JPH0217886B2 - - Google Patents

Info

Publication number
JPH0217886B2
JPH0217886B2 JP56009475A JP947581A JPH0217886B2 JP H0217886 B2 JPH0217886 B2 JP H0217886B2 JP 56009475 A JP56009475 A JP 56009475A JP 947581 A JP947581 A JP 947581A JP H0217886 B2 JPH0217886 B2 JP H0217886B2
Authority
JP
Japan
Prior art keywords
resin
insulating board
electrical insulating
base material
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56009475A
Other languages
Japanese (ja)
Other versions
JPS57123613A (en
Inventor
Masaharu Abe
Yasuo Fushiki
Masayuki Ooizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP56009475A priority Critical patent/JPS57123613A/en
Publication of JPS57123613A publication Critical patent/JPS57123613A/en
Publication of JPH0217886B2 publication Critical patent/JPH0217886B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、新規な構造を有する電気用絶縁板に
関し、その目的は、吸水もしくは吸湿等によつて
も電気特性や寸法安定性、更に耐熱性に優れる電
気用絶縁板を提供することにある。 本発明でいう電気用絶縁板とは、各種電子部品
や装置の基板又は支持板として使用される積層板
を意味し、特に抵抗ペーストを該積層板の表面に
塗布した積層板を用いた抵抗部品を製造するため
の絶縁基板を含む。 一般に、これらの絶縁基板は厚さが0.5mmの板
が多用されており、JIS−K−6912によれば、こ
の種の基板の厚さ許容範囲は0.5±0.08mm、即ち
0.42〜0.58mmと規定されている。 従来、これらの絶縁板はフエノール樹脂と紙、
あるいはエポキシ樹脂と紙等を素材として、例え
ば基材である紙に樹脂ワニスを含浸してプリプレ
グを作り、このプリプレグを多数枚重ね合せ、熱
圧成型して製造されている。このようにして製造
される従来の電気用絶縁板の1例として紙基材と
フエノール樹脂とから成る厚み0.5mmの絶縁板の
断面を第1図に示す。フエノール樹脂が含浸した
紙基材が3枚以上積層され、それらの紙の繊維は
各基材間でからみ合つている。 一方、電気用積層板は、吸湿によつて電気的特
性や耐熱性、あるいは寸法安定性が損なわれるこ
とが避けられず、これは実用的な面で好ましくな
い。水分は主に絶縁板の表面層から内部に浸透す
るが、一般に紙は親水性であるために、紙基材層
の存在は水分の絶縁板内の透過を容易にする。従
つて、第1図に示したような、従来の絶縁板、即
ち絶縁板表面に樹脂連続層が無く更に絶縁板内部
においても紙基材間に樹脂連続層が無い構造のも
のは、絶縁板内で各紙基材がからみ合つていて、
絶縁板の垂直方向における水分の浸透が容易とな
り、従つて吸湿、吸水量が大きく、電気絶縁特
性、特にJIS−C−6481に定める体積抵抗率や絶
縁抵抗の大巾な低下をまねき、更に加熱時にフク
レ等を生じて耐熱性を損ねる。 本発明者等はかかる現状に鑑みて研究を重ね既
に特開昭55−103786において、各基材間に熱硬化
性樹脂層を形成させ、各基材層の接触を実質的に
遮断し、かつ表面に樹脂連続層を形成された電気
用絶縁積層板を提案しているが、更に研究を続け
た結果、基材として、クラフト紙やリンター紙、
あるいはコツトン紙等のセルロース繊維を主成分
とした紙を採用し、該紙基材を、メチロール基を
含有する化合物例えば脱水縮合型樹脂を予備含浸
処理剤として予め含浸処理し、更に硬化性樹脂そ
の内特に不飽和ポリエステル系樹脂あるいは、エ
ポキシ系樹脂で含浸積層硬化させるとき、電気特
性や耐熱性の極めて良好な絶縁板が得られること
を見出した。更に、本発明に係る0.5mmを中心と
した厚みの電気用絶縁板を構成する紙基材の枚数
は、2枚とすることが最も好ましいことを見出し
本発明を完成した。 本発明は、メチロール基を含有する化合物また
は該化合物を主成分とする予備含浸処理剤により
予め含浸処理されたセルロース繊維を主成分とす
る紙基材に、溶媒成分を含まずかつ硬化の際反応
副生成物を実質的に発生しない常温で液体の硬化
性樹脂を含浸し、該含浸基材を2枚積層し、硬化
せしめてなる厚みが0.42〜0.58mmの範囲の電気用
絶縁板であつて、前記含浸基材は紙基材の繊維密
度が高い側同志または低い側同志が対面するよう
に積層され、かつその間に実質的な連続層として
硬化した前記硬化性樹脂の層が存在することを特
徴とする電気用絶縁板に関する。本発明の電気絶
縁板は特に吸湿時においても電気特性や耐熱性に
優れたものである。 又、該電気用絶縁板の表面にも実質的な連続層
として該基材に含浸された硬化性樹脂例えば、不
飽和ポリエステル系樹脂或いはエポキシ系樹脂の
層が存在するとき、或いは更に該予備含浸処理剤
が、メチロール基を含有する化合物と、分子内に
メチロール基と縮合可能な基を少なくとも1個含
有する高級脂肪誘導体との混合物もしくは縮合生
成物であるとき、該電気用絶縁板の電気的特性や
耐熱性、打抜加工性やスリツター加工性がより好
ましくなる。 本発明において、メチロール基を含有する化合
物としてN−メチロールアクリルアミドその他
種々の化合物が挙げられるが、特にフエノール樹
脂、メラミン樹脂、尿素樹脂等の脱水縮合型樹
脂、そのうち更にメチロールメラミン及び又はメ
チロールグアナミンが好ましく、これらはメラミ
ン又はホルモグアナミン、アセトグアナミン、プ
ロピオグアナミン、ベンゾグアナミン、アジポジ
グアナミン等のグアナミン類とホルムアルデヒド
の初期縮合物あるいはそれらのメチロール基の一
部又は全部をメタノールやブタノールの如き低級
アルコールでエーテル化したものなどをいう。ま
たこれらを主成分として、例えば機械的特性の改
質を目的とし熱可塑性樹脂、各種植物油、及びそ
の変性物など適宜混合されたものでも良い。更に
メチロール基を有する化合物に加えて、次のごと
き高級脂肪族誘導体を混合もしくは縮合せしめる
とより良い結果が得られる。高級脂肪族誘導体に
は、例えばカプリル酸、カプリン酸、ラウリン
酸、ミリスチン酸、パルミチン酸、ステアリン酸
の如きの飽和脂肪酸;オレイン酸、エルカ酸、リ
ノール酸、エレオステアリン酸、リノレン酸の如
き不飽和脂肪酸及び上記の脂肪酸類とエチレング
リコール、ポリエチレングリコール、プロピレン
グリコール、グリセリン、ペンタエリスリトー
ル、ソルビトール等多価アルコールとのエステル
類及び上記の如き脂肪酸からの誘導体である脂肪
族アミド及びカプリルアルコール、ラウリルアル
コール、ミリスチルアルコール、セチルアルコー
ル、ステアリルアルコール、オレイルアルコー
ル、リノレイルアルコール等の飽和あるいは不飽
和の高級アルコール及び高級アルコールと多価ア
ルコールとのエーテル類及び高級アルコールから
の誘導体である脂肪族アミンなどを挙げることが
できる。またリシノレイン酸の如きオキシ脂肪酸
とそれからの誘導体も同様に打抜加工性やスリツ
ター加工性の改良の目的に併用することができ
る。要するに、分子内に水酸基、カルボキシル
基、アミノ基、アミド基等のアミノ樹脂のメチロ
ール基と縮合しうる基とアミノ樹脂の凝集力を弱
める働きをする長鎖のアルキル基を併せ有するこ
とが打抜加工性あるいはスリツター加工性等の改
質剤として必要な条件である。このような条件を
満たす高級脂肪族誘導体の数は極めて多いが、本
発明者らがこれまで検討を行つてきた結果によれ
ば、炭素数が8以上の時、該改質剤としての効果
が顕著となり、炭素数18で不飽和基一個を有する
オレイン酸、オレイルアルコール及びそれらの誘
導体例えばオレイン酸モノグリセリド、オレイン
酸ジグリセリド、オレイン酸アマイド、オレイル
アミンを用いた時、得られる積層板の性能がバラ
ンスがとれ良好であり、本発明の好適な実施態様
であることも明らかとなつた。 かかる改質剤の使用量は、積層板に使用する不
飽和ポリエステル樹脂やエポキシ樹脂によつて、
その最適量は異なるが、通常メチロール基を有す
る化合物100部に対して3倍から40部の範囲内に
ある。処理剤の使用方法については、メチロール
基を有する化合物又は該化合物と前記改質剤とを
溶液や懸濁液の形で混合して用いるか、あるいは
両者を予め縮合させて用いるか、いずれの方法に
よつてもよい。 本発明のメチロール基を有する化合物は、一般
にセルロース繊維及び不飽和ポリエステル樹脂又
は、エポキシ樹脂の両者に対して適当な親和性を
有し、すぐれた複合体を形成するのに役立ち、こ
のことがひいてはすぐれた電気用絶縁板を形成す
る。 予め含浸処理された紙基材を得るには、例えば
上記のメチロール基を有する化合物の水やアルコ
ールを溶媒とする溶液を調節し、これに浸漬し、
乾燥することによつて達成できる。メチロール基
を有する化合物処理剤の紙基材に対する最終的な
付着量は、通常、紙の重量に対して5〜30%、好
ましくは10〜20%程度が良い。この様な予め含浸
処理をほどこした紙基材を用いると、曲げ強度
が改善される。打ち抜き加工時、不飽和ポリエ
ステル樹脂やエポキシ樹脂とセルロース繊維の剥
離によつて、しばしば発生する好ましくない白化
が改良される。特に多湿の環境にさらされた時
の耐熱性及び電気絶縁特性の劣化が軽微となる。 本発明における硬化性樹脂は、熱、光又は放射
線等により硬化するものが使用されるが、その内
特に多用される不飽和ポリエステル樹脂やエポキ
シ樹脂についていえば、通常良く知られているも
のは基本的には適用可能である。しかし、絶縁板
の用途によつてより適切なグレードを選択するこ
とが好ましい。例えば本発明に係る0.5mmを中心
とした絶縁板においては、基板の常温あるいは加
熱時の曲げ強度や曲げ弾性率もまた重要な特性の
1つであるが、これらの機械的特性を向上させる
ためには、より硬質の樹脂を選択することが好ま
しい。 また、本発明において、硬化性樹脂等に不飽和
ポリエステル系樹脂あるいはエポキシ系樹脂の
内、常温で液状であり、溶剤で希釈することな
く、予め含浸処理された紙基材への含浸が容易な
ものが特に好ましい。何故なら本発明に使用する
紙基材は、例えば脱水縮合型樹脂が主成分である
ような予備含浸処理剤により予備処理がされてい
るからセルロース繊維の表面には、これら処理剤
が付着したり、表面を被覆している。この紙基材
に、溶剤で希釈した樹脂、即ち樹脂ワニスを含浸
させると、用いる溶剤の種類によつては、セルロ
ース繊維の表面に存在する脱水縮合型樹脂が溶解
してしまうという、好ましくない現象を呈する場
合があるからである。 本発明において、使用される紙基材の数は2枚
が好適である。一般に、セルロース繊維を主体と
する紙は、抄紙される過程において必然的に紙の
表裏の繊維密度に疎密が生じる。この紙の表裏の
繊維の密度差は、たとえば吸湿したときカールの
現象として発現する。このカールの現象は、本発
明における予備含浸処理剤によつて、含浸処理さ
れても変化しない。又、該処理された基材1枚
に、本発明における例えば不飽和ポリエステル系
樹脂或いはエポキシ系樹脂を含浸し、硬化せしめ
て得られた絶縁板、即ち1枚の基材層と硬化され
た該不飽和ポリエステル系樹脂或いはエポキシ系
樹脂とからなる本発明の厚み以下の絶縁板におい
てもカール現象は同様変化しない。このような構
造の絶縁板の場合、樹脂の硬化収縮に基づく収縮
が、繊維密度の高い側面は繊維に支えられて比較
的小さいのに対して、繊維密度の低い側面の収縮
は比較的大きい。故に、硬化の過程でそれを生じ
るか、あるいは例えば熱処理等によつて、上記収
縮歪がそりとして解放される。厚さが0.5mmを中
心とした薄い基板において、特に上記基板の貫層
方向の異方性に基づくそりの現象は顕著となる。 以上の点に鑑み本発明者等は、予め含浸処理さ
れた2枚の紙基材の繊維密度の高い側面同志又は
繊維密度の低い側面同志が向い合うように積層す
ることによりこの問題を解決した。 勿論、紙基材を4枚以上の偶数枚用いることに
よつても基板の貫層方向の異方性を相殺すること
が出来るが、4枚以上の偶数枚で約0.5mm程度の
積層板を作ると以下のような欠陥が生じる。即ち
本発明者等の研究によれば、本発明に係る含浸処
理された紙基材の引張強度や引裂強度は、未処理
基材に比して、しばしば約1/2程度に低下し、絶
縁板製造時のハンドリング等において破損しやす
くなつている。例えば嵩密度が0.4〜0.6g/cm2
あるとき、基材の厚さは約200μm以上であるこ
とがかゝる観点から好ましい。従つて0.5mm
(500μm)においては、紙基材の枚数は2枚であ
ることが現実的である。 本発明において、硬化性樹脂例えば不飽和ポリ
エステル系樹脂あるいはエポキシ系樹脂の実質的
連続層が基材間のみならず、絶縁板の表面に形成
されることが、更に好適であることが次に示され
る。 本発明の構造概念を絶縁板の断面図として第2
図に示す。第3図は、本発明の絶縁板の片面に、
ある種の印刷、たとえば抵抗ペースト4を印刷し
た抵抗器を示す。第3図において、裏面に形成さ
れた樹脂の連続層2によつて、水分の絶縁板内へ
の侵入は大巾に制限される。わずかに侵入した水
分も、第1層の基材と第2層の基材の間に存在す
る樹脂層3によつて遮断される。従つて、絶縁板
内部への水の侵入は殆んど無く、吸湿や吸水に基
づく寸法変化や、そり、あるいは耐熱性の劣化が
著るしく改善され、また抵抗ペーストの水分によ
る劣化を小さくすることが出来る。 本発明に使用する硬化性樹脂は、硬化には本質
的に不必要な溶媒成分は含まず、樹脂成分全体が
熱硬化物の成分となるタイプの熱硬化性樹脂を主
成分とするものであつて、かつ硬化の際、縮合水
や炭酸ガス等の反応副生成物を実質的に発生しな
い樹脂が好ましい。たとえば、それは不飽和ポリ
エステル系樹脂、エポキシアクリレート系樹脂
(いわゆるビニルエスステル系樹脂)、ジアリルフ
タレート系樹脂、エポキシ系樹脂液等のラジカル
重合型あるいは付加反応型のものである。これら
硬化性樹脂には、硬化剤、硬化触媒、硬化助剤等
が適宜添加される。更に、電気的特性や機械的特
性を向上させる目的で炭カル、タルク、ガラス
粉、マイカ、クレー、ケイ酸カルシウム等のフイ
ラー類等も加えることも多々ある。又、不飽和ポ
リエステル樹脂に対しては、ジビニルベンゼンの
如き多官能性炭化水素系単量体等、エポキシ樹脂
に対しては、たとえば可撓性を附与するために単
官能性のエポキシ樹脂を添加するなど、改質剤を
適宜含有せしめてもよい。 本発明によつて構成される樹脂連続層の厚さ
は、通常1〜100μが好ましい。この厚さは、用
いられている基材の厚さ以下が好ましく、また、
むやみに厚いと、たとえば切断時の破損や打ち抜
き加工性を損ねる。この樹脂層の厚さの確認は、
断面を鋭利な刃物で削るか、あるいは特殊な樹脂
に包囲した試験片を切断研磨し、10〜100倍程度
の光学顕微鏡によつて正確に観察することが出来
る。 本発明にかかわる電気用絶縁板の好ましい製造
方法の1つとして次のような方法がある。 未硬化の状態で、それ自体、室温で液状である
エポキシ樹脂や不飽和ポリエステル樹脂を用い、
これらの樹脂液を、予め処理剤により処理された
基材に過剰量含浸させ、あるいは樹脂含浸量が少
ない場合、基材を重ね合せる際に更に該樹脂液を
基材上に塗布する等の方法を経た上で、予め基材
の厚さや、あるいは基材間の樹脂層の厚さ等から
算定された間隔を有するスリツト間を通過させる
などして各含浸基材を連続又は非連続で積層し、
加熱硬化することによつて達成できる。積層硬化
時には、金属箔、セロフアン、又はプラスチツク
シート等のカバーシートを使用し、表面性の改善
又は硬化時に雰囲気中の酸素等により影響を受け
る樹脂の保護をすること等も適宜利用できる。 このような未硬化の状態で、それ自体室温で液
状である樹脂は、溶剤等の揮発性成分を含んでい
ないので溶剤等の乾燥を必要とせず、加えて各基
材間の樹脂層の厚みの制御が容易であり、本発明
に好適である。さらに、基材への含浸や基材間の
樹脂層厚み等を制御するため、未硬化時の樹脂液
の粘度も要素となるが、広い粘度の範囲、例えば
0.05〜35ポイズといつた範囲の樹脂液を容易に調
整することのできる室温で液状である不飽和ポリ
エステル樹脂が本発明において特に好適である。 以下、実施例により本発明を更に詳細に説明す
る。 実施例 市販のトリメチロールメラミン(日本カーバイ
ト製S−305)12重量部、オレイン酸モノグリセ
ライド1.6重量部、界面活性剤(花王石けん製エ
マルゲン905)0.2重量部及び水100重量部からな
るメラミン樹脂を主成分とする水溶液(予備含浸
処理剤)を調製し、このものに市販のクラフト紙
(山陽国策パルプ製ZB−S)を浸漬し、紙と同重
量の水溶液を含むように絞り、100℃×10分の条
件で乾燥し、予め含浸処理された紙基材を得た。
一方、室温で液状の不飽和ポリエステル樹脂(武
田薬品製ポリマール6304)に、硬化用触媒として
パーブチルO(日本油脂製)を1重量部添加した
不飽和ポリエステル樹脂液を上記予備含浸処理さ
れた紙基材に含浸し、この紙基材2枚の表裏に、
更に該不飽和ポリエステル樹脂液を塗布した後重
ね合せ、無圧で硬化せしめて、第2図に示す構造
を有する0.54mmの絶縁板を得た。表面樹脂連続層
の厚みは約2〜3μであり、基材間樹脂連続層厚
みは約10μであつた。 比較例 1 実施例において、不飽和ポリエステル樹脂液を
含浸した該紙基材2枚を重ね合せ、加圧して過剰
な該樹脂液を排除した後硬化せしめ、該紙基材間
及び表面層に、ほとんど該樹脂層が存在しない絶
縁板を得た。 比較例 2 実施例において、予め予備含浸処理剤による含
浸処理を行わず、不飽和ポリエステル樹脂液によ
る含浸処理のみをした紙基材を用いて第2図に示
す構造を有する絶縁板を得た。 比較例 3 フエノール樹脂と紙基材によつて製造されてい
る第1図に示す構造を有する市販品を用いた。 第1表に示すように、本発明になる絶縁板は、
従来品に比して、著るしく良好な特性を有してい
る。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrical insulating board having a novel structure, and an object thereof is to provide an electrical insulating board that has excellent electrical properties, dimensional stability, and heat resistance even when water or moisture is absorbed. Our goal is to provide the following. The term "electrical insulating board" as used in the present invention refers to a laminate used as a substrate or support plate for various electronic components and devices, and in particular, a resistance component using a laminate with a resistance paste applied to the surface of the laminate. Including an insulating substrate for manufacturing. Generally, boards with a thickness of 0.5 mm are often used for these insulating boards, and according to JIS-K-6912, the allowable thickness range for this type of board is 0.5 ± 0.08 mm, i.e.
It is specified as 0.42 to 0.58 mm. Conventionally, these insulating boards were made of phenolic resin, paper,
Alternatively, it is manufactured by using epoxy resin and paper as materials, for example, by impregnating the paper base material with resin varnish to make a prepreg, stacking many sheets of this prepreg, and hot-pressing molding. As an example of a conventional electrical insulating board manufactured in this manner, FIG. 1 shows a cross section of a 0.5 mm thick insulating board made of a paper base material and a phenol resin. Three or more paper substrates impregnated with phenolic resin are laminated, and the paper fibers are entangled between each substrate. On the other hand, electrical laminates inevitably lose their electrical properties, heat resistance, or dimensional stability due to moisture absorption, which is undesirable from a practical standpoint. Moisture mainly permeates into the inside of the insulating board from the surface layer, but since paper is generally hydrophilic, the presence of the paper base layer facilitates the permeation of moisture into the insulating board. Therefore, a conventional insulating board as shown in Fig. 1, that is, one with a structure in which there is no continuous resin layer on the surface of the insulating board and also without a continuous resin layer between the paper base materials inside the insulating board, is called an insulating board. Each paper base material is intertwined inside,
Moisture permeates easily in the vertical direction of the insulating plate, resulting in a large amount of moisture absorption, leading to a significant decrease in electrical insulation properties, especially the volume resistivity and insulation resistance specified in JIS-C-6481, and further heating. Sometimes blistering occurs and heat resistance is impaired. In view of the current situation, the present inventors have conducted research and have already published in JP-A-55-103786, a thermosetting resin layer is formed between each base material to substantially cut off contact between each base material layer, and We have proposed an electrical insulating laminate with a continuous resin layer formed on the surface, but as a result of further research, we have found that kraft paper, linter paper,
Alternatively, a paper mainly composed of cellulose fibers such as cotton paper is used, and the paper base material is pre-impregnated with a compound containing a methylol group, such as a dehydration condensation type resin, as a pre-impregnation treatment agent, and then a curable resin or the like is pre-impregnated. It has been found that an insulating plate with extremely good electrical properties and heat resistance can be obtained when the insulating plate is laminated and cured by impregnating it with an unsaturated polyester resin or an epoxy resin. Furthermore, the present invention was completed by discovering that the number of paper base materials constituting the electrical insulating board having a thickness of around 0.5 mm according to the present invention is most preferably two. The present invention uses a paper base material mainly composed of cellulose fibers that has been pre-impregnated with a compound containing a methylol group or a pre-impregnation treatment agent containing the compound as a main component, which does not contain a solvent component and reacts during curing. An electrical insulating board having a thickness in the range of 0.42 to 0.58 mm, which is obtained by impregnating a curable resin that is liquid at room temperature without substantially generating by-products, laminating two sheets of the impregnated base material, and curing the same. , the impregnated base material is laminated so that the high fiber density sides or low fiber density sides of the paper base materials face each other, and a layer of the curable resin cured as a substantially continuous layer is present between them. The present invention relates to an electrical insulating board with characteristics. The electrical insulating board of the present invention has excellent electrical properties and heat resistance, especially when it absorbs moisture. Further, when there is a layer of a curable resin, such as an unsaturated polyester resin or an epoxy resin, impregnated into the base material as a substantially continuous layer on the surface of the electrical insulating board, or in addition, the pre-impregnation When the treatment agent is a mixture or condensation product of a compound containing a methylol group and a higher fat derivative containing at least one group capable of condensing with a methylol group in the molecule, the electrical The properties, heat resistance, punching workability, and slitting workability are more favorable. In the present invention, examples of the methylol group-containing compound include N-methylol acrylamide and other various compounds, but dehydration condensation resins such as phenol resins, melamine resins, and urea resins, among which methylol melamine and/or methylol guanamine are particularly preferred. These are initial condensates of formaldehyde and guanamines such as melamine or formoguanamine, acetoguanamine, propioguanamine, benzoguanamine, and adiposiguanamine, or etherification of some or all of their methylol groups with lower alcohols such as methanol or butanol. refers to things that have become Furthermore, with these as main components, thermoplastic resins, various vegetable oils, modified products thereof, etc. may be appropriately mixed, for example, for the purpose of improving mechanical properties. Furthermore, better results can be obtained by mixing or condensing the following higher aliphatic derivatives in addition to the compound having a methylol group. Higher aliphatic derivatives include, for example, saturated fatty acids such as caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, and stearic acid; Saturated fatty acids and esters of the above fatty acids with polyhydric alcohols such as ethylene glycol, polyethylene glycol, propylene glycol, glycerin, pentaerythritol, sorbitol, aliphatic amides that are derivatives of the above fatty acids, and caprylic alcohol and lauryl alcohol , saturated or unsaturated higher alcohols such as myristyl alcohol, cetyl alcohol, stearyl alcohol, oleyl alcohol, linoleyl alcohol, ethers of higher alcohols and polyhydric alcohols, and aliphatic amines that are derivatives of higher alcohols. be able to. Oxyfatty acids such as ricinoleic acid and derivatives thereof can also be used in combination for the purpose of improving punching processability and slitting processability. In short, punching is achieved by having in the molecule both a group that can condense with the methylol group of the amino resin, such as a hydroxyl group, a carboxyl group, an amino group, an amide group, and a long-chain alkyl group that acts to weaken the cohesive force of the amino resin. This is a necessary condition as a modifier for processability or slitter processability. The number of higher aliphatic derivatives that meet these conditions is extremely large, but according to the results of studies conducted by the present inventors, when the number of carbon atoms is 8 or more, the effect as a modifier is When using oleic acid, oleyl alcohol, and their derivatives, such as oleic acid monoglyceride, oleic acid diglyceride, oleic acid amide, and oleylamine, which have 18 carbon atoms and one unsaturated group, the performance of the resulting laminate becomes unbalanced. It was also revealed that the film was easily removed and was a preferred embodiment of the present invention. The amount of such modifier used depends on the unsaturated polyester resin or epoxy resin used for the laminate.
The optimum amount varies, but is usually in the range of 3 to 40 parts per 100 parts of the compound having a methylol group. Regarding the method of using the treatment agent, either a compound having a methylol group or the compound and the above-mentioned modifier are mixed in the form of a solution or suspension, or the two are used by condensing them in advance. It may also depend on The methylol group-containing compounds of the present invention generally have a suitable affinity for both cellulose fibers and unsaturated polyester resins or epoxy resins, helping to form excellent composites, which in turn Forms an excellent electrical insulation board. To obtain a pre-impregnated paper base material, for example, prepare a solution of the above-mentioned methylol group-containing compound in water or alcohol as a solvent, and immerse it in this solution.
This can be achieved by drying. The final amount of the methylol group-containing compound treatment agent applied to the paper base is usually about 5 to 30%, preferably about 10 to 20%, based on the weight of the paper. By using a paper base material that has been subjected to such a pre-impregnation treatment, the bending strength is improved. Undesirable whitening that often occurs due to peeling of unsaturated polyester resins or epoxy resins from cellulose fibers during punching is improved. In particular, the deterioration of heat resistance and electrical insulation properties is slight when exposed to a humid environment. The curable resin used in the present invention is one that is cured by heat, light, radiation, etc. Among these, the most commonly used unsaturated polyester resins and epoxy resins are generally well-known ones. Generally applicable. However, it is preferable to select a more appropriate grade depending on the use of the insulating plate. For example, the bending strength and bending elastic modulus of the board at room temperature or when heated are also important properties of the insulating board of the present invention, which is mainly 0.5 mm thick, and in order to improve these mechanical properties, It is preferable to select a harder resin. In addition, in the present invention, the curable resin or the like may be an unsaturated polyester resin or an epoxy resin, which is liquid at room temperature and can be easily impregnated into a pre-impregnated paper base material without diluting with a solvent. Particularly preferred. This is because the paper base material used in the present invention has been pretreated with a pre-impregnating treatment agent whose main component is, for example, a dehydration condensation type resin, so that these treatment agents do not adhere to the surface of the cellulose fibers. , coating the surface. When this paper base material is impregnated with a resin diluted with a solvent, that is, a resin varnish, an undesirable phenomenon occurs in which the dehydration condensation resin present on the surface of the cellulose fibers dissolves depending on the type of solvent used. This is because it may exhibit the following. In the present invention, the number of paper base materials used is preferably two. Generally, in paper mainly composed of cellulose fibers, the density of fibers on the front and back sides of the paper inevitably varies during the paper making process. This difference in density between the fibers on the front and back sides of the paper manifests as a curling phenomenon, for example, when moisture is absorbed. This curl phenomenon does not change even if impregnated with the pre-impregnated treatment agent of the present invention. In addition, an insulating plate obtained by impregnating one of the treated base materials with, for example, an unsaturated polyester resin or an epoxy resin according to the present invention and curing the same, that is, one base material layer and the cured resin. Even in the case of an insulating plate made of unsaturated polyester resin or epoxy resin and having a thickness equal to or less than that of the present invention, the curling phenomenon does not change in the same way. In the case of an insulating plate having such a structure, the shrinkage due to curing shrinkage of the resin is relatively small on the side surfaces with high fiber density because they are supported by the fibers, whereas the shrinkage on the side surfaces with low fiber density is relatively large. Therefore, the shrinkage strain is released as warpage by occurring during the curing process or by, for example, heat treatment. In a thin substrate having a thickness of around 0.5 mm, the phenomenon of warpage due to the anisotropy in the through-layer direction of the substrate becomes particularly noticeable. In view of the above points, the present inventors solved this problem by stacking two pre-impregnated paper base materials so that the sides with high fiber density or the sides with low fiber density face each other. . Of course, the anisotropy in the through-layer direction of the substrate can be offset by using an even number of paper substrates of 4 or more. When it is made, the following defects occur. That is, according to the research conducted by the present inventors, the tensile strength and tear strength of the impregnated paper base material according to the present invention often decrease to about 1/2 that of the untreated base material, and the insulating It is easily damaged during handling during plate manufacturing. For example, when the bulk density is 0.4 to 0.6 g/cm 2 , the thickness of the base material is preferably about 200 μm or more from this point of view. Therefore 0.5mm
(500 μm), it is realistic that the number of paper base materials is two. It will be shown next that in the present invention, it is further preferable that a substantially continuous layer of a curable resin, such as an unsaturated polyester resin or an epoxy resin, is formed not only between the base materials but also on the surface of the insulating plate. It will be done. The structural concept of the present invention is shown in the second section as a cross-sectional view of an insulating plate.
As shown in the figure. FIG. 3 shows that on one side of the insulating plate of the present invention,
2 shows a resistor with some kind of printing, for example a resistor paste 4; In FIG. 3, the continuous layer 2 of resin formed on the back side largely restricts the ingress of moisture into the insulating plate. Even a small amount of moisture that has entered is blocked by the resin layer 3 existing between the first layer base material and the second layer base material. Therefore, there is almost no water intrusion into the inside of the insulating board, and dimensional changes, warping, and heat resistance deterioration due to moisture absorption and water absorption are significantly improved, and deterioration of the resistance paste due to moisture is reduced. I can do it. The curable resin used in the present invention does not contain a solvent component that is essentially unnecessary for curing, and is mainly composed of a type of thermosetting resin in which the entire resin component becomes a component of the thermoset product. It is preferable to use a resin that does not substantially generate reaction by-products such as condensed water or carbon dioxide gas during curing. For example, they are radical polymerization type or addition reaction type resins such as unsaturated polyester resins, epoxy acrylate resins (so-called vinyl ester resins), diallyl phthalate resins, and epoxy resin liquids. A curing agent, a curing catalyst, a curing aid, etc. are appropriately added to these curable resins. Furthermore, fillers such as charcoal, talc, glass powder, mica, clay, and calcium silicate are often added for the purpose of improving electrical and mechanical properties. In addition, for unsaturated polyester resins, polyfunctional hydrocarbon monomers such as divinylbenzene are used, and for epoxy resins, for example, monofunctional epoxy resins are used to impart flexibility. A modifier may be included as appropriate, such as by adding a modifier. The thickness of the continuous resin layer constructed according to the present invention is generally preferably 1 to 100 microns. This thickness is preferably equal to or less than the thickness of the base material used, and
If it is unnecessarily thick, it may break during cutting or impair punching workability, for example. To check the thickness of this resin layer,
The cross section can be cut with a sharp knife, or a specimen surrounded by a special resin can be cut and polished, and then accurately observed using an optical microscope with a magnification of 10 to 100 times. One of the preferred methods for manufacturing the electrical insulating board according to the present invention is the following method. Using epoxy resins and unsaturated polyester resins that are liquid at room temperature in an uncured state,
A method such as impregnating an excessive amount of these resin liquids into a base material that has been previously treated with a treatment agent, or, if the amount of resin impregnated is small, further applying the resin liquid onto the base material when the base materials are stacked on top of each other. After that, each impregnated base material is laminated continuously or discontinuously by passing it through slits having an interval calculated in advance from the thickness of the base material or the thickness of the resin layer between the base materials, etc. ,
This can be achieved by heat curing. During lamination and curing, a cover sheet such as metal foil, cellophane, or plastic sheet may be used as appropriate to improve surface properties or protect the resin which is affected by oxygen in the atmosphere during curing. This kind of uncured resin, which is liquid at room temperature, does not contain volatile components such as solvents, so it does not require drying, and in addition, the thickness of the resin layer between each base material is easy to control and is suitable for the present invention. Furthermore, in order to control the impregnation into the base material and the thickness of the resin layer between the base materials, the viscosity of the uncured resin liquid is also a factor;
Particularly suitable in the present invention is an unsaturated polyester resin which is liquid at room temperature and allows easy preparation of a resin liquid in the range of 0.05 to 35 poise. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example A melamine resin consisting of 12 parts by weight of commercially available trimethylolmelamine (S-305 manufactured by Nippon Carbide), 1.6 parts by weight of oleic acid monoglyceride, 0.2 parts by weight of a surfactant (Emulgen 905 manufactured by Kao Soap) and 100 parts by weight of water was used. Prepare an aqueous solution (pre-impregnation treatment agent) containing the main component, soak commercially available kraft paper (ZB-S manufactured by Sanyo Kokusaku Pulp) in this solution, squeeze to contain the same weight of the aqueous solution as the paper, and heat at 100°C It was dried for 10 minutes to obtain a paper base material that had been previously impregnated.
On the other hand, an unsaturated polyester resin solution prepared by adding 1 part by weight of Perbutyl O (manufactured by NOF Corporation) as a curing catalyst to an unsaturated polyester resin (Polymer 6304 manufactured by Takeda Pharmaceutical Co., Ltd.) that is liquid at room temperature was applied to the pre-impregnated paper base. impregnate the material, and apply it to the front and back of the two paper base materials.
Further, the unsaturated polyester resin liquid was applied, the two were stacked together and cured without pressure to obtain a 0.54 mm insulating plate having the structure shown in FIG. 2. The thickness of the continuous resin layer on the surface was about 2 to 3 μm, and the thickness of the continuous resin layer between the base materials was about 10 μm. Comparative Example 1 In the example, two sheets of the paper substrates impregnated with an unsaturated polyester resin liquid were overlapped, and after removing the excess resin liquid by applying pressure, they were cured, and between the paper substrates and on the surface layer, An insulating plate was obtained in which almost no resin layer was present. Comparative Example 2 In Example 2, an insulating board having the structure shown in FIG. 2 was obtained using a paper base material that had been impregnated with an unsaturated polyester resin solution without being impregnated with a pre-impregnating agent. Comparative Example 3 A commercially available product having the structure shown in FIG. 1 and manufactured from a phenolic resin and a paper base material was used. As shown in Table 1, the insulating board according to the present invention is
It has significantly better characteristics than conventional products. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来品の説明用断面図。第2図は本発
明の電気用絶縁板の説明用断面図。第3図は本発
明の電気用絶縁板の応用例の説明用断面図であ
る。 1……本発明用予備含浸処理剤により予め含浸
処理され、かつ更に熱硬化性樹脂が含浸硬化され
た本発明用紙基材、2……表面樹脂連続層、3…
…基材間樹脂連続層、4……焼付けられた抵抗ペ
ースト、5……抵抗体保護被膜、6……従来品の
含浸紙基材。
FIG. 1 is an explanatory cross-sectional view of a conventional product. FIG. 2 is an explanatory cross-sectional view of the electrical insulating plate of the present invention. FIG. 3 is an explanatory cross-sectional view of an application example of the electrical insulating plate of the present invention. 1... Paper base material of the present invention which has been pre-impregnated with the pre-impregnation treatment agent for the present invention and further impregnated and cured with a thermosetting resin, 2... Continuous surface resin layer, 3...
... Resin continuous layer between substrates, 4 ... Baked resistance paste, 5 ... Resistor protective coating, 6 ... Conventional impregnated paper base material.

Claims (1)

【特許請求の範囲】 1 メチロール基を含有する化合物または該化合
物を主成分とする予備含浸処理剤により予め含浸
処理されたセルロース繊維を主成分とする紙基材
に、溶媒成分を含まずかつ硬化の際反応副生成物
を実質的に発生しない常温で液状の硬化性樹脂を
含浸し、該含浸基材を2枚積層し、硬化せしめて
なる厚みが0.42〜0.58mmの範囲の電気用絶縁板で
あつて、前記含浸基材は紙基材の繊維密度が高い
側同志または低い側同志が対面するように積層さ
れ、かつその間に実質的な連続層として硬化した
前記硬化性樹脂の層が存在することを特徴とする
電気用絶縁板。 2 電気用絶縁板の表面にも、前記含浸基材間に
存在する樹脂層と同じ樹脂層が存在する特許請求
の範囲第1項の電気用絶縁板。 3 メチロール基を含有する化合物を主成分とす
る予備含浸処理剤が、メチロール基を含有する化
合物と分子内にメチロール基と縮合可能な基を少
なくとも1個含有する高級脂肪族誘導体との混合
物もしくは縮合生成物である特許請求の範囲第1
項又は第2項記載の電気用絶縁板。 4 実質的な連続層として存在する硬化性樹脂層
の厚みが1〜100μの範囲である特許請求の範囲
第1項、第2項又は第3項記載の電気用絶縁板。 5 硬化性樹脂が、不飽和ポリエステル系樹脂あ
るいはエポキシ系樹脂である特許請求の範囲第1
項、第2項、第3項又は第4項記載の電気用絶縁
板。
[Scope of Claims] 1. A paper base material mainly composed of cellulose fibers that has been pre-impregnated with a compound containing a methylol group or a pre-impregnation treatment agent containing the compound as a main component, which does not contain a solvent component and is cured. An electrical insulating board with a thickness in the range of 0.42 to 0.58 mm obtained by impregnating a liquid curable resin at room temperature, which does not substantially generate reaction by-products, and laminating and curing two sheets of the impregnated base material. The impregnated base material is laminated so that the high fiber density sides or the low fiber density sides of the paper base materials face each other, and there is a layer of the curable resin cured as a substantially continuous layer between them. An electrical insulating board characterized by: 2. The electrical insulating board according to claim 1, wherein the same resin layer as the resin layer existing between the impregnated base materials is also present on the surface of the electrical insulating board. 3. A pre-impregnation treatment agent containing a methylol group-containing compound as a main component is a mixture or condensation of the methylol group-containing compound and a higher aliphatic derivative containing at least one group capable of condensation with a methylol group in the molecule. Claim 1 which is a product
The electrical insulating board according to item 1 or 2. 4. The electrical insulating board according to claim 1, 2, or 3, wherein the curable resin layer existing as a substantially continuous layer has a thickness in the range of 1 to 100 μm. 5 Claim 1 in which the curable resin is an unsaturated polyester resin or an epoxy resin
The electrical insulating board according to item 2, item 3, or item 4.
JP56009475A 1981-01-24 1981-01-24 Electric insulating plate Granted JPS57123613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56009475A JPS57123613A (en) 1981-01-24 1981-01-24 Electric insulating plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56009475A JPS57123613A (en) 1981-01-24 1981-01-24 Electric insulating plate

Publications (2)

Publication Number Publication Date
JPS57123613A JPS57123613A (en) 1982-08-02
JPH0217886B2 true JPH0217886B2 (en) 1990-04-23

Family

ID=11721275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56009475A Granted JPS57123613A (en) 1981-01-24 1981-01-24 Electric insulating plate

Country Status (1)

Country Link
JP (1) JPS57123613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104787U (en) * 1990-02-10 1991-10-30

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470334A (en) * 1990-07-02 1992-03-05 Oji Paper Co Ltd Laminated sheet composed of sheet like pulp base material
KR102215669B1 (en) * 2013-08-27 2021-02-15 린텍 가부시키가이샤 Hard coated laminate and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119766A (en) * 1975-04-14 1976-10-20 Tokyo Shibaura Electric Co Manufacture of fireeproof phenol resin laminated plate
JPS5224288A (en) * 1975-08-19 1977-02-23 Toshiba Corp Laminated sheets of flame resistant phenolic resins
JPS54100465A (en) * 1978-01-25 1979-08-08 Mitsubishi Electric Corp Production of flame-retardant laminate
JPS55103786A (en) * 1979-02-02 1980-08-08 Kanegafuchi Chemical Ind Electric insulated laminated layer and printed circuit metal foil laminated plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119766A (en) * 1975-04-14 1976-10-20 Tokyo Shibaura Electric Co Manufacture of fireeproof phenol resin laminated plate
JPS5224288A (en) * 1975-08-19 1977-02-23 Toshiba Corp Laminated sheets of flame resistant phenolic resins
JPS54100465A (en) * 1978-01-25 1979-08-08 Mitsubishi Electric Corp Production of flame-retardant laminate
JPS55103786A (en) * 1979-02-02 1980-08-08 Kanegafuchi Chemical Ind Electric insulated laminated layer and printed circuit metal foil laminated plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104787U (en) * 1990-02-10 1991-10-30

Also Published As

Publication number Publication date
JPS57123613A (en) 1982-08-02

Similar Documents

Publication Publication Date Title
US4314002A (en) Insulating laminates comprising alternating fiber reinforced resin layers and unreinforced resin layers
JPS59174349A (en) Decorative board
JPH0147297B2 (en)
US4370386A (en) Reinforced unsaturated polyester resin laminate
JPS60500490A (en) Conductive high pressure laminate and manufacturing method
CA1175335A (en) Production of metal clad reinforced resin laminates
JPH0217886B2 (en)
US4572859A (en) Electrical laminate comprising a plurality of fibrous layers and cured resin layers
EP0031852B1 (en) Process and apparatus for continuous production of laminates
US3736220A (en) Thin decorative sheet and a decorative laminate produced therefrom
JPH0122149B2 (en)
JP2000064167A (en) Nonwoven fabric for laminate
JPS5831757B2 (en) Manufacturing method for electrical insulating laminates and metal foil laminates for printed circuits
RU2084030C1 (en) Electric insulation material
JPS638885B2 (en)
JPS6335422B2 (en)
KR20030026205A (en) Method for manufacturing composite laminate
JPH024422B2 (en)
JP3354346B2 (en) Manufacturing method of laminated board
JPH01146928A (en) Phenol resin/copper foil laminate
GB1589744A (en) Resin impregnation of a fibrous cellulose sheet
JPS6354543B2 (en)
JPH0147303B2 (en)
JPS60145842A (en) Laminated board
JPH08176321A (en) Production of prepreg, and production of laminate with the prepreg