 400 to 1000°C), but for example, amorphous carbon, resin powder such as nylon, polypropylene, coal fine powder, etc. can be preferably used. . If the particle size of the combustible substance is smaller than one line, the degree of contact between the particulate and the composite oxide cannot be improved satisfactorily, and if it is larger than 30 pm, the composite oxide layer is divided and the degree of contact decreases. do.

また、可燃性物質の複合酸化物粉末に対する混合割合は
10〜5Qwt%の範囲内が好ましい。可燃性物質の混
合割合がlQwt%より少ないと触媒の酸化活性を高め
るための十分な多孔度が得られず、一方5Qwt%を越
えると生成する多孔性触媒層の強度が不足し、焼成時に
複合酸化物層が剥離したりする。
Further, the mixing ratio of the combustible substance to the composite oxide powder is preferably within the range of 10 to 5 Qwt%. If the mixing ratio of the combustible substance is less than 1Qwt%, sufficient porosity to increase the oxidation activity of the catalyst will not be obtained, while if it exceeds 5Qwt%, the strength of the porous catalyst layer will be insufficient, and the composite will be damaged during calcination. The oxide layer may peel off.

フィルタ担体への複合酸化物を担持する量は25〜15
0g (フィルタ容積11あたり)、好ましくは75〜
125g程度が良い。
The amount of composite oxide supported on the filter carrier is 25 to 15
0g (per filter volume 11), preferably 75~
About 125g is good.

また、複合酸化物中に白金族金属、特にパラジウムを分
散担持すれば着火温度、ピーク温度が低下し、好ましい
。白金族金属はフィルタ担体に複合酸化物多孔層を形成
した後に複合酸化物を含浸、乾燥、焼成して担持しても
、複合酸化物に含浸、乾燥、焼成機複合酸化物と共にフ
ィルタに担持しても良い。
Further, it is preferable to disperse and support a platinum group metal, particularly palladium, in the composite oxide because it lowers the ignition temperature and peak temperature. Platinum group metals can be supported on the filter by impregnating, drying, and firing the composite oxide after forming a composite oxide porous layer on the filter carrier. It's okay.

さらに、このペロブスカイト系複合酸化物に外部接続リ
ード線を接続して電圧を供給できるようにすれば、ペロ
ブスカイト系複合酸化物は適当な導電性(電気抵抗)を
有するために発熱することが可能であるので、フィルタ
に補集されたパティキユレートを燃焼させるための外部
ヒータが不要になる利点がある(特願昭63−6982
6号明細書参照)。
Furthermore, if a voltage can be supplied by connecting an external connection lead wire to this perovskite-based composite oxide, it is possible to generate heat because the perovskite-based composite oxide has appropriate conductivity (electrical resistance). This has the advantage of eliminating the need for an external heater to burn the particulates collected in the filter (Japanese Patent Application No. 63-6982).
(See Specification No. 6).

〔作 用〕[For production]

上記一般式で表わされる複合酸化物を担持したフィルタ
は再生性(着火温度、ピーク温度)が優れ、かつ酸化物
であることにより高温耐久性が向上する。再生性の向上
はこの複合酸化物の酸化活性が高いことによると考えら
れる。しかも、複合酸化物層を多孔質としたことにより
、可燃性排出物(パティキユレート)との接触が改良さ
れ、その結果、複合酸化物本来の高い酸化活性が先行側
以上に発揮されるようになった。
A filter carrying a composite oxide represented by the above general formula has excellent regeneration properties (ignition temperature, peak temperature), and because it is an oxide, high-temperature durability is improved. The improvement in reproducibility is thought to be due to the high oxidation activity of this composite oxide. Furthermore, by making the composite oxide layer porous, contact with combustible waste (particulates) is improved, and as a result, the inherent high oxidation activity of the composite oxide is exhibited more than on the preceding side. Became.

〔実施例〕〔Example〕

実施例1゜ ランタン、ストロンチウム、コバルトの硝酸塩を用意し
、目的とする組成となる様に濃度を調整した混合溶液を
つ(った。次にこの混合溶液を撹拌しながら炭酸す)I
Jウム水溶液を徐々に滴下し、これらの元素を水酸化物
として共沈させた。得られた沈澱物は充分に水洗後濾別
し、乾燥・粉砕・大気中800℃での焼成を経て、La
olSro、aco03組成のペロブスカイト粉末を得
た。
Example 1 A mixed solution of nitrates of lanthanum, strontium, and cobalt was prepared and the concentration was adjusted to the desired composition. Next, this mixed solution was carbonated while stirring.
A Jium aqueous solution was gradually added dropwise to co-precipitate these elements as hydroxides. The obtained precipitate was thoroughly washed with water, filtered, dried, pulverized, and calcined at 800°C in the atmosphere to obtain La
A perovskite powder having a composition of olSro and aco03 was obtained.

次にこのLao9.Sro、 2Co口。組成のペロブ
スカイト粉末90重量部、可燃物として平均径約lロー
の不定形カーボン10重量部、バインダーとしてポリビ
ニルアルコール0.5重量部、界面活性剤1重量部、蒸
留水50重量部を混合し、充分撹拌してスラリー状とし
た。
Next, this Lao9. Sro, 2Co mouth. 90 parts by weight of perovskite powder of the composition, 10 parts by weight of amorphous carbon with an average diameter of about 1 rho as a combustible material, 0.5 parts by weight of polyvinyl alcohol as a binder, 1 part by weight of a surfactant, and 50 parts by weight of distilled water, The mixture was thoroughly stirred to form a slurry.

次に市販のコージェライト質ハニカムフィルタ(φ30
X50円筒状)に上記スラリーを吸引法でコーティング
し、120℃で2時間乾燥、1000℃で3時間焼成し
て、補集表面に多孔質のペロブスカイト層を形成した。
Next, a commercially available cordierite honeycomb filter (φ30
The slurry was coated on a cylindrical body (X50 cylinder) by a suction method, dried at 120°C for 2 hours, and fired at 1000°C for 3 hours to form a porous perovskite layer on the collected surface.

なおこのときのペロブスカイト担持量はフィルタ容積1
1あたり、約95gであった。
In addition, the amount of perovskite supported at this time is the filter volume 1
It was about 95g per portion.

実施例2゜ 実施例1と同一のしao−esro、2COO3粉末7
0重量部、可燃物として同じカーボン粉末30重量部、
他は実施例1と同一の組成のスラリーを調製し、同一の
方法で前述のハニカムフィルタに多孔質ペロブスカイト
層を形成した。このときのペロブスカイト担持量はフィ
ルタ容積1βあたり、約80gであった。
Example 2゜Same ao-esro, 2COO3 powder 7 as Example 1
0 parts by weight, 30 parts by weight of the same carbon powder as the combustible material,
A slurry having the same composition as in Example 1 was otherwise prepared, and a porous perovskite layer was formed on the honeycomb filter described above using the same method. The amount of perovskite supported at this time was about 80 g per filter volume 1β.

実施例3゜ Lao、asroo、CoO,粉末40重量部、カーボ
ン粉末60重量部を用いてスラリーを調製した他は実施
例1と同一の方法でフィルタ容積lβあたり約90gの
多孔質ペロブスカイト層を形成した。なおここでは、可
燃物の割合が多いため、ペロブスカイト担持量を合わせ
る意味からコーティングは2回行われた。
Example 3 A porous perovskite layer of about 90 g per filter volume lβ was formed in the same manner as in Example 1, except that a slurry was prepared using 40 parts by weight of Lao, asroo, CoO, powder, and 60 parts by weight of carbon powder. did. Here, since the proportion of combustible substances was high, coating was performed twice to match the amount of perovskite supported.

比較例1゜ 実施例1と同一の方法でLao、 1lsro、 2C
OO3組成のペロブスカイトを調製し、蒸留水・ポリビ
ニールアルコールを用いてスラリー状とした。次に市販
のハニカムフィルタ(実施例1と同一)にこのスラリー
を用いてコーティングを行い、乾燥・焼成の後、補集表
面に比較的緻密なペロブスカイト層を形成した。なおこ
のときのペロブスカイト担持量はフィルタ容積11あた
り約100gであった。
Comparative Example 1 Lao, 1lsro, 2C in the same manner as Example 1
A perovskite with an OO3 composition was prepared and made into a slurry using distilled water and polyvinyl alcohol. Next, a commercially available honeycomb filter (same as Example 1) was coated with this slurry, and after drying and firing, a relatively dense perovskite layer was formed on the collected surface. Note that the amount of perovskite supported at this time was about 100 g per filter volume 11.

比較例2゜ 実施例1と同一のペロブスカイト粉末95重量部、カー
ボン粉末5重量部を用いた他は同一の操作でペロブスカ
イトがフィルタ容積11あたり90g担持されたフィル
タを得た。
Comparative Example 2 A filter in which 90 g of perovskite was supported per 11 filter volumes was obtained in the same manner as in Example 1, except that 95 parts by weight of perovskite powder and 5 parts by weight of carbon powder were used.

比較例3゜ 実施例1と同一のペロブスカイト粉末20重量部、カー
ボン粉末80重量部他は同一の操作でペロブスカイト層
を形成した。しかし、焼成後フィルタ取扱い中にペロブ
スカイトが剥離したため、この混合割合での試験は中止
した。
Comparative Example 3 A perovskite layer was formed using the same operations as in Example 1, except for using 20 parts by weight of the same perovskite powder, 80 parts by weight of carbon powder, and the like. However, the perovskite peeled off during handling of the filter after firing, so testing at this mixing ratio was discontinued.

試験例1゜ 実施例1〜3、比較例1〜3の各フィルターをターボチ
ャージャ付ディーゼルエンジンの排気系に取り付け、フ
ィルタ1ケあたり0.55〜0.65gのパティキュレ
ートを補集した。次にこれらのフィルターを第1図に示
す評価装置に組み付け、70%以上のパティキュレート
燃焼率が得られるフィルタ端面加熱温度(再生温度)を
調べた。第1図において、1は反応管、2は排気管、3
はN2−〇□ガス導入管、4はフィルタ、5は整流器、
6は電気炉である。
Test Example 1 The filters of Examples 1 to 3 and Comparative Examples 1 to 3 were attached to the exhaust system of a turbocharged diesel engine, and 0.55 to 0.65 g of particulates were collected per filter. Next, these filters were assembled into the evaluation apparatus shown in FIG. 1, and the filter end face heating temperature (regeneration temperature) at which a particulate combustion rate of 70% or more was obtained was investigated. In Fig. 1, 1 is a reaction tube, 2 is an exhaust pipe, and 3 is a reaction tube.
is N2-〇□ gas introduction pipe, 4 is filter, 5 is rectifier,
6 is an electric furnace.

試験例2゜ ハニカムフィルターの表面に形成されたペロブスカイト
層の付着強度を調べるため、実施例1〜3、比較例1.
2のフィルタを蒸留水中に浸漬し、超音波洗浄機中で3
0分間放置した。次にフィルタを取り出し、充分乾燥し
た後、フィルタ重量の変化からペロブスカイト層の剥離
量を調べた。試験例1.2の結果をまとめて、第1表に
示す。
Test Example 2゜In order to examine the adhesion strength of the perovskite layer formed on the surface of the honeycomb filter, Examples 1 to 3 and Comparative Example 1.
Immerse the filter in step 2 in distilled water and rinse it in an ultrasonic cleaner.
It was left for 0 minutes. Next, the filter was taken out, and after sufficiently drying, the amount of peeling of the perovskite layer was determined from the change in filter weight. The results of Test Example 1.2 are summarized in Table 1.

第1表 第1表からペロブスカイト層が比較的緻密な比較例1に
対し、可燃物を混合した場合にはいずれも再生性能が向
上しており、30%前後混合したものが最も高活性であ
ることがわかる。原理的には、ペロブスカイト層は多孔
質であればあるほど幾何学的表面積が増大し、高活性で
あるはずであるが、実施例3では担持量が少ないためコ
ーティングを2回行っており、第1回目の多孔層を第2
回目のコーティングで閉塞することから、やや活性が低
下している様である。なお、可燃物が60%段上となる
とペロブスカイト層の剥離が生じはじめることからもあ
まり、可燃物量を増やすことは好ましくない。
Table 1 Table 1 shows that compared to Comparative Example 1, where the perovskite layer is relatively dense, the regeneration performance is improved in all cases where combustible materials are mixed, and the one with a mixture of around 30% has the highest activity. I understand that. In principle, the more porous the perovskite layer is, the larger its geometric surface area should be, and the more active it should be. However, in Example 3, coating was performed twice because the amount supported was small. The first porous layer is replaced with the second porous layer.
It seems that the activity has decreased slightly because it is blocked by the second coating. Note that it is not preferable to increase the amount of combustible material too much since the perovskite layer begins to peel when the combustible material reaches 60%.

なおここでは、ペロブスカイト型複合酸化物としてLa
o、1lsrO,2CoO,、を、可燃物としテ不定形
カーボンを用いた例を示したが、原理的に、複合酸化物
の組成はこれに限定されず、また可燃物としては他にナ
イロン、ポリプロピレン他の樹脂粉末石炭の微粉も使用
できることは明らかである。
Note that here, La is used as a perovskite-type composite oxide.
Although an example is shown in which amorphous carbon is used as combustible materials, the composition of the composite oxide is not limited to this in principle, and other combustible materials include nylon, It is clear that powdered coal powders of polypropylene and other resins can also be used.

また、可燃物の粒径は1〜30μが良いとしたが、1−
以下であるとパティキュレートとペロブスカイトとの接
触度が満足できるほど向上できず、粒径が307−を超
えるとペロブスカイト層が分断され逆に接触度が低下す
ることになる。従って、粒子径はペロブスカイト担持量
(ペロブスカイト層の厚さ)にもよるが好ましくは5J
I11〜15μの範囲である。
In addition, it was said that the particle size of combustible material should be 1 to 30μ, but 1-30μ is preferable.
If the grain size is below, the degree of contact between the particulates and the perovskite cannot be improved satisfactorily, and if the grain size exceeds 307, the perovskite layer will be divided and the degree of contact will be reduced. Therefore, the particle size is preferably 5J, although it depends on the amount of perovskite supported (thickness of the perovskite layer).
It is in the range of I11 to 15μ.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、特定のペロブスカイト型複合酸化物の
本来的に高い酸化活性を充分に発揮させ、フィルターの
再生性(パティキユレートの着火温度等)をより向上さ
せた、そして耐久性に優れた、可燃性排気物の燃焼除去
装置が提供される。
According to the present invention, the inherently high oxidation activity of a specific perovskite-type composite oxide is fully exhibited, the regeneration properties of the filter (particulate ignition temperature, etc.) are further improved, and the durability is excellent. Additionally, a combustible exhaust combustion removal device is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例のフィルターの特性評価用装置の概略図
である。 ■・・・反応管、        2・・・排気管、3
・・・N2−0□ガス導入管、4・・・フィルター5・
・・整流器、        6・・・電気炉。
FIG. 1 is a schematic diagram of an apparatus for evaluating characteristics of a filter according to an embodiment. ■...Reaction tube, 2...Exhaust pipe, 3
...N2-0□Gas introduction pipe, 4...Filter 5.
... Rectifier, 6... Electric furnace.

Claims (1)

【特許請求の範囲】[Claims] 1、一般式A_1_−_xA′_xB_1_−_yB′
_yO_3(式中、Aは希土類元素から選ばれた一種以
上の元素、A′はアルカリ土類元素から選ばれた一種以
上の元素、B、B′はCr、Mn、Fe、Co、Ni、
Cuから選ばれた一種以上の元素、0≦x≦1、0≦y
≦1である。)で表わされるペロブスカイト系複合酸化
物の多孔層をフィルタ機能を有する担体表面に形成して
成ることを特徴とする内燃機関の可燃性排出物の除去装
置。
1. General formula A_1_-_xA'_xB_1_-_yB'
_yO_3 (wherein A is one or more elements selected from rare earth elements, A' is one or more elements selected from alkaline earth elements, B, B' are Cr, Mn, Fe, Co, Ni,
One or more elements selected from Cu, 0≦x≦1, 0≦y
≦1. 1. A device for removing combustible exhaust from an internal combustion engine, characterized in that a porous layer of a perovskite complex oxide represented by the following formula is formed on the surface of a carrier having a filter function.
JP63166910A 1988-07-06 1988-07-06 Combustible waste removing apparatus of internal combustion engine Pending JPH0217911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63166910A JPH0217911A (en) 1988-07-06 1988-07-06 Combustible waste removing apparatus of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63166910A JPH0217911A (en) 1988-07-06 1988-07-06 Combustible waste removing apparatus of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0217911A true JPH0217911A (en) 1990-01-22

Family

ID=15839908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63166910A Pending JPH0217911A (en) 1988-07-06 1988-07-06 Combustible waste removing apparatus of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0217911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006067887A1 (en) * 2004-12-24 2006-06-29 Dowa Mining Co., Ltd. Pm combustion catalyst and filter
JP2007237012A (en) * 2006-03-06 2007-09-20 Dowa Holdings Co Ltd Dpf and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006067887A1 (en) * 2004-12-24 2006-06-29 Dowa Mining Co., Ltd. Pm combustion catalyst and filter
JPWO2006067887A1 (en) * 2004-12-24 2008-06-12 Dowaホールディングス株式会社 PM combustion catalyst and filter
JP5391408B2 (en) * 2004-12-24 2014-01-15 Dowaエレクトロニクス株式会社 PM combustion catalyst manufacturing method and PM combustion method
JP2007237012A (en) * 2006-03-06 2007-09-20 Dowa Holdings Co Ltd Dpf and its manufacturing method

Similar Documents

Publication Publication Date Title
KR101273228B1 (en) Catalytically coated particle filter and method for producing the same and its use
EP1818097A1 (en) Catalytic material, production method therefor, and diesel particulate filter
JPH03249948A (en) Catalyst for purifying exhaust gas from diesel engine
AU615721B2 (en) Catalyst for purification of exhaust gas and process for production thereof
CN110124667B (en) Diesel catalyst capable of replacing DOC + CDPF system
JP2004058013A (en) Purification catalyst for exhaust gas
CN102470350A (en) Particulate combustion catalyst
JP2825420B2 (en) Diesel engine exhaust gas purification catalyst
EP0925823B1 (en) Exhaust emission control device and method of manufacturing the same
JPH06304449A (en) Apparatus for removing nitrogen oxide
JPH0217911A (en) Combustible waste removing apparatus of internal combustion engine
JP2005007360A (en) Exhaust gas cleaning filter
CN111821971B (en) Integral catalyst for catalytic regeneration of carbon smoke and preparation method thereof
JP2016500331A (en) Zoned diesel oxidation catalyst
JPH01142208A (en) Filter for collecting diesel particulate
JP3800349B2 (en) Catalyst composition for removing particulate matter from diesel vehicles
JPH02261511A (en) Catalyst for removing fine grain in diesel exhaust and its filter
JP2597570B2 (en) High temperature combustion catalyst and method for producing the same
JP4682396B2 (en) Exhaust gas purification material, preparation method thereof, and exhaust gas purification apparatus using the same
JPH01244110A (en) Device and method for removing combustible discharged substance for internal combustion engine
JPH01147108A (en) Particulate collecting filter
JPS61149221A (en) Filter for collecting particulate of diesel engine
WO2023079864A1 (en) Exhaust gas cleaning catalyst production method and exhaust gas cleaning catalyst
JPS6157223A (en) Filter for collecting diesel particulate
US20010001646A1 (en) Method of preparing a catalytic device and after-treating apparatus of exhaust gas using the catalytic device