JPH0217790B2 - - Google Patents

Info

Publication number
JPH0217790B2
JPH0217790B2 JP56060341A JP6034181A JPH0217790B2 JP H0217790 B2 JPH0217790 B2 JP H0217790B2 JP 56060341 A JP56060341 A JP 56060341A JP 6034181 A JP6034181 A JP 6034181A JP H0217790 B2 JPH0217790 B2 JP H0217790B2
Authority
JP
Japan
Prior art keywords
tank
water
heat exchanger
heat
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56060341A
Other languages
Japanese (ja)
Other versions
JPS5767765A (en
Inventor
Kazuo Miura
Shinichiro Shinozaki
Akihiko Fujii
Toshiaki Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Daikin Kogyo Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP56060341A priority Critical patent/JPS5767765A/en
Publication of JPS5767765A publication Critical patent/JPS5767765A/en
Publication of JPH0217790B2 publication Critical patent/JPH0217790B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 本発明はヒートポンプ式冷暖房給湯装置の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a heat pump type air-conditioning/heating/water supply device.

ヒートポンプ式冷暖房装置と給湯装置とを組み
合わせて使用する冷暖房給湯装置の給湯能力の向
上について従来、種々の提案がなされているけれ
ども、いずれも冷媒ガスの凝縮熱だけで給湯がな
されているために能力の向上に限界があり、良好
な能力の向上を図ることができない欠点があつ
た。
Various proposals have been made to improve the hot water supply capacity of air conditioning and water heating systems that use a combination of a heat pump type air conditioning system and a hot water supply system, but in all of them, the capacity is limited because hot water is supplied only by the condensation heat of refrigerant gas. There was a drawback that there was a limit to the improvement of performance, and it was not possible to achieve a good improvement in performance.

本発明は斯る事情に鑑みてなされたものであ
り、ヒートポンプ冷暖房給湯装置を駆動する内燃
機関の排熱を利用して、給湯の熱交換効率が高い
ヒートポンプ式冷暖房給湯装置を提供することを
その目的とするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a heat pump air-conditioning, heating, and water-heating system that has high heat exchange efficiency for hot water supply by utilizing the exhaust heat of the internal combustion engine that drives the heat-pump air-conditioning, heating, and water-heating system. This is the purpose.

そこで本発明は、圧縮機1を駆動する内熱機関
2を備え、該内熱機関2の冷却水循環路30の途
中に水−冷却水熱交換器32を介設すると共に、
前記内熱機関2の排気ガス放出管路34の途中に
水−排気ガス熱交換器35を介設する一方、圧縮
機1、熱源側熱交換器5、利用側熱交換器7、膨
張機構9,12及び冷暖房切換弁4を冷媒循環可
能に接続してなるヒートポンプ式冷暖房用冷媒回
路に、該冷媒回路と水−冷媒熱交換器28とを冷
媒流通可能に接続する冷媒流通制御機構を介設
し、これら水−冷媒熱交換器28、水−冷却水熱
交換器32、水−排気ガス熱交換器35をそれぞ
れ収納する第1タンク29、第2タンク33、第
3タンク36を貯湯タンク48に対してこの順に
水循環可能に接続し、さらに前記貯湯タンク48
と第1タンク29とを連結する連結路より分岐
し、第2タンク33とを連結する分岐路を形成す
ると共に、前記連結路、分岐路に対し選択的に開
動作、閉動作を行い得る弁機構40,42を設
け、前記ヒートポンプ式冷暖房用冷媒回路の冷房
運転時、貯湯量増大運転時等の少なくとも熱源側
の放熱量増大運転時には弁機構40,42を前記
連結路に対し開動作させると共に、前記分岐路に
対し閉動作させる第1切換制御信号を発し、暖房
運転時等の利用側放熱量増大時には弁機構40,
42を前記連結路に対し閉動作させると共に、前
記分岐路に対し開動作させる第2切換制御信号を
発する制御手段とを備え、前記第1切換制御信号
による弁機構40,42の切換動作より、第1タ
ンク29、第2タンク33、第3タンク36、貯
湯タンク48の順に水循環させる循環回路を形成
する一方、第2切換制御信号による弁機構40,
42の切換動作より第2タンク33、第3タンク
36、貯湯タンク48の順に水循環回路を形成す
るようにしたヒートポンプ式冷暖房給湯装置を構
成し、温度レベルの低い熱源から順次高い熱源へ
と熱交換することにより、熱交換効率を高めると
共に、冷媒系統およびエンジン排熱を給湯用の熱
源として利用することによりエネルギ利用効率の
向上を図ることができるヒートポンプ式冷暖房給
湯装置を提供しようとするものである。
Therefore, the present invention includes an internal heat engine 2 that drives a compressor 1, and interposes a water-cooling water heat exchanger 32 in the middle of a cooling water circulation path 30 of the internal heat engine 2.
A water-exhaust gas heat exchanger 35 is interposed in the middle of the exhaust gas discharge pipe 34 of the internal heat engine 2, and the compressor 1, the heat source side heat exchanger 5, the user side heat exchanger 7, and the expansion mechanism 9 , 12 and the air conditioning/heating switching valve 4 are connected to allow refrigerant circulation, and a refrigerant flow control mechanism is provided to connect the refrigerant circuit and the water-refrigerant heat exchanger 28 to allow refrigerant circulation. The first tank 29, second tank 33, and third tank 36, which house the water-refrigerant heat exchanger 28, water-cooling water heat exchanger 32, and water-exhaust gas heat exchanger 35, respectively, are connected to a hot water storage tank 48. The hot water storage tank 48 is connected in this order to enable water circulation.
A valve that branches from a connection path connecting the first tank 29 and the second tank 33 and forms a branch path connecting the second tank 33 and can selectively open and close the connection path and the branch path. Mechanisms 40 and 42 are provided to open the valve mechanisms 40 and 42 with respect to the connection path at least during operation to increase the amount of heat dissipated from the heat source side, such as during cooling operation of the heat pump type cooling/heating refrigerant circuit or during operation to increase the amount of hot water storage. , issues a first switching control signal to close the branch path, and when the heat radiation amount on the user side increases during heating operation etc., the valve mechanism 40;
42 for the connecting path and for generating a second switching control signal for opening the branching path; While forming a circulation circuit that circulates water in the order of the first tank 29, second tank 33, third tank 36, and hot water storage tank 48, the valve mechanism 40 according to the second switching control signal,
A heat pump type air-conditioning/heating water supply system is constructed in which a water circulation circuit is formed in the order of the second tank 33, third tank 36, and hot water storage tank 48 through the switching operation of 42, and heat is exchanged from a heat source with a low temperature level to a heat source with a high temperature level in order. The present invention aims to provide a heat pump type air-conditioning/heating/water supply device that can improve heat exchange efficiency and improve energy usage efficiency by using refrigerant system and engine exhaust heat as a heat source for hot water supply. .

以下、本発明の一実施例を図面に基づいて詳述
する。
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

図面は本発明に係るヒートポンプ式冷暖房給湯
装置の系統図である。
The drawing is a system diagram of a heat pump type air-conditioning/heating/water supply device according to the present invention.

まず、同図面に基づいてヒートポンプ回路Aに
ついて述べると、該ヒートポンプ回路Aは、圧縮
機1、空調−給湯切換用の第1四路切換弁3、冷
暖戻切換用の第2四路切換弁4、熱源側熱交換器
5、利用側熱交換器7、給湯用の水−冷媒熱交換
器28を循環状に配置して成るものである。
First, the heat pump circuit A will be described based on the same drawing. The heat pump circuit A includes a compressor 1, a first four-way switching valve 3 for switching between air conditioning and hot water supply, and a second four-way switching valve 4 for switching between cooling and heating. , a heat source side heat exchanger 5, a user side heat exchanger 7, and a water-refrigerant heat exchanger 28 for hot water supply are arranged in a circular manner.

次に、前記各要素の構成を個々に説明する。 Next, the configuration of each of the above elements will be explained individually.

前記圧縮機1は内燃機関2によつて駆動すべく
構成したものである。
The compressor 1 is configured to be driven by an internal combustion engine 2.

また、前記第1四路切換弁3は冷房の通常運転
時と暖房運転時とデフロスト運転時とには図面に
実線で示す如く、また冷房のピークロード時と冷
房時の貯湯速度増大時とには図面に点線で示す如
く切り換えるものである。
In addition, the first four-way switching valve 3 is used during normal cooling operation, heating operation, and defrost operation, as shown by solid lines in the drawing, and during peak load of cooling and when hot water storage speed increases during cooling. is switched as shown by dotted lines in the drawing.

前記冷暖房切換用の第2四路切換弁4は、該弁
4を実線図示の弁操作とすることによつて冷房サ
イクル運転が行なわれ、該四路切換弁4を点線図
示の弁操作にすることによつて暖房サイクル運転
が行なわれる。
The second four-way switching valve 4 for switching between air conditioning and heating is operated in a cooling cycle by operating the valve 4 as indicated by the solid line, and the four-way switching valve 4 is operated as indicated by the dotted line. This results in a heating cycle operation.

前記空冷の熱源側熱交換器5は暖房時に蒸発器
として作用する一方、冷房時には凝縮器として作
用するものであり、該熱交換器5の近傍には室外
フアン6を設けている。
The air-cooled heat source side heat exchanger 5 functions as an evaporator during heating and as a condenser during cooling, and an outdoor fan 6 is provided near the heat exchanger 5.

前記利用側熱交換器7は暖房時に凝縮器として
作用する一方、冷房時には蒸発器として作用する
ものであり、該熱交換器7の近傍には室内フアン
8を設けている。
The user-side heat exchanger 7 functions as a condenser during heating and as an evaporator during cooling, and an indoor fan 8 is provided near the heat exchanger 7.

9は冷房時専用の膨張機構で、この膨張機構9
と並列に逆止弁10を接続している。
9 is an expansion mechanism exclusively used for cooling, and this expansion mechanism 9
A check valve 10 is connected in parallel with.

11は受液器、12は暖房時専用の膨張機構、
13,14,15,16,17,18は逆止弁、
19,20,21,22,23,24,56,5
7は電磁弁で、これらの各電磁弁19〜24のう
ちの電磁弁21は冷房時の貯湯速度増大時に開と
なるものであり、電磁弁22は冷房のピークロー
ド時に開となるものであり、電磁弁23,24は
デフロスト時に開となるものである。
11 is a liquid receiver, 12 is an expansion mechanism exclusively for heating,
13, 14, 15, 16, 17, 18 are check valves,
19, 20, 21, 22, 23, 24, 56, 5
7 is a solenoid valve, and among these solenoid valves 19 to 24, solenoid valve 21 is opened when the hot water storage speed increases during cooling, and solenoid valve 22 is opened during peak load of cooling. , solenoid valves 23 and 24 are opened during defrosting.

25は膨張機構、26はヘツダー、27はアキ
ユムレータであり、前記水−冷媒熱交換器28は
タンク29内に収納されていて(冷媒凝縮温度は
50〜60℃)、前記各要素1〜28を図示の如く閉
ループ状に接続してヒートポンプ回路Aを構成し
ている。
25 is an expansion mechanism, 26 is a header, and 27 is an accumulator. The water-refrigerant heat exchanger 28 is housed in a tank 29 (the refrigerant condensation temperature is
50 to 60°C), and the heat pump circuit A is constructed by connecting each of the above-mentioned elements 1 to 28 in a closed loop as shown in the figure.

このヒートポンプ回路Aと組み合わされる給湯
回路Bの構成については後述するとして、次に内
燃機関2の排熱利用系について述べる。
The configuration of the hot water supply circuit B combined with the heat pump circuit A will be described later, and next, the exhaust heat utilization system of the internal combustion engine 2 will be described.

30は内燃機関2の冷却水循環路で、この冷却
水循環路30の途中にはエンジン冷却水循環用の
ポンプ31と水−冷媒熱交換器32とを介設する
と共に、この水−冷媒熱交換器32を水−冷却水
熱交換器用のタンク33内に収納している。そし
て、前記ポンプ31によつてエンジン冷却水(約
80〜95℃)を実線矢印方向に常時循環すべく構成
している。
30 is a cooling water circulation path for the internal combustion engine 2, and a pump 31 for engine cooling water circulation and a water-refrigerant heat exchanger 32 are interposed in the middle of this cooling water circulation path 30. is stored in a tank 33 for a water-cooling water heat exchanger. The pump 31 then pumps engine cooling water (approx.
80 to 95°C) is configured to constantly circulate in the direction of the solid arrow.

34は内燃機関2の排気ガス放出管路で、この
排気ガス放出管路34の途中には水−排気ガス熱
交換器35を介設し、この熱交換器35を水−排
気ガス熱交換器用のタンク36内に収納し、内燃
機関2の排気ガス(約500〜800℃)を実線矢印方
向に排気する途中においてタンク36内の水と熱
交換すべく構成している。
34 is an exhaust gas discharge pipe of the internal combustion engine 2, and a water-exhaust gas heat exchanger 35 is interposed in the middle of this exhaust gas discharge pipe 34, and this heat exchanger 35 is used as a water-exhaust gas heat exchanger. The internal combustion engine 2 is housed in a tank 36, and is configured to exchange heat with water in the tank 36 while exhaust gas (approximately 500 to 800°C) from the internal combustion engine 2 is exhausted in the direction of the solid line arrow.

次に、前記ヒートポンプ回路Aおよび内燃機関
排熱利用系と組み合わせる給湯回路Bの構成につ
いて述べる。
Next, the configuration of the hot water supply circuit B combined with the heat pump circuit A and the internal combustion engine exhaust heat utilization system will be described.

該給湯回路Bは前記給湯用の水−冷媒熱交換器
28用のタンク29、該タンク29の下流側に設
置した水−冷却水熱交換器32用のタンク33、
該タンク33の下流側に設置した水−排気ガス熱
交換器35用のタンク36、該タンク36の下流
側に設置した給湯用の貯湯タンク48を循環状に
配置して成るものである。
The hot water supply circuit B includes a tank 29 for the water-refrigerant heat exchanger 28 for hot water supply, a tank 33 for the water-cooling water heat exchanger 32 installed downstream of the tank 29,
A tank 36 for the water-exhaust gas heat exchanger 35 installed downstream of the tank 33 and a hot water storage tank 48 for hot water supply installed downstream of the tank 36 are arranged in a circular manner.

前記給湯回路Bについて更に詳細に説明する
と、給水ポンプ37および逆止弁38を介設した
給水管39には、電磁弁40を介設してなる分岐
管41と、電磁弁42を介設してなる分岐管43
とをそれぞれ接続し、一方の分岐管41の管端部
を前記タンク29の底部に連通させ、他方の分岐
管43の管端部を前記タンク33の底部に連通さ
せている。
To explain the hot water supply circuit B in more detail, a water supply pipe 39 having a water supply pump 37 and a check valve 38 interposed therein has a branch pipe 41 having a solenoid valve 40 interposed therebetween, and a solenoid valve 42. branch pipe 43
The pipe end of one branch pipe 41 is made to communicate with the bottom of the tank 29, and the pipe end of the other branch pipe 43 is made to communicate with the bottom of the tank 33.

また、逆止弁44を介設してなる連結管45に
よつて前記タンク29の上部と前記タンク33の
底部とを互いに連通させる一方、連結管46によ
つて前記タンク33の上部と前記タンク36の底
部とを互いに連通させている。
Further, a connecting pipe 45 with a check valve 44 interposed therebetween allows the upper part of the tank 29 and the bottom part of the tank 33 to communicate with each other, while a connecting pipe 46 connects the upper part of the tank 33 and the tank 33 to each other. 36 are communicated with each other.

さらに、前記タンク36の上部に接続した送湯
管47の管端部を貯湯タンク48温水入口49に
接続する一方、前記貯湯タンク48の底部に連接
した温水出口50には送湯ポンプ51を介設した
給湯管52を接続し、該給湯管52の管端部を三
方弁53のポート53aに接続し、該三方弁53
の他のポート53bと前記給水管39とを管54
で接続し、また前記三方弁53のさらに他のポー
ト53cには湯水供給管55を接続している。
Further, the pipe end of the hot water pipe 47 connected to the top of the tank 36 is connected to the hot water inlet 49 of the hot water storage tank 48, while the hot water outlet 50 connected to the bottom of the hot water storage tank 48 is connected to the hot water pump 51 via a hot water pump 51. The installed hot water supply pipe 52 is connected, and the pipe end of the hot water supply pipe 52 is connected to the port 53a of the three-way valve 53.
The other port 53b and the water supply pipe 39 are connected to the pipe 54.
Further, a hot water supply pipe 55 is connected to another port 53c of the three-way valve 53.

而して、冷房の通常運転時、冷房のピークロー
ド時および冷房時の貯湯速度増大時には、一方の
電磁弁40を開とし、他方の電磁弁42を閉と
し、また前記ポンプ37,51を駆動して、給水
を各要素37,38,40,29,44,33,
46,36,47,49,48,50,51,5
3の順に流通させる。つまり、前記給水を給湯用
水−冷媒熱交換器28用のタンク29、水−冷却
水熱交換器32用のタンク33および水−排気ガ
ス熱交換器35用のタンク36の順に温度レベル
の低い熱源から順次高い熱源へと流通させる。
Therefore, during normal operation of air conditioning, peak load of cooling, and increase in hot water storage speed during cooling, one solenoid valve 40 is opened, the other solenoid valve 42 is closed, and the pumps 37 and 51 are driven. and water supply to each element 37, 38, 40, 29, 44, 33,
46, 36, 47, 49, 48, 50, 51, 5
Distribute in the order of 3. In other words, the supplied water is transferred to the heat source with the lowest temperature level in the order of the tank 29 for the hot water supply water-refrigerant heat exchanger 28, the tank 33 for the water-cooling water heat exchanger 32, and the tank 36 for the water-exhaust gas heat exchanger 35. The heat source is then sequentially distributed to higher heat sources.

また、暖房運転時には前記ポンプ37,51を
駆動すると共に、一方の電磁弁40を閉とし、他
方の電磁弁42を開として、給水を各要素37,
38,42,33,46,36,47,49,4
8,50,51,53の順に流通させる。つま
り、前記給水を水−冷却水熱交換器32用のタン
ク33および水−排気ガス熱交換器35用のタン
ク36の順に温度レベルの低い熱源から順次高い
熱源へと流通させる。
In addition, during heating operation, the pumps 37 and 51 are driven, and one solenoid valve 40 is closed and the other solenoid valve 42 is opened to supply water to each element 37,
38, 42, 33, 46, 36, 47, 49, 4
It is distributed in the order of 8, 50, 51, 53. That is, the feed water is passed through the tank 33 for the water-cooling water heat exchanger 32 and the tank 36 for the water-exhaust gas heat exchanger 35 in order from a heat source with a low temperature level to a heat source with a high temperature level.

さらに、デフロスト時には一方のポンプ51の
みを駆動すると共に、一方の電磁弁40を開と
し、他方の電磁弁42と閉として、給水を各要素
48,50,51,53,40,29,44,3
3,46,36,47,49の順に循環させる。
つまり、前記給水を給湯用の水−冷媒熱交換器2
8用のタンク29、水−冷却水熱交換器32用の
タンク33および水−排気ガス熱交換器35用の
タンク36の順に温度レベルの低い熱源から順次
高い熱源へと流通させるように構成したものであ
る。
Furthermore, during defrosting, only one pump 51 is driven, one solenoid valve 40 is opened and the other solenoid valve 42 is closed, and water is supplied to each element 48, 50, 51, 53, 40, 29, 44, 3
3, 46, 36, 47, 49 in this order.
In other words, the water is transferred to the water-refrigerant heat exchanger 2 for hot water supply.
8, tank 33 for water-cooling water heat exchanger 32, and tank 36 for water-exhaust gas heat exchanger 35. It is something.

本発明の実施例は上記の如く構成するものにし
て、以下作用を説明する。
The embodiment of the present invention is constructed as described above, and its operation will be explained below.

まず、最初に冷房の通常運転について述べる。 First, we will discuss the normal operation of the air conditioner.

斯る運転時には第1および第2の各四路切換弁
3,4はいずれも実線図示の弁操作とする。
During such operation, both the first and second four-way switching valves 3, 4 are operated as shown by solid lines.

いま、内燃機関2を通常回転数で駆動して圧縮
機1を運転すると、該圧縮機1で圧縮され高温高
圧になつたガス冷媒は図面に実線矢印で示す如く
前記各四路切換弁3,4の各ポートを経て凝縮器
として作用する熱源側熱交換器5に入り、ここで
外気と熱交換されて液化し、液化した液冷媒は電
磁弁56、逆止弁15、ヘツダー26、受液器1
1、逆止弁13および電磁弁20を経て膨張機構
9に至り、ここで断熱膨張されて低圧となつた液
冷媒は蒸発器として作用する利用側熱交換器7に
入り、室内の熱を取つて室内を冷房し、自らは気
化されてガス冷媒となり、さらに電磁弁19、第
2四路切換弁4およびアキユムレータ27を介し
て再び前記圧縮機1に吸入されるのである。
Now, when the internal combustion engine 2 is driven at a normal rotational speed and the compressor 1 is operated, the gas refrigerant compressed by the compressor 1 and brought to high temperature and pressure flows through each of the four-way switching valves 3, as shown by solid line arrows in the drawing. 4, enters the heat source side heat exchanger 5 which acts as a condenser, where it is liquefied by heat exchange with outside air, and the liquefied liquid refrigerant is passed through the electromagnetic valve 56, the check valve 15, the header 26, and the liquid receiver. Vessel 1
1. The liquid refrigerant reaches the expansion mechanism 9 via the check valve 13 and the electromagnetic valve 20, where it is adiabatically expanded and becomes low pressure.The liquid refrigerant enters the user-side heat exchanger 7, which acts as an evaporator, and removes indoor heat. The refrigerant cools the room, is vaporized and becomes a gas refrigerant, and is sucked into the compressor 1 again via the electromagnetic valve 19, the second four-way switching valve 4, and the accumulator 27.

斯る冷房の通常運転時におけるエンジン冷却水
はポンプ31の駆動により冷却水循環路30を循
環し、該循環路30の途中に介設した水−冷却水
熱交換器32で、タンク33内の水と熱交換され
る。
During normal operation of the air conditioner, engine cooling water is circulated through a cooling water circulation path 30 by the drive of a pump 31, and a water-cooling water heat exchanger 32 installed in the middle of the circulation path 30 cools the water in the tank 33. Heat is exchanged with

また、内燃機関2の運転によつて生じた排気ガ
スは排気ガス放出管路34を介して放出されるの
であるが、該放出管路34の途中に介設した水−
排気ガス熱交換器35で、タンク36内の水と熱
交換される。
Furthermore, the exhaust gas generated by the operation of the internal combustion engine 2 is released through the exhaust gas release pipe 34, and the water provided in the middle of the release pipe 34 is
The exhaust gas heat exchanger 35 exchanges heat with water in the tank 36 .

このため、給水ポンプ37の駆動により電磁弁
40、タンク29および逆止弁44を介して水−
冷却水熱交換器用タンク33内に至つた水はエン
ジン冷却水によつて加熱され、さらに水−排気ガ
ス熱交換器用タンク36で排気ガスによつて加熱
されて温水となり、この温水は送湯管47を経て
貯湯タンク48に貯湯される。
Therefore, water is supplied through the electromagnetic valve 40, tank 29 and check valve 44 by driving the water supply pump 37.
The water that reaches the cooling water heat exchanger tank 33 is heated by the engine cooling water, and further heated by the exhaust gas in the water-exhaust gas heat exchanger tank 36 to become hot water, and this hot water is passed through the hot water pipes. The hot water is stored in a hot water storage tank 48 via 47.

次に、冷房のピークロード時(最大負荷時)の
作用について述べる。
Next, we will discuss the effects of cooling during peak load (maximum load).

斯る冷房のピークロード時には第1四路切換弁
3を点線の状態に切り換えて、熱源側熱交換器5
の前位に水−冷媒熱交換器28を直列に接続する
と共に、内燃機関2の回転数を通常の回転よりも
増大して、該内燃機関2を高速で回転駆動する。
During the peak load of cooling, the first four-way switching valve 3 is switched to the state shown by the dotted line, and the heat source side heat exchanger 5 is switched to the state shown by the dotted line.
A water-refrigerant heat exchanger 28 is connected in series in front of the internal combustion engine 2, and the rotational speed of the internal combustion engine 2 is increased compared to the normal rotational speed to drive the internal combustion engine 2 to rotate at high speed.

いま、内燃機関2を高速回転数で駆動して圧縮
機1を運転すると、該圧縮機1で圧縮され高温高
圧になつたガス冷媒は点線の状態に切り換わつて
いる第1四路切換弁3を経て、水−冷媒熱交換器
28に至り、ここでタンク29内の温水と熱交換
するので凝縮温度の低下を図ることができ、該水
−冷媒熱交換器28を経た冷媒は逆止弁17、電
磁弁22、第1四路切換弁3および第2四路切換
弁4を介して凝縮器として作用する熱源側熱交換
器5に入り、ここで外気と熱交換されて液化し、
以下は先に述べた冷房の通常運転時と同様に液化
した液冷媒が前記利用側熱交換器7で熱交換され
室内を冷房するものであるが、斯る冷房のピーク
ロード時には熱源側熱交換器5の前位に水−冷媒
熱交換器28を直列に接続して、圧縮機1から吐
出される高温高圧のガス冷媒をタンク29内の温
水と熱交換させて凝縮させ凝縮温度の低下を図
り、かつ内燃機関2の回転数を増大させているの
で、冷房能力を増大することができ、最大負荷に
充分対応することができるものである。
Now, when the internal combustion engine 2 is driven at a high speed and the compressor 1 is operated, the gas refrigerant compressed by the compressor 1 and brought to high temperature and high pressure is switched to the state shown by the dotted line in the first four-way switching valve. 3, the refrigerant reaches the water-refrigerant heat exchanger 28, where it exchanges heat with the hot water in the tank 29, making it possible to lower the condensation temperature. It enters the heat source side heat exchanger 5 that acts as a condenser through the valve 17, the solenoid valve 22, the first four-way switching valve 3, and the second four-way switching valve 4, where it is heat exchanged with outside air and liquefied,
In the following, the liquefied liquid refrigerant is heat-exchanged in the user-side heat exchanger 7 to cool the room in the same manner as during the normal operation of the air conditioner described above, but during the peak load of the air-conditioner, the heat source side heat exchange is performed. A water-refrigerant heat exchanger 28 is connected in series in front of the compressor 5, and the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 exchanges heat with the hot water in the tank 29 to condense and reduce the condensation temperature. In addition, since the rotational speed of the internal combustion engine 2 is increased, the cooling capacity can be increased and the maximum load can be sufficiently handled.

斯る冷房のピークロード時においても給湯系の
水は前述と同様にして低い熱源から順次高い熱源
へと熱交換し、加熱されるのであるが、該ピーク
ロード時にはタンク29内においても水−冷媒熱
交換がなされる。つまり、前記給水は給湯用の水
−冷媒熱交換器28用のタンク29、水−冷却水
熱交換器32用のタンク33および水−排気ガス
熱交換器35用のタンク36の順に温度レベルの
低い熱源から順次高い熱源へと流通してこの順に
熱交換する。
Even during the peak load of the air conditioner, the water in the hot water supply system is heated by exchanging heat from the low heat source to the high heat source in the same way as described above. Heat exchange takes place. In other words, the water is supplied to the tank 29 for the water-refrigerant heat exchanger 28 for hot water supply, the tank 33 for the water-cooling water heat exchanger 32, and the tank 36 for the water-exhaust gas heat exchanger 35 in order of temperature levels. Heat is exchanged in this order by flowing from a low heat source to a high heat source.

次に、冷房時の貯湯速度増大時の作用について
述べる。
Next, we will discuss the effect when the hot water storage rate increases during cooling.

斯る冷房の貯湯速度増大時には第1四路切換弁
3を点線図示の弁操作に、また第2四路切換弁4
を実線図示の弁操作にすると共、電磁弁19,2
0,21を開くのである。
When the hot water storage speed for cooling increases, the first four-way switching valve 3 is operated as shown by the dotted line, and the second four-way switching valve 4 is operated as shown by the dotted line.
is operated as shown by the solid line, and the solenoid valves 19 and 2 are operated as shown in the solid line.
0,21 is opened.

いま、圧縮機1から吐出された高温高圧のガス
冷媒は点線の状態に切り換わつている第1四路切
換弁3を経て水−冷媒熱交換器28に至り、ここ
でタンク29内の温水をさらに加熱した後に、逆
止弁16、電磁弁21、受液器11、逆止弁1
3、電磁弁20、膨張機構9、利用側熱交換器
7、電磁弁19、第2四路切換弁4およびアキユ
ムレータ27をこの順に介して再び圧縮機1に吸
入される。
Now, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the first four-way switching valve 3, which has been switched to the state shown by the dotted line, and reaches the water-refrigerant heat exchanger 28, where it is transferred to the hot water in the tank 29. After further heating, check valve 16, solenoid valve 21, liquid receiver 11, check valve 1
3, the electromagnetic valve 20, the expansion mechanism 9, the utilization side heat exchanger 7, the electromagnetic valve 19, the second four-way switching valve 4, and the accumulator 27 in this order, and are sucked into the compressor 1 again.

このように冷房時の貯湯速度増大時には、圧縮
機1から吐出される高温高圧のガス冷媒を水−冷
媒熱交換器28を通して、タンク29内の給湯用
水を冷媒凝縮熱によつて加熱するので貯湯速度の
増大を図ることができ、さらに前記給湯用水は内
燃機関2の排熱により更に加熱されるので、貯湯
速度をより一層増大させることができる。
In this manner, when the hot water storage rate increases during cooling, the high temperature, high pressure gas refrigerant discharged from the compressor 1 passes through the water-refrigerant heat exchanger 28, and the hot water supply water in the tank 29 is heated by the heat of condensation of the refrigerant, so that the hot water is stored. Furthermore, since the hot water supply water is further heated by the exhaust heat of the internal combustion engine 2, the hot water storage speed can be further increased.

斯る貯湯速度増大時においても前記給水は給湯
用の水−冷媒熱交換器28用のタンク29、水−
冷却水熱交換器32用のタンク33および水−排
気ガス熱交換器35用のタンク36の順に温度レ
ベルの低い熱源から順次高い熱源へと流通して、
この順に熱交換するものである。
Even when the hot water storage speed increases, the water supply is carried out between the water for hot water supply, the tank 29 for the refrigerant heat exchanger 28, and the water supply for the refrigerant heat exchanger 28.
The heat source flows in the order of the tank 33 for the cooling water heat exchanger 32 and the tank 36 for the water-exhaust gas heat exchanger 35 from a heat source with a low temperature level to a heat source with a high temperature level,
Heat exchange is performed in this order.

次に暖房運転時の作用について述べる。 Next, we will discuss the effects during heating operation.

斯る暖房運転時には第1四路切換弁3を実線図
示の弁操作に、また第2四路切換弁4を点線図示
の弁操作にするのである。
During such heating operation, the first four-way switching valve 3 is operated as shown by the solid line, and the second four-way switching valve 4 is operated as shown by the dotted line.

いま、内燃機関2を通常回転数で駆動して圧縮
機1を運転すると、該圧縮機1で圧縮され高温高
圧になつたガス冷媒は図面に点線矢印で示す如く
各四路切換弁3,4の各ポートおよび電磁弁19
を経て凝縮器として作用する利用側熱交換器7に
入り、ここで放熱して室内空気と熱交換して室内
を暖房し、液化した液冷媒は逆止弁10、電磁弁
20、逆止弁14、ヘツダー26および受液器1
1を経て膨張機構12に至り、ここで断熱膨張さ
れて低圧となつた液冷媒は蒸発器として作用する
熱源側熱交換器5に入り、熱交換されて気化し、
気化したガス冷媒は第2四路切換弁4およびアキ
ユムレータ27を介して再び前記圧縮機1に吸入
されるのである。
Now, when the internal combustion engine 2 is driven at a normal rotational speed and the compressor 1 is operated, the gas refrigerant compressed by the compressor 1 and brought to high temperature and pressure flows through each of the four-way switching valves 3 and 4 as shown by dotted line arrows in the drawing. Each port and solenoid valve 19
The liquefied liquid refrigerant enters the user-side heat exchanger 7 which acts as a condenser, where it radiates heat and exchanges heat with the indoor air to heat the room.The liquefied liquid refrigerant passes through the check valve 10, solenoid valve 20, and check valve 14, header 26 and liquid receiver 1
1, the liquid refrigerant reaches the expansion mechanism 12, where it is adiabatically expanded and has a low pressure.The liquid refrigerant enters the heat source side heat exchanger 5, which acts as an evaporator, where it is heat exchanged and vaporized.
The vaporized gas refrigerant is sucked into the compressor 1 again via the second four-way switching valve 4 and the accumulator 27.

斯る暖房運転時には給湯系内の一方の電磁弁4
2を開とし、他方の電磁弁40を閉とし、給湯水
をタンク29内へ循環させず、該給湯水は開成し
た電磁弁42、水−冷却水熱交換器用タンク3
3、水−排気ガス熱交換器用タンク36、貯湯タ
ンク48、ポンプ51および三方弁53をこの順
に低い熱源から順次高い熱源へと循環させて、エ
ンジン排熱を利用して該給湯水を加熱するのであ
る。
During such heating operation, one solenoid valve 4 in the hot water supply system
2 is opened, and the other solenoid valve 40 is closed, and hot water is not circulated into the tank 29.
3. The water-exhaust gas heat exchanger tank 36, hot water storage tank 48, pump 51, and three-way valve 53 are circulated in this order from a low heat source to a high heat source, and the hot water is heated using engine exhaust heat. It is.

以上要するに給湯水はいずれの場合においても
温度レベルの低い熱源から順次高い熱源へと流通
して、この順に熱交換するので、熱交換効率が高
いのである。
In short, in any case, hot water is passed from a heat source with a low temperature level to a heat source with a high temperature level, and heat is exchanged in this order, so that the heat exchange efficiency is high.

また、冷媒系統およびエンジン排熱を給湯用の
熱源として利用しているので、エネルギ利用効率
の向上を図ることができるのである。
Furthermore, since the refrigerant system and engine exhaust heat are used as heat sources for hot water supply, energy utilization efficiency can be improved.

なお、前記給湯回路Bは各タンク29,33,
36,48を循環状に配置して構成したものであ
るから、貯湯タンク48内の湯温低下時たとえば
該貯湯タンク48が満杯で湯温が低い時には給湯
水を水−冷却水熱交換器32用のタンク33およ
び水−排気ガス熱交換器35用のタンク36の順
に温度レベルの低い熱源から順次高い熱源へと循
環させて追焚きを行なうことができるのは勿論で
ある。
Note that the hot water supply circuit B includes each tank 29, 33,
36 and 48 are arranged in a circular manner, when the temperature of the hot water in the hot water storage tank 48 decreases, for example, when the hot water storage tank 48 is full and the hot water temperature is low, the hot water is transferred to the water-cooling water heat exchanger 32. It goes without saying that reheating can be performed by circulating the heat sources in order from the heat source with the lower temperature level to the heat source with the higher temperature level in the tank 33 for the water-exhaust gas heat exchanger 35 and the tank 36 for the water-exhaust gas heat exchanger 35.

本発明は以上詳述したように、圧縮機1を駆動
する内熱機関2を備え、該内熱機関2の冷却水循
環路30の途中に水−冷却水熱交換器32を介設
すると共に、前記内熱機関2の排気ガス放出管路
34の途中に水−排気ガス熱交換器35を介設す
る一方、圧縮機1、熱源側熱交換器5、利用側熱
交換器7、膨張機構9,12及び冷暖房切換弁4
を冷媒循環可能に接続してなるヒートポンプ式冷
暖房用冷媒回路に、該冷媒回路と水−冷媒熱交換
器28とを冷媒流通可能に接続する冷媒流通制御
機構を介設し、これら水−冷媒熱交換器28、水
−冷却水熱交換器32、水−排気ガス熱交換器3
5をそれぞれ収納する第1タンク29、第2タン
ク33、第3タンク36を貯湯タンク48に対し
てこの順に水循環可能に接続し、さらに前記貯湯
タンク48と第1タンク29とを連結する連結路
より分岐し、第2タンク33とを連結する分岐路
を形成すると共に、前記連結路、分岐路に対し選
択的に開動作、閉動作を行い得る弁機構40,4
2を設け、前記ヒートポンプ式冷暖房用冷媒回路
の冷房運転時、貯湯量増大運転時等の少なくとも
熱源側の放熱量増大運転時には弁機構40,42
を前記連結路に対し開動作させると共に、前記分
岐路に対し閉動作させる第1切換制御信号を発
し、暖房運転時の利用側放熱量増大時には弁機構
40,42を前記連結路に対し閉動作させると共
に、前記分岐路に対し開動作させる第2切換制御
信号を発する制御手段とを備え、前記第1切換制
御信号による弁機構40,42の切換動作より、
第1タンク29、第2タンク33、第3タンク3
6、貯湯タンク48の順に水循環させる循環回路
を形成する一方、第2切換制御信号による弁機構
40,42の切換動作より第2タンク33,第3
タンク36、貯湯タンク48の順に水循環回路を
形成するようにしたヒートポンプ式冷暖房給湯装
置を構成し、以つて温度レベルの低い熱源から順
次高い熱源へと熱交換すべく成したものであるか
ら、熱交換効率を高めることができる効果があ
る。
As described in detail above, the present invention includes an internal heat engine 2 that drives a compressor 1, and a water-cooling water heat exchanger 32 is interposed in the middle of the cooling water circulation path 30 of the internal heat engine 2. A water-exhaust gas heat exchanger 35 is interposed in the middle of the exhaust gas discharge pipe 34 of the internal heat engine 2, and the compressor 1, the heat source side heat exchanger 5, the user side heat exchanger 7, and the expansion mechanism 9 , 12 and heating/cooling switching valve 4
A refrigerant circulation control mechanism for connecting the refrigerant circuit and the water-refrigerant heat exchanger 28 so that the refrigerant can circulate is interposed in a heat pump type air-conditioning refrigerant circuit formed by connecting the refrigerant circuits so that the refrigerant can circulate. Exchanger 28, water-cooling water heat exchanger 32, water-exhaust gas heat exchanger 3
5, a first tank 29, a second tank 33, and a third tank 36 each housing a hot water storage tank 48 are connected to the hot water storage tank 48 in this order so that water can be circulated therein, and further the connection path connects the hot water storage tank 48 and the first tank 29. Valve mechanisms 40, 4 which form a branch path that branches from the second tank 33 and which can selectively open and close the connecting path and the branch path.
2, the valve mechanisms 40 and 42 are provided at least when the heat source side is operated to increase the amount of heat dissipated, such as during cooling operation of the heat pump type cooling/heating refrigerant circuit or during operation to increase the amount of hot water storage.
A first switching control signal is issued to cause the connecting path to open and to close the branch path, and when the user-side heat radiation amount increases during heating operation, the valve mechanisms 40 and 42 close to the connecting path. and a control means for issuing a second switching control signal that causes the branch path to open.
First tank 29, second tank 33, third tank 3
6. While forming a circulation circuit that circulates water in the hot water storage tank 48 in this order, the switching operation of the valve mechanisms 40 and 42 by the second switching control signal causes the second tank 33 and the third
The heat pump type air-conditioning/heating hot water supply system is configured such that a water circulation circuit is formed in the order of the tank 36 and the hot water storage tank 48, and is designed to exchange heat from a heat source with a low temperature level to a heat source with a high temperature level in order. This has the effect of increasing exchange efficiency.

また、冷媒系統の排熱をタンク29で、エンジ
ンの排熱をタンク36で、エンジン冷却水の排熱
をタンク33でそれぞれ給湯用の熱源として有効
利用するものであるから、エネルギ利用効率の向
上を図ることができる効果がある。
Furthermore, since the exhaust heat of the refrigerant system is effectively used in the tank 29, the exhaust heat of the engine is used in the tank 36, and the exhaust heat of the engine cooling water is effectively used as a heat source for hot water supply in the tank 33, energy usage efficiency is improved. This has the effect of making it possible to achieve this goal.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係るヒートポンプ式冷暖房給湯
装置の系統図である。 1……圧縮機、2……内燃機関、3……空調−
給湯切換用の第1四路切換弁、4……冷暖房切換
用の第2四路切換弁、5……熱源側熱交換器、7
……利用側熱交換器、28……水−冷媒熱交換
器、29……水−冷媒熱交換器用タンク、32…
…水−冷却水熱交換器、33……水−冷却水熱交
換器用タンク、35……水−排気ガス熱交換器、
36……水−排気ガス熱交換器用タンク、48…
…貯湯タンク、A……ヒートポンプ回路、B……
給湯回路。
The drawing is a system diagram of a heat pump type air-conditioning/heating/water supply device according to the present invention. 1...Compressor, 2...Internal combustion engine, 3...Air conditioner-
First four-way switching valve for switching hot water supply, 4... Second four-way switching valve for switching heating and cooling, 5... Heat source side heat exchanger, 7
... User-side heat exchanger, 28 ... Water-refrigerant heat exchanger, 29 ... Tank for water-refrigerant heat exchanger, 32 ...
...Water-cooling water heat exchanger, 33...Tank for water-cooling water heat exchanger, 35...Water-exhaust gas heat exchanger,
36... Tank for water-exhaust gas heat exchanger, 48...
...Hot water storage tank, A...Heat pump circuit, B...
hot water circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機1を駆動する内熱機関2を備え、該内
熱機関2の冷却水循環路30の途中に水−冷却水
熱交換器32を介設すると共に、前記内熱機関2
の排気ガス放出管路34の途中に水−排気ガス熱
交換器35を介設する一方、圧縮機1、熱源側熱
交換器5、利用側熱交換器7、膨張機構9,12
及び冷暖房切換弁4を冷媒循環可能に接続してな
るヒートポンプ式冷暖房用冷媒回路に、該冷媒回
路と水−冷媒熱交換器28とを冷媒流通可能に接
続する冷媒流通制御機構を介設し、これら水−冷
媒熱交換器28、水−冷却水熱交換器32、水−
排気ガス熱交換器35をそれぞれ収納する第1タ
ンク29、第2タンク33、第3タンク36を貯
湯タンク48に対してこの順に水循環可能に接続
し、さらに前記貯湯タンク48と第1タンク29
とを連結する連結路より分岐し、第2タンク33
とを連結する分岐路を形成すると共に、前記連結
路、分岐路に対し選択的に開動作、閉動作を行い
得る弁機構40,42を設け、前記ヒートポンプ
式冷暖房用冷媒回路の冷房運転時、貯湯量増大運
転時等の少なくとも熱源側の放熱量増大運転時に
は弁機構40,42を前記連結路に対し開動作さ
せると共に、前記分岐路に対し閉動作させる第1
切換制御信号を発し、暖房運転時等の利用側放熱
量増大時には弁機構40,42を前記連結路に対
し閉動作させると共に、前記分岐路に対し開動作
させる第2切換制御信号を発する制御手段とを備
え、前記第1切換制御信号による弁機構40,4
2の切換動作より、第1タンク29、第2タンク
33、第3タンク36、貯湯タンク48の順に水
循環させる循環回路を形成する一方、第2切換制
御信号による弁機構40,42の切換動作より第
2タンク33、第3タンク36、貯湯タンク48
の順に水循環回路を形成するようにしたことを特
徴とするヒートポンプ式冷暖房給湯装置。
1 An internal heat engine 2 that drives a compressor 1 is provided, a water-cooling water heat exchanger 32 is interposed in the middle of a cooling water circulation path 30 of the internal heat engine 2, and the internal heat engine 2
A water-exhaust gas heat exchanger 35 is interposed in the middle of the exhaust gas discharge pipe 34 of
and a refrigerant circulation control mechanism for connecting the refrigerant circuit and the water-refrigerant heat exchanger 28 so that the refrigerant can flow, is interposed in a heat pump type cooling and heating refrigerant circuit formed by connecting the air conditioning switching valve 4 so that the refrigerant can circulate, These water-refrigerant heat exchanger 28, water-cooling water heat exchanger 32, water-
A first tank 29, a second tank 33, and a third tank 36, each housing an exhaust gas heat exchanger 35, are connected in this order to a hot water storage tank 48 so that water can be circulated, and the hot water storage tank 48 and the first tank 29 are connected in this order so that water can be circulated.
The second tank 33 is branched from the connection road connecting the
Valve mechanisms 40 and 42 are provided to form a branch path connecting the connection path and the branch path, and to selectively open and close the connection path and the branch path, during cooling operation of the heat pump air-conditioning refrigerant circuit, A first valve mechanism for operating the valve mechanisms 40 and 42 to open the connection path and close the branch path at least during an operation to increase the amount of heat dissipation on the heat source side, such as during an operation to increase the amount of hot water stored.
A control means for emitting a switching control signal, and generating a second switching control signal for causing the valve mechanisms 40 and 42 to close the connection path and open the branch path when the heat radiation amount on the user side increases such as during heating operation. and a valve mechanism 40, 4 according to the first switching control signal.
The switching operation in step 2 forms a circulation circuit that circulates water in the order of the first tank 29, second tank 33, third tank 36, and hot water tank 48, while the switching operation of the valve mechanisms 40 and 42 by the second switching control signal Second tank 33, third tank 36, hot water storage tank 48
A heat pump type air-conditioning/heating and hot water supply device characterized in that a water circulation circuit is formed in this order.
JP56060341A 1981-04-20 1981-04-20 Heat pump type air conditioning hot water feeder Granted JPS5767765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56060341A JPS5767765A (en) 1981-04-20 1981-04-20 Heat pump type air conditioning hot water feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56060341A JPS5767765A (en) 1981-04-20 1981-04-20 Heat pump type air conditioning hot water feeder

Publications (2)

Publication Number Publication Date
JPS5767765A JPS5767765A (en) 1982-04-24
JPH0217790B2 true JPH0217790B2 (en) 1990-04-23

Family

ID=13139358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56060341A Granted JPS5767765A (en) 1981-04-20 1981-04-20 Heat pump type air conditioning hot water feeder

Country Status (1)

Country Link
JP (1) JPS5767765A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026205U (en) * 1973-07-02 1975-03-26

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108360U (en) * 1979-01-25 1980-07-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026205U (en) * 1973-07-02 1975-03-26

Also Published As

Publication number Publication date
JPS5767765A (en) 1982-04-24

Similar Documents

Publication Publication Date Title
CN211739588U (en) Air conditioner capable of improving heat exchange performance
CA1288606C (en) Heat pump system with hot water device
KR900003160B1 (en) Air-conditioning hot-water supply device
JPH0341747B2 (en)
US20220011014A1 (en) Air conditioning system
JP2005195313A (en) Composite air-conditioning system
CN210821724U (en) Thermal management system and new energy automobile thereof
JPS6155018B2 (en)
JPH0387535A (en) Air conditioner
CN212362483U (en) Air conditioning unit capable of effectively improving energy utilization rate
JPH03294754A (en) Air conditioner
JP2538210B2 (en) Engine driven heat pump device
JPH0217790B2 (en)
JPS6360305B2 (en)
JP3481818B2 (en) Absorption cooling and heating system and cooling and heating system
CN216924596U (en) Triple-generation air-conditioning hot water system
CN219283681U (en) Air conditioner and water heater all-in-one
CN220842121U (en) Battery thermal management system capable of balancing heat distribution
CN216139775U (en) Electric vehicle and heat pump system thereof
JP2009109061A (en) Heat pump type air conditioning device comprising heating panel
JP2004028576A (en) Air conditioning refrigerating device
JP3046044B2 (en) Air conditioning system
JP2002286309A (en) Refrigerator
JP4262901B2 (en) Refrigeration equipment
JPH0548039Y2 (en)