JPH02178611A - Two-stage type optical isolator - Google Patents

Two-stage type optical isolator

Info

Publication number
JPH02178611A
JPH02178611A JP33435388A JP33435388A JPH02178611A JP H02178611 A JPH02178611 A JP H02178611A JP 33435388 A JP33435388 A JP 33435388A JP 33435388 A JP33435388 A JP 33435388A JP H02178611 A JPH02178611 A JP H02178611A
Authority
JP
Japan
Prior art keywords
optical isolator
magnetic field
faraday rotating
faraday
faraday rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33435388A
Other languages
Japanese (ja)
Inventor
Yuichi Togano
祐一 戸叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP33435388A priority Critical patent/JPH02178611A/en
Publication of JPH02178611A publication Critical patent/JPH02178611A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the isolator against an external temp. change and a change in the wavelength of the light to be used by using two pieces of Faraday rotating elements which are different in the change rate of the rotating angle with temp. in the same external magnetic field to constitute the isolator so that the respective saturation magnetic fields vary. CONSTITUTION:The optical isolator formed by using the Faraday rotating element having (45+alpha)deg Faraday rotating angle and the optical isolator formed by using the Faraday rotating element having (45-alpha)deg Faraday rotating angle are connected and the Faraday rotating element requiring the strong saturation magnetic field is put into the state of (45-alpha)deg Faraday rotating angle without deliberately subjecting this element to the magnetic saturation. For example, the Faraday rotating elements are a tick film 4 consisting of (GdBi)3(AlGaFe)5O12 having 200G saturation magnetic field intensity and a thick film 4 consisting of (TbBi)3Fe5O12 having 700G saturation magnetic field intensity. The material and shape of a magnet are so designed that the Faraday rotating angle attains nearly 43deg when the (TbBi)3Fe5O12 is installed in the magnet. The optical isolator is able to have the stable isolation which changes less when the temp. environment or wavelength fluctuates in this way.

Description

【発明の詳細な説明】 10発明の目的 〔産業上の利用分野〕 本発明は温度変化や使用波長の変化に対して、一定の範
囲内でアイソレーション特性の安定な光アイソレータに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION 10. OBJECTS OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical isolator whose isolation characteristics are stable within a certain range against changes in temperature and wavelength used.

〔従来の技術〕[Conventional technology]

従来、この種の光アイソレータに使用しているファラデ
ー回転素子は、 GdBiIGなどのガーネット厚膜を
用いている。しかし、このガーネット厚膜は周りの温度
変化に対してその主特性であるファラデー回転角が不安
定となる。このようなガーネット厚膜をファラデー回転
素子として用いた光アイソレータは、当然周りの温度変
化に対してその主特性であるアイソレーション特性を劣
化させてしまうことになる。又、一般に使用時間や環境
によって、使用するレーザ発振器の発振波長が変動する
ことがある。これによってもガーネット厚膜のファラデ
ー回転角は変化してしまい、光アイソレーション劣化の
原因になる。従って、光アイソレータの効率を高め、信
頼性を向上させるには、この温度変化や波長変動による
アイソレーション特性の変化を抑えなければならないと
云う問題がある。
Conventionally, the Faraday rotation element used in this type of optical isolator uses a garnet thick film such as GdBiIG. However, the Faraday rotation angle, which is the main characteristic of this thick garnet film, becomes unstable due to changes in surrounding temperature. An optical isolator using such a thick garnet film as a Faraday rotation element will naturally deteriorate its main isolation characteristic against changes in surrounding temperature. Furthermore, the oscillation wavelength of the laser oscillator used may generally vary depending on the usage time and environment. This also changes the Faraday rotation angle of the garnet thick film, causing deterioration of optical isolation. Therefore, in order to increase the efficiency and reliability of the optical isolator, there is a problem in that it is necessary to suppress changes in isolation characteristics due to temperature changes and wavelength fluctuations.

一般に、ガーネット厚膜のファラデー回転角の温度変化
や波長変動による変化は、このガーネット厚膜のC軸方
向にかける磁界方向に依存し、直線的に変化することは
知られている。温度変化に対する(GdBi )3 (
AIGaFe) 5012厚膜の場合のファラデー回転
角の変化率は、−0,08deg/にであり、温度上昇
に対しては負の方向に、温度下降に対しては正の方向に
変化する。従って、同一の2枚のファラデー回転素子を
それぞれ相対する方向に磁界をかけてやれば、全体のフ
ァラデー回転角は温度変化や波長変化に対して一方が4
5degに近づくことにより安定化させる方法がある。
Generally, it is known that the Faraday rotation angle of a garnet thick film changes linearly depending on the direction of the magnetic field applied in the C-axis direction of the garnet thick film due to temperature changes or wavelength fluctuations. (GdBi)3 (with respect to temperature change)
The rate of change of the Faraday rotation angle in the case of the AIGaFe) 5012 thick film is −0.08 deg/, which changes in the negative direction as the temperature increases and in the positive direction as the temperature decreases. Therefore, if magnetic fields are applied to two identical Faraday rotation elements in opposite directions, the overall Faraday rotation angle will be 4.
There is a method of stabilizing it by approaching 5deg.

又、この方法以外にも同一材料において、片方のファラ
デー回転角を45degよりも小さく、もう片方を同じ
だけ大きくすることにより、温度変化に対して何れか一
方が45degに近くなるように構成する方法等が知ら
れている。しかし、前者の方法では2ケの外部磁界が各
々精密に微調整が必要なため、組立工数がかかり、効率
のよいものを作ることが困難である。又後者の方法は各
ファラデー回転素子を調整するのに、ガーネット膜の膜
厚を制御する必要があり製造工程が複雑となり、高い効
率のアイソレータを安価に作成することが困難である。
In addition to this method, there is also a method in which one of the Faraday rotation angles of the same material is made smaller than 45 deg and the other is made larger by the same amount, so that either one is close to 45 deg with respect to temperature changes. etc. are known. However, in the former method, each of the two external magnetic fields requires precise fine adjustment, which requires a lot of assembly man-hours and makes it difficult to produce an efficient product. Furthermore, in the latter method, it is necessary to control the thickness of the garnet film in order to adjust each Faraday rotation element, which complicates the manufacturing process and makes it difficult to produce a highly efficient isolator at a low cost.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、以上の問題点を解決するため同一外部磁界中
にファラデー回転素子の回転角の温度変化率の異なる2
ケを用いて構成し、各々の飽和磁界が異なることにより
組立時の回転角の調整を外部磁界内の不均一性を利用し
、一定膜厚のガーネットを磁界内で若干の位置を移動す
ることにより回転角を調整し、組立できる構造とした、
外部の温度変化や使用光の波長の変化に対して安定な光
アイソレータ特性を持つものを提供することにある。
In order to solve the above-mentioned problems, the present invention proposes two types of Faraday rotary elements having different temperature change rates of rotation angle in the same external magnetic field.
The rotation angle during assembly can be adjusted by using non-uniformity in the external magnetic field to adjust the rotation angle during assembly due to the difference in the saturation magnetic field of each, and by slightly moving the position of the garnet with a constant film thickness within the magnetic field. The rotation angle can be adjusted and the structure can be assembled easily.
The object of the present invention is to provide an optical isolator that has stable characteristics against external temperature changes and changes in the wavelength of the light used.

口0発明の構成 〔課題を解決するための手段〕 本発明は、飽和磁界強度の違うファラデー回転子を用い
た光アイソレータを連結することを特徴としている。光
アイソレータ内部の2個のファラデー回転素子は、それ
ぞれを、一方の強磁界を必要とするファラデー回転素子
に飽和に至らない程度の磁場をかけてファラデー回転角
′を45degよりも小さくなるように調整し、もう一
方のファラデー回転素子には、そのファラデー回転角を
45deg以上に設定し飽和磁界をかける。このような
ファラデー回転素子を材料とする光アイソレータを連結
させることによって、ある=定の範囲内でのファラデー
回転角の変動による全体のアイソレーションの劣化を抑
えることができる装置を提供しようとするものである。
Configuration of the Invention [Means for Solving the Problems] The present invention is characterized in that optical isolators using Faraday rotators having different saturation magnetic field strengths are connected. The two Faraday rotation elements inside the optical isolator are adjusted so that the Faraday rotation angle' is smaller than 45 degrees by applying a magnetic field that does not reach saturation on one Faraday rotation element that requires a strong magnetic field. However, the Faraday rotation angle of the other Faraday rotation element is set to 45 degrees or more, and a saturation magnetic field is applied to the other Faraday rotation element. The present invention aims to provide a device that can suppress deterioration of the overall isolation due to fluctuations in the Faraday rotation angle within a certain range by connecting optical isolators made of such Faraday rotation elements. It is.

一般に、ファラデー回転素子のファラデー回転角を調整
するには、ガーネット厚膜を磁気的に飽和させて、その
時のファラデー回転角と膜厚の関係から45degとな
るときの膜厚を割り出し、膜厚を調整しそれによってフ
ァラデー回転角を調整している。しかし、ファラデー回
転素子を磁気飽和しないでファラデー回転角を測定する
と、磁気飽和されているときのそれよりも小さくなる。
Generally, to adjust the Faraday rotation angle of a Faraday rotation element, magnetically saturate the garnet thick film, determine the film thickness at 45 degrees from the relationship between the Faraday rotation angle and the film thickness, and then adjust the film thickness. and thereby adjust the Faraday rotation angle. However, if the Faraday rotation angle is measured without magnetically saturating the Faraday rotation element, it will be smaller than when it is magnetically saturated.

これを利用すれば、膜厚を制御しなくても結晶へかける
磁界を制御すればファラデー回転角を制御することがで
きることになる。ただし、この方法であると結晶のドメ
インが揃わないため、消光比が若干悪くなる傾向はある
が実用的には支障ない。
By utilizing this, the Faraday rotation angle can be controlled by controlling the magnetic field applied to the crystal without controlling the film thickness. However, with this method, since the crystal domains are not aligned, the extinction ratio tends to deteriorate slightly, but this does not pose a practical problem.

〔作用〕[Effect]

本発明の光アイソレータは、ファラデー回転角が45+
αdegのファラデー回転素子を用いた光アイソレータ
と45−148gのファラデー回転素子を用いた光アイ
ソレータを連結させることによって、温度変化や波長変
化によって急変しないアイソレーションを持つアイソレ
ータを構成する。ただし、本発明の特徴は違った飽和磁
界強度を持つ2種類のファラデー回転素子を用い、強飽
和磁界を必要とするファラデー回転素子をわざと磁気飽
和させずにファラデー回転角45−148gの状態にす
ることにある。
The optical isolator of the present invention has a Faraday rotation angle of 45+
By connecting an optical isolator using an αdeg Faraday rotation element and an optical isolator using a 45-148g Faraday rotation element, an isolator with isolation that does not change suddenly due to temperature changes or wavelength changes is constructed. However, the feature of the present invention is to use two types of Faraday rotation elements with different saturation magnetic field strengths, and to intentionally keep the Faraday rotation element that requires a strong saturation magnetic field from being magnetically saturated, so that the Faraday rotation angle is 45-148g. There is a particular thing.

〔実施例〕〔Example〕

第1図に本発明の実施例に用いた光アイソレータの構成
図を示す。本実施例で用いた3枚の偏光結晶板の偏光軸
は、順に同一方向に45degずつ傾いている。本実施
例で使用したファラデー回転素子は飽和磁界強度が20
0Gである(GdBi)3(AIGaFe)sot2と
、飽和磁界強度が700Gである(TbBi )3Fe
sO12である。マグネット内に(TbBi)sFes
012を設置したとき、そのファラデー回転角がほぼ4
3degとなるようにマグネットの材質及び形状を設計
した。製作前に、実際に(TbBi)3FesO+zチ
ツプをマグネット内の定位置に装着してファラデー回転
角を確認した。又、ここで用いた(GdBi)3(AI
GaFe)sox2のファラデー回転角はほぼ47de
gである。以上のように材料を設計し、第1図のように
光アイソレータを組み上げ、消光比が規定値となるよう
にマグネット内の光アイソレータの位置を調節し接着し
た。
FIG. 1 shows a configuration diagram of an optical isolator used in an embodiment of the present invention. The polarization axes of the three polarizing crystal plates used in this example are tilted in the same direction by 45 degrees. The Faraday rotation element used in this example has a saturation magnetic field strength of 20
(GdBi)3(AIGaFe) sot2 which is 0G and (TbBi)3Fe whose saturation magnetic field strength is 700G.
It is sO12. (TbBi)sFes inside the magnet
When 012 is installed, its Faraday rotation angle is approximately 4
The material and shape of the magnet were designed to provide 3deg. Before fabrication, the (TbBi)3FesO+z chip was actually attached to a fixed position inside the magnet and the Faraday rotation angle was confirmed. Also, (GdBi)3(AI
The Faraday rotation angle of GaFe) sox2 is approximately 47de
It is g. The materials were designed as described above, the optical isolator was assembled as shown in FIG. 1, and the position of the optical isolator within the magnet was adjusted and bonded so that the extinction ratio would be a specified value.

このようにして作製された光アイソレータは挿入損失1
.5dB、アイソレーション比は10℃−40℃で45
±5dBを実現した。ただし、この光アイソレータの設
定使用波長は1.31μmである。又、波長変動による
アイソレーション比の変動は1.29−1.33μm波
長帯で45±6dBであった。
The optical isolator fabricated in this way has an insertion loss of 1
.. 5dB, isolation ratio is 45 at 10℃-40℃
Achieved ±5dB. However, the set wavelength used by this optical isolator is 1.31 μm. Further, the variation in isolation ratio due to wavelength variation was 45±6 dB in the 1.29-1.33 μm wavelength band.

ハ1発明の効果 以上の結果でわかる様に、本発明を利用して作製した温
度特性改善型光アイソレータは、温度環境や波長変動時
に変化の少ない安定したアイソレーションを持つことが
わかる。又1本発明はデバイス後の素子のマグネット内
の位置決めによる微調整が可能であるため、優れた生産
性が期待出来る。
C1. Effects of the Invention As can be seen from the above results, the optical isolator with improved temperature characteristics produced using the present invention has stable isolation that does not change much when the temperature environment or wavelength fluctuates. Furthermore, since the present invention allows fine adjustment by positioning the element within the magnet after the device is completed, excellent productivity can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図には、本発明の実施例に用いた光アイソレータの
構成概念平面図を示す。 1・・・マグネット本体、2・・・偏光結晶板、3−(
TbBi)3Fes012厚膜、4−(GdBi)a(
AIGaFe)so12厚膜。
FIG. 1 shows a conceptual plan view of an optical isolator used in an embodiment of the present invention. 1... Magnet body, 2... Polarizing crystal plate, 3-(
TbBi)3Fes012 thick film, 4-(GdBi)a(
AIGaFe)so12 thick film.

Claims (1)

【特許請求の範囲】[Claims] 1、2種類の違った組成を持つファラデー回転子を用い
る光アイソレータにおいて、その構成をファラデー回転
角が45+αdegであるファラデー回転素子を用い、
ファラデー回転素子を磁気的に飽和させた光アイソレー
タと、前記光アイソレータに対して光の進行方向に、前
記ファラデー素子よりも飽和磁界強度が大きく、且つ外
部磁界が飽和磁界強度に不十分でファラデー回転角が4
5−αdegとなるようなファラデー回転素子を用いた
光アイソレータを2段構成に組み合せたことを特徴とす
る光アイソレータ。
In an optical isolator using Faraday rotators with 1 or 2 different compositions, the configuration uses a Faraday rotator with a Faraday rotation angle of 45+αdeg,
An optical isolator in which a Faraday rotation element is magnetically saturated, and a saturation magnetic field strength is greater than that of the Faraday element in the direction of propagation of light with respect to the optical isolator, and the external magnetic field is insufficient for the saturation magnetic field strength to cause Faraday rotation. 4 corners
An optical isolator characterized by combining optical isolators using Faraday rotation elements such as 5-αdeg into a two-stage configuration.
JP33435388A 1988-12-28 1988-12-28 Two-stage type optical isolator Pending JPH02178611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33435388A JPH02178611A (en) 1988-12-28 1988-12-28 Two-stage type optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33435388A JPH02178611A (en) 1988-12-28 1988-12-28 Two-stage type optical isolator

Publications (1)

Publication Number Publication Date
JPH02178611A true JPH02178611A (en) 1990-07-11

Family

ID=18276419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33435388A Pending JPH02178611A (en) 1988-12-28 1988-12-28 Two-stage type optical isolator

Country Status (1)

Country Link
JP (1) JPH02178611A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512783A2 (en) * 1991-05-10 1992-11-11 AT&T Corp. Optical isolator with improved stability
US5262892A (en) * 1991-07-25 1993-11-16 Kabushiki Kaisha Shinkosha Optical isolator
US5408491A (en) * 1993-02-17 1995-04-18 Sumitomo Electric Industries, Ltd. Optical isolator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512783A2 (en) * 1991-05-10 1992-11-11 AT&T Corp. Optical isolator with improved stability
EP0512783A3 (en) * 1991-05-10 1993-02-24 American Telephone And Telegraph Company Optical isolator with improved stability
US5262892A (en) * 1991-07-25 1993-11-16 Kabushiki Kaisha Shinkosha Optical isolator
US5408491A (en) * 1993-02-17 1995-04-18 Sumitomo Electric Industries, Ltd. Optical isolator

Similar Documents

Publication Publication Date Title
JP3773601B2 (en) Faraday rotator
JPH02178611A (en) Two-stage type optical isolator
JP2567697B2 (en) Faraday rotation device
JPH02176623A (en) Two-stage coupled type optical isolator
JP2565945B2 (en) Optical isolator
JPH0466001B2 (en)
JPS59197013A (en) Faraday rotor
JPH03282413A (en) Optical isolator
JPH03213818A (en) Optical isolator
JPH03154021A (en) Adjusting method for optical isolator
JP2000275580A (en) Optical isolator
JPH03137615A (en) Manufacture of optical isolator
JPH0471878B2 (en)
JPH07104224A (en) Nonreciprocity optical device
JPH0395515A (en) Optical isolator and its assembling method
JP2832842B2 (en) Optical isolator
JPH01219816A (en) Aligning method for axis of polarization of optical isolator element
JPH04247423A (en) Optical isolator
JPS63110417A (en) Magnetooptic element
JPH04264515A (en) Optical isolator
JPS62200323A (en) Thin film crystal element for magnet-optical device
JP2535159Y2 (en) Optical isolator
JPH0369847B2 (en)
JPH02199422A (en) Faraday rotating element and optical isolator by using the same
JPS6257971B2 (en)