JPH0217806A - Vibration damping of magnetic levitation vehicle - Google Patents

Vibration damping of magnetic levitation vehicle

Info

Publication number
JPH0217806A
JPH0217806A JP16266288A JP16266288A JPH0217806A JP H0217806 A JPH0217806 A JP H0217806A JP 16266288 A JP16266288 A JP 16266288A JP 16266288 A JP16266288 A JP 16266288A JP H0217806 A JPH0217806 A JP H0217806A
Authority
JP
Japan
Prior art keywords
coil
levitation
coils
short
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16266288A
Other languages
Japanese (ja)
Inventor
Shunsuke Fujiwara
俊輔 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP16266288A priority Critical patent/JPH0217806A/en
Publication of JPH0217806A publication Critical patent/JPH0217806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To effectively damp vibrations in all directions by adding a short- circuiting coil having a small time constant for periodic damping to a levitation coil disposed on the side face of a track. CONSTITUTION:Superconducting coils 1 are disposed on the side faces of a truck 2. Levitation coils 3 in which upper and lower stages of coils are connected reversely are disposed on the side faces of a rail. Further, short-circuiting coils 4 in which upper and lower stages of coils are connected reversely are disposed to be superposed on the coils 3. Here, the resistance R and the inductance L of the coil 3 are set to omegaL/R>>1 (omega is the angular velocity of a current flowing when a train travels at a highest speed). The resistance R1 and the inductance L1 of the coil 4 are set to omegaL1/R1<1 and R1>omegaL. Thus, vibrations not only in upward and downward directions but in all directions can be effectively damped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、誘導反発方式磁気浮上列車において軌道不整
、その他の外乱によって生ずる列車の振動を制御する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling train vibrations caused by track irregularities and other disturbances in an induced repulsion magnetic levitation train.

〔従来の技術とその!1題〕 誘導反発方式磁気浮上の超電導コイルと浮上用地上コイ
ルの間には、負のダンピングが働くことが知られている
。即ち超電導コイルと浮上用地上コイルだけが配置され
ている系では振動が発生すると、振動は次第に大きくな
ってしまい、乗心地上好ましくない、そのために従来は
、受動的ダンピング或いは能動的ダンピングという方法
が提案されている。受動的ダンピングとは超電導コイル
と浮上用地上コイルの間に導電性の板などを配置し、台
車の振動に伴って導電性の板に流れる渦電流により振動
のエネルギーを吸収するものである。
[Conventional technology and its! Problem 1] It is known that negative damping acts between the superconducting coil of induced repulsion magnetic levitation and the levitation ground coil. In other words, when vibration occurs in a system in which only superconducting coils and levitation ground coils are arranged, the vibration gradually increases, which is unfavorable in terms of riding comfort.For this reason, conventional methods of passive damping or active damping have been used. Proposed. Passive damping is a method in which a conductive plate is placed between the superconducting coil and the levitation ground coil, and vibration energy is absorbed by the eddy current flowing through the conductive plate as the bogie vibrates.

この方法は構造は簡単であるが、十分な力を得ることが
困難である。また、能動的ダンピングとは浮上用地上コ
イルと対向して台車に制御用のコイルを設け、車上に制
御装置を搭載し、上下振動の速度に比例する電流を制御
コイルに流し、ダンピング力を得るものである。この方
法は十分な効果を得るためには、制御装置が太き(なっ
てしまい、また制御用のコイルを設置する必要があり、
重量が増すという困難があった。
Although this method has a simple structure, it is difficult to obtain sufficient force. In addition, active damping involves installing a control coil on the bogie opposite the levitation ground coil, mounting a control device on the vehicle, and applying a current proportional to the speed of vertical vibration to the control coil to apply damping force. It's something you get. In order to obtain sufficient effect, this method requires a thick control device and requires the installation of a control coil.
The problem was that the weight increased.

〔課題を解決するための手段] 本発明は、上記の問題点を解決することを目的とし、す
なわち車両には特別の装置は設置せず、軌道側面に配置
する第1の浮上のためのコイルに振動減衰のための時定
数が小さい第2の短絡コイルを付加して車両の充分な制
御n効果を得る方法を提供するものである。
[Means for Solving the Problems] The present invention aims to solve the above-mentioned problems, namely, without installing a special device on the vehicle, a first levitation coil placed on the side of the track is provided. The present invention provides a method for obtaining sufficient vehicle control effects by adding a second short-circuited coil with a small time constant for vibration damping.

第1の浮上用コイルは時定数が大きく、列車が最高速度
のときに流れる電流の角周波数ω(1/rad)に対し
て、抵抗R(Ω)5インダクタンスしくH)はωL/R
)1、に設定され列車の速度域では、磁気浮上に伴う走
行抵抗(磁気効力)は極めて小さく、速度が低くなるの
に伴い磁気効力が増大する。しかし、この浮上コイルで
は振動の減衰係数は負となり振動は発散するような性質
を持つことが知られている。
The first levitation coil has a large time constant, and with respect to the angular frequency ω (1/rad) of the current flowing when the train is at maximum speed, the resistance R (Ω) 5 inductance H) is ωL/R
)1, and in the train speed range, the running resistance (magnetic effect) accompanying magnetic levitation is extremely small, and as the speed decreases, the magnetic effect increases. However, it is known that this levitation coil has a negative vibration damping coefficient and the vibrations tend to diverge.

一方第2の短絡コイルは時定数を小さく、すなわち抵抗
R1(Ω)、インダクタンスL、(H)はωL + /
 R+ < 1かつR,>ωLに設定される。
On the other hand, the second short-circuit coil has a small time constant, that is, the resistance R1 (Ω) and the inductance L, (H) are ωL + /
It is set to R+ < 1 and R, > ωL.

この不等式が成立する範囲では振動の減衰係数は正にな
るので、先の第1の浮上コイルから発生ずる負の減衰係
数を打消して、合計して正の減衰係数を得ることができ
る。またこの第2の短絡コイルでは磁気効力は列車の速
度と共に増大するが、第1の浮上コイル第2の短絡コイ
ルとも上下2段に配置され、上下のコイルは互いに逆向
きに接続されているので、磁気効力の大きさは小さく抑
えることが可能である。また第1の浮上コイルと第2の
短絡コイルとは、製作時に重ねて作ることができるので
、取りつけの手数を省くことができる。
In the range where this inequality holds, the vibration damping coefficient becomes positive, so the negative damping coefficient generated from the first floating coil can be canceled out, and a positive damping coefficient can be obtained by summing the vibration damping coefficient. In addition, the magnetic efficacy of this second short-circuit coil increases with the speed of the train, but the first levitation coil and the second short-circuit coil are arranged in two stages, upper and lower, and the upper and lower coils are connected in opposite directions. , the magnitude of the magnetic effect can be kept small. Furthermore, since the first levitation coil and the second short-circuit coil can be made one on top of the other during manufacture, it is possible to save time and effort for attachment.

〔実施例] 以下、本発明の実施例を、図面に沿って説明する。第1
図は、本発明の磁気浮上式車両のコイル配置の例を示す
もので、第1の浮上用コイル3の表面に第2の短絡コイ
ル4を取りつけている。第2図は第1の浮上用コイル3
と、第2の短絡コイル4の接続の方法を示している。
[Examples] Examples of the present invention will be described below with reference to the drawings. 1st
The figure shows an example of the coil arrangement of the magnetic levitation vehicle of the present invention, in which a second short-circuit coil 4 is attached to the surface of the first levitation coil 3. Figure 2 shows the first levitation coil 3.
This shows the method of connecting the second short circuit coil 4.

車両の超電導磁石lの上下方向の中心が、軌道側の第1
の浮上用コイル3の上下対称の中心の位置よりやや下方
ΔZ位置にあって走行するときに浮上刃を発生し、車両
の重量と釣り合う。
The vertical center of the superconducting magnet l of the vehicle is located at the first point on the track side.
The levitation blade is located at a position ΔZ slightly below the vertically symmetrical center position of the levitation coil 3, and when the vehicle travels, a levitation blade is generated to balance the weight of the vehicle.

列車の超電導磁石による第1の浮上コイル3への鎖交磁
束をφとすると、列車速度が高い$■域で、浮上コイル
3の電流の大きさは ほぼ   i=φ/L となることが知られている。
If the magnetic flux linkage to the first levitation coil 3 by the train's superconducting magnet is φ, it is known that in the $■ region where the train speed is high, the magnitude of the current in the levitation coil 3 is approximately i = φ/L. It is being

他方、第2の短絡コイルの電流の大きさはほぼ   i
l=φ/ωφR3 となる。ところで第2の短絡コイルの抵抗R,はR,>
ωLに選ばれているので i、<1 であることがわかるallを小さく抑えることで第2の
短絡コイルで発生する走行抵抗を小さ(抑えることがで
きる。第1の浮上コイルおよび第2の短絡コイルで発生
する磁気効力の傾向を示すものが第3図である。
On the other hand, the magnitude of the current in the second shorted coil is approximately i
l=φ/ωφR3. By the way, the resistance R of the second short circuit coil is R,>
Since ωL is selected, it can be seen that i, < 1 By keeping all small, the running resistance generated in the second short-circuited coil can be reduced. FIG. 3 shows the tendency of the magnetic effect generated in the coil.

列車の超電導磁石が上下方向に振動したとき、振動の減
衰係数は浮上用コイル3で CCX:N−(ωL+ /R,)”l /R(1+ (
ωL、 /R,)t l ! となる、浮上のための性能を良くするためには、ωL/
Rを大きくすることが必要で、そのために振動の減衰係
数Cは負になる。
When the superconducting magnet of the train vibrates in the vertical direction, the vibration damping coefficient is CCX:N-(ωL+ /R,)"l/R(1+ (
ωL, /R,)t l! In order to improve the performance for levitation, ωL/
It is necessary to increase R, so that the vibration damping coefficient C becomes negative.

第2の短絡コイルは、浮上刃を発生する必要がないので
、ωL、/R,を小さくし、Cを正にすることができる
。第1の浮上用コイルと第2の短絡コイルの減衰係数の
傾向を示すものが第4図である。
Since the second short-circuit coil does not need to generate floating blades, ωL, /R, can be made small and C can be made positive. FIG. 4 shows trends in the attenuation coefficients of the first levitation coil and the second short circuit coil.

第1の浮上用コイルと第2の短絡コイル各々が発生する
振動の減衰係数を得ることができる。
It is possible to obtain damping coefficients of vibrations generated by each of the first levitation coil and the second short circuit coil.

さらにこの第2の短絡コイルでは、上下方向の振動のみ
でなく、左右方向、角変移振動に対しても振動の減衰効
果を得ることができる。
Furthermore, with this second short-circuit coil, it is possible to obtain a vibration damping effect not only for vertical vibrations but also for horizontal and angular displacement vibrations.

第5図は第1の浮上用コイルと、第2の短絡コイル4と
を、重ねた構造のコイル辺断面の例を示す。
FIG. 5 shows an example of a coil side cross section of a structure in which the first levitation coil and the second short-circuiting coil 4 are stacked.

この例では浮上ようコイル3の表面に薄く、第2の短絡
コイルを取りつけ、一体のものとして構成することがで
きる。
In this example, a second short-circuiting coil is attached thinly to the surface of the levitation coil 3, so that it can be constructed as an integral unit.

〔発明の効果〕〔Effect of the invention〕

本発明の磁気浮上車両の振動減衰法によれば、上下方向
のみでなくすべての方向の振動を有効に減衰させる機能
を持つので、磁気浮上車両の乗り心地改善に役たつ。ま
た軌道への取りつけ方法は浮上用コイルと一体的に行う
ことができるので、敷設作業も容易である。
According to the vibration damping method for a magnetically levitated vehicle of the present invention, it has a function of effectively damping vibrations not only in the vertical direction but in all directions, so it is useful for improving the riding comfort of the magnetically levitated vehicle. Furthermore, since the installation method on the track can be carried out integrally with the levitation coil, the installation work is also easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は誘導反撥式磁気浮上式鉄道の断面内コイル配置
で、第2図は第1の浮上コイルと第2の短絡コイルの接
続である。第3図は第1の浮上コイルと第2の短絡コイ
ルで発生する走行抵抗の特性を示す。第4図は第1の浮
上コイルと短絡コイルで発生する減衰係数の特性を示す
、第5図は第1の浮上コイルと第2の短絡コイルを一体
として構成する場合のコイル辺断面を示す。 1・・・・超電導コイル、2・・・・台車、3・・・・
第1の浮上用コイル、4・・・・第2の短絡コイル、1
1・・・・第1の浮上用コイルによる走行抵抗を示す曲
線、12・・・・第2の短絡コイルによる走行抵抗を示
す曲線、13・・・・第1の浮上コイルの減衰係数を示
す曲線、14・・・・第2の短絡コイルの減衰係数を示
す曲線。 21・・・・第1の浮上コイルの巻線922・・・・第
2の短絡コイルの巻線、23・・・°・コイルを固める
外被、24・・・・第1の浮上コイル巻線と第2の短絡
コイルの間を絶縁する層、25・・・・成形されたコイ
ル辺 フ、Ii許出願人 財団法人鉄道総合技術研究所 速度(トk) シσ 第31回
FIG. 1 shows the coil arrangement in a cross section of an induction repulsion type magnetic levitation railway, and FIG. 2 shows the connection between the first levitation coil and the second short-circuit coil. FIG. 3 shows the characteristics of running resistance generated in the first levitation coil and the second short circuit coil. FIG. 4 shows the characteristics of the attenuation coefficient generated in the first levitation coil and the short-circuit coil, and FIG. 5 shows a coil side cross section when the first levitation coil and the second short-circuit coil are integrated. 1... superconducting coil, 2... trolley, 3...
First levitation coil, 4...Second shorting coil, 1
1... Curve showing running resistance due to the first levitation coil, 12... Curve showing running resistance due to the second short circuit coil, 13... Curve showing the damping coefficient of the first levitation coil Curve 14...Curve showing the damping coefficient of the second short circuit coil. 21... Winding of the first levitation coil 922... Winding of the second short-circuiting coil, 23...°-Sheath for hardening the coil, 24... Winding of the first levitation coil Layer insulating between the wire and the second short-circuit coil, 25... Molded coil side f, Ii Applicant Foundation Railway Technology Research Institute Speed (tk) shiσ 31st

Claims (1)

【特許請求の範囲】[Claims] (1)誘導反発式磁気浮上式鉄道において、その台車の
側面に超電導コイルを垂直に配置し、軌道の側壁部に超
電導コイルと対向して、第1の浮上用コイルを上下2段
に設置しその上下2段のコイルは互いに逆向きに接続し
て閉回路を作り、その第1の浮上用コイルに重ねて第2
の短絡コイルを上下2段に設置し、その上下2段のコイ
ルは互いに逆向きに接続し、閉回路を作る。列車が最高
速度で走行する際に流れる電流の角周波数をωとすると
き、第1の浮上用コイルはその抵抗Rとインダクタンス
Lの比がωL/R)1 となるようにし、第2の短絡コイルの抵抗R_1とイン
ダクタンスL_1の比をωL_1/R_1<1であって
、かつ第1の浮上コイルのインダクタンスLに対しR_
1>ωLとなるようにし、振動減衰力を得ることを特徴
とする磁気浮上車両の振動減衰法。
(1) In an inductive repulsion magnetic levitation railway, a superconducting coil is arranged vertically on the side of the bogie, and the first levitation coil is installed in two stages, upper and lower, on the side wall of the track, facing the superconducting coil. The upper and lower coils are connected in opposite directions to create a closed circuit, and the second levitation coil is stacked on top of the first levitation coil.
short-circuiting coils are installed in two stages, upper and lower, and the coils in the upper and lower stages are connected in opposite directions to create a closed circuit. When the angular frequency of the current flowing when the train runs at maximum speed is ω, the ratio of the resistance R and inductance L of the first levitation coil is ωL/R)1, and the second short-circuit The ratio of the resistance R_1 and inductance L_1 of the coil is ωL_1/R_1<1, and R_1 to the inductance L of the first levitation coil.
A vibration damping method for a magnetically levitated vehicle characterized by obtaining a vibration damping force so that 1>ωL.
JP16266288A 1988-07-01 1988-07-01 Vibration damping of magnetic levitation vehicle Pending JPH0217806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16266288A JPH0217806A (en) 1988-07-01 1988-07-01 Vibration damping of magnetic levitation vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16266288A JPH0217806A (en) 1988-07-01 1988-07-01 Vibration damping of magnetic levitation vehicle

Publications (1)

Publication Number Publication Date
JPH0217806A true JPH0217806A (en) 1990-01-22

Family

ID=15758894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16266288A Pending JPH0217806A (en) 1988-07-01 1988-07-01 Vibration damping of magnetic levitation vehicle

Country Status (1)

Country Link
JP (1) JPH0217806A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331404A (en) * 1991-02-18 1992-11-19 Hitachi Ltd Levitation system for magnetic levitation train
US5275112A (en) * 1992-09-28 1994-01-04 The United States Of America As Represented By The United States Department Of Energy Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
US5334965A (en) * 1993-06-15 1994-08-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Superconductive material and magnetic field for damping and levitation support and damping of cryogenic instruments
US5448213A (en) * 1993-09-16 1995-09-05 Northrup Grumman Corporation Electromagnetic shielding concept for superconducting levitating magnets

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331404A (en) * 1991-02-18 1992-11-19 Hitachi Ltd Levitation system for magnetic levitation train
US5222437A (en) * 1991-02-18 1993-06-29 Hitachi, Ltd. Levitation system of a magnetically levitated train
US5275112A (en) * 1992-09-28 1994-01-04 The United States Of America As Represented By The United States Department Of Energy Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
US5334965A (en) * 1993-06-15 1994-08-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Superconductive material and magnetic field for damping and levitation support and damping of cryogenic instruments
US5448213A (en) * 1993-09-16 1995-09-05 Northrup Grumman Corporation Electromagnetic shielding concept for superconducting levitating magnets

Similar Documents

Publication Publication Date Title
JP3010129B2 (en) Vertically asymmetric eight-shaped coil
US4273054A (en) Vehicle vibration damping method in the induced repulsion type magnetically suspended railway vehicle
US3638093A (en) Magnetic suspension and propulsion system
CN106926743A (en) Eddy current retarder and magnetically supported vehicle
US20230241980A1 (en) Permanent magnet electrodynamic suspension system and guidance method therefor
Okubo et al. Effective control method of the active damper system against the multidirectional vibration in the superconducting magnetically levitated bogie
CN111041899B (en) Intelligent power generation track slab based on magnetostrictive material
CN107061591A (en) A kind of monoblock type metal spring active damping platform
JPH0217806A (en) Vibration damping of magnetic levitation vehicle
Betsunoh et al. Stable levitation in the low velocity range with the damper coils in electrodynamic suspension system
Ohashi et al. Dependence of the quenched SC coil position on the transient motion of the superconducting magnetically levitated bogie
US3951075A (en) Electro dynamic suspension and guidance system for a moving vehicle
JP2889404B2 (en) Elevator car stabilizer
CN206841206U (en) Eddy current retarder and magnetically supported vehicle
JPS63190503A (en) Vibration damping method for magnetic levitation vehicle
JP4549914B2 (en) Sensorless magnetic damping generation method using induction current collector
JPH0669245B2 (en) Combined levitation and propulsion system for magnetic levitation
Takeuchi et al. Improvement of the damping factor by the weight reduction damper coil in superconducting magnetically levitated bogie
Kusagawa et al. Weight reduction of EMS-type MAGLEV vehicle with a novel hybrid control scheme for magnets
CN113997796B (en) Train control method and related device
JP3194470B2 (en) Non-contact induction current collector
JP3340478B2 (en) Side wall floating coil device
JP3435085B2 (en) Magnetic damping generator using current collecting coil
JP3306032B2 (en) Magnetic damping generator for superconducting maglev railway
JPH0347379A (en) Vibration controller