JPH02177422A - Light beam annealing - Google Patents

Light beam annealing

Info

Publication number
JPH02177422A
JPH02177422A JP33134388A JP33134388A JPH02177422A JP H02177422 A JPH02177422 A JP H02177422A JP 33134388 A JP33134388 A JP 33134388A JP 33134388 A JP33134388 A JP 33134388A JP H02177422 A JPH02177422 A JP H02177422A
Authority
JP
Japan
Prior art keywords
annealing
annealed
light beam
sweep
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33134388A
Other languages
Japanese (ja)
Other versions
JP2995736B2 (en
Inventor
Toshiyuki Samejima
俊之 鮫島
Takashi Tomita
尚 冨田
Masateru Hara
昌輝 原
Setsuo Usui
碓井 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63331343A priority Critical patent/JP2995736B2/en
Publication of JPH02177422A publication Critical patent/JPH02177422A/en
Application granted granted Critical
Publication of JP2995736B2 publication Critical patent/JP2995736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To do favorable annealing of a substance to be annealed which contains substance having volatility and to facilitate the work by arranging the spots of light beams, which are applied to sweep the substance to be annealed, in such distribution that the energy becomes great by stages or continuously from the front side of the sweep to the rear side. CONSTITUTION:In a light beam annealing method that the annealing is done by sweep irradiation of light beams, the spots of light beams, which are applied to sweep the substance 1 to be annealed, are arranged in such distribution that the energy becomes great by stages or continuously from the magnitude at a degree that the annealing effect arises only at the surface of the substance 1 to be annealed to the magnitude that the annealing effect arises down to necessary depth. For example, the trace of a zigzag pattern is drawn left and right as shown in the figure at an amorphous layer 3 consisting of a-Si:H, and the energy of the spots s of light beams, which sweep it only once along the parallel lines, is distributed in seven stages of E1 to E7 from the front side of the sweeping direction of the spot s to the rear side.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ビームアニーリング法、特に揮発性物質を含
む被アニーリング体、例えば水素化シリコン非晶質(a
−3i:H)薄膜等の結晶化アニーリングに用いて好適
な光ビームアニーリング法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a light beam annealing method, particularly to a material to be annealed containing a volatile substance, such as amorphous silicon hydride (a
-3i:H) Pertains to a light beam annealing method suitable for use in crystallization annealing of thin films, etc.

〔発明の概要〕[Summary of the invention]

本発明は、光ビームの掃引照射によりアニールを行う光
ビームアニーリング法において、被アニール体上に掃引
照射する光ビームのスポットが、その掃引の先方側から
後方側に向ってエネルギーが段階的に或いは連続的に大
となるエネルギー分布を有するようにすることによって
、揮発性を有する物質を含む被アニール体といえどもそ
のアニールを良好に行い、かつ作業の簡易化をはかるも
のである。
In the light beam annealing method in which annealing is performed by sweeping irradiation of a light beam, the spot of the light beam sweep irradiated onto the object to be annealed has energy gradually or By providing a continuously increasing energy distribution, even objects to be annealed containing volatile substances can be annealed well, and the work can be simplified.

〔従来の技術〕[Conventional technology]

プラグ? CV D(Chen+1cal Vapor
 Deposition)によって形成した水素原子を
例えば10原子%含む水素化非晶質シリコン(以下、a
−5i:Hと記す)膜を高エネルギーの得られるパルス
レーザ−照射によって常温=囲気下で、結晶化すること
によりキャリアの移動度の高い良質の多結晶シリコン膜
を低温で作製することが可能になった。このような技術
の適用により多結晶シリコン薄膜による薄膜トランジス
タTPT)が300℃以下の低温工程で実現できるよう
になった(T、Sameshima andS、Usu
i;Materials Re5earch 5oci
ety SympostumProceedings 
Vol、71(1986)P435〜440  参照)
上述したパルスレーザ−照射による光ビームアニールを
行う場合、そのアニール例えば非晶質薄膜に対する結晶
化、或いは多結晶薄膜に対する再結晶化のためのアニー
ルは、例えば第1図に示すように、被アニール体(1)
、例えばガラス基板(1)上にa−3i:H非晶質層(
3)が形成されたウェファに対し、パルスレーザ−光の
スポットSを、a−3i:H薄膜上に、そのアニール処
理、すなわち例えば結晶化処理を施すべき領域の全域に
亘って例えばジグザクパターンに矢印をもって示すよう
に掃引することによって行う。この場合、その表面から
所要の深さ(厚さ)に亘ってその結晶化或いは再結晶化
等のアニール効果を得るには、表面を結晶化、或いは再
結晶化、すなわちアニールできるエネルギー以上の充分
大きなエネルギーを必要とする。ところがその被アニー
ル体が上述したa−Si:Hのように揮発性物質を含む
ような材料である場合、急激に大きなエネルギーのパル
スレーザ−照射を行うときは、その揮発性物質例えば水
素の爆発的放出が生じ、良好な結晶化或いは再結晶化を
阻害する。したがって、このような材料に対するアニー
ルは、通常複数回、例えば5回の帰り作業を繰返して行
い、各回の掃引で第6図に示すように、目的とする深さ
に亘るアニール処理を行うことのできるレーザーエネル
ギー例えば230mJ/c++fまで、順次上昇させる
という方法が採られる。
plug? CV D (Chen+1cal Vapor
Hydrogenated amorphous silicon (hereinafter referred to as a
A high-quality polycrystalline silicon film with high carrier mobility can be produced at low temperatures by crystallizing the film (denoted as -5i:H) at room temperature (in an ambient atmosphere) by irradiating it with a high-energy pulsed laser. Became. Application of such technology has made it possible to realize thin film transistors (TPT) using polycrystalline silicon thin films in a low-temperature process below 300°C (T, Sameshima and S, Usu
i;Materials Re5search 5oci
ety SympostumProceedings
Vol. 71 (1986) P435-440)
When performing light beam annealing using pulsed laser irradiation as described above, the annealing for crystallization of an amorphous thin film or recrystallization of a polycrystalline thin film is performed, for example, as shown in FIG. body (1)
, for example, a-3i:H amorphous layer (
For the wafer on which 3) has been formed, a spot S of pulsed laser light is applied to the a-3i:H thin film in, for example, a zigzag pattern over the entire region to be subjected to annealing treatment, that is, crystallization treatment, for example. This is done by sweeping as indicated by the arrow. In this case, in order to obtain an annealing effect such as crystallization or recrystallization from the surface to the required depth (thickness), sufficient energy is required to crystallize or recrystallize the surface, that is, exceed the annealing effect. Requires a lot of energy. However, if the object to be annealed is a material that contains a volatile substance, such as the above-mentioned a-Si:H, when rapidly irradiating a pulsed laser with a large amount of energy, the volatile substance, for example, hydrogen, may explode. release occurs, inhibiting good crystallization or recrystallization. Therefore, annealing of such materials is usually performed by repeating the return operation multiple times, for example, five times, and with each sweep, as shown in FIG. 6, it is possible to anneal the desired depth. A method is adopted in which the laser energy is gradually increased to the maximum possible laser energy, for example, 230 mJ/c++f.

しかしながら、このように、光ビームのエネルギーを順
次変えて複数回の掃引を繰返し行うことは、アニール処
理時間が長くなり、またパルス数の増大を生じるなど、
工業的な課題がある。
However, repeating multiple sweeps by sequentially changing the energy of the light beam increases the annealing process time, increases the number of pulses, etc.
There are industrial challenges.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上述したアニール処理における光ビームの掃
引を繰返して行うことによる作業の煩雑さ、作業時間、
パルス数等の課題の解決をはかることを目的とする。
The present invention eliminates the complexity of the work, the work time, and
The purpose is to solve problems such as the number of pulses.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、例えば第1図に示すように、被アニール体(
1)上に光ビームの掃引照射によりアニールを行う光ビ
ームアニーリング法において、被アニール体(1)に対
する掃引照射する光ビームのスポットSが、例えば第2
図に示すように、掃引の先方側から後方側に向ってエネ
ルギーが、被アニール体(1)の表示でアニール効果を
生じる程度のエネルギーの大きさから所要の深さのアニ
ールに必要なエネルギーの大きさ迄段階的に或いは連続
的に大となるエネルギー分布を有するようにする。
The present invention, for example, as shown in FIG.
1) In a light beam annealing method in which annealing is performed by sweeping a light beam on the object (1), the spot S of the light beam sweepingly irradiating the object (1) to be annealed is, for example, the second
As shown in the figure, the energy changes from the front side of the sweep toward the rear side, ranging from the amount of energy that causes an annealing effect in the display of the object to be annealed (1) to the amount of energy necessary for annealing to the required depth. It is made to have an energy distribution that increases stepwise or continuously up to its size.

〔作用〕[Effect]

上述の本発明方法によれば、被アニール体(1)側から
みて、そのアニールされるべき各位置で光ビームスポッ
トSの掃引につれ、そのエネルギー分布によって漸次、
段階的或いは連続的に各部にふいて目的とする所要の深
さのアニールを行い得るエネルギーの大きさまで高めら
れていくので、各位置で一回の掃引で漸次被アニール体
(1)中の揮発性物質の蒸発が進行することにより、こ
の揮発性物質の爆発的噴出が回避されて、これに基づく
アニールによる結晶化の不均一特性の結晶性の低下を回
避できると共に、従来における光ビームの多数回の繰返
し掃引を、1回または少数回にとどめることができ、作
業時間の短縮化と、例えば光ビームのパルス照射による
ときもパルス数の減少をはかることができる。
According to the method of the present invention described above, as the light beam spot S sweeps at each position to be annealed, as seen from the side of the object to be annealed (1), the energy distribution gradually
Since the energy is increased to a level that enables annealing to the desired depth by wiping each part stepwise or continuously, one sweep at each location gradually reduces the volatilization in the object (1) to be annealed. As the evaporation of the volatile substance progresses, explosive ejection of this volatile substance is avoided, and it is possible to avoid the deterioration of crystallinity due to the non-uniform characteristics of crystallization due to annealing based on this, and it is possible to avoid many of the conventional light beams. The number of repeated sweeps can be limited to one or a small number of times, thereby shortening the working time and reducing the number of pulses when using pulsed light beam irradiation, for example.

〔実施例〕〔Example〕

本発明方法を、例えばTPTの製造工程におけるシリコ
ン多結晶層を形成する場合の一例を説明する。この場合
、第1図及び第2図に示すようにガラス板等の各種の基
板(2)上にCVD法によって形成したa−3i:8層
等の非晶質層(3)を生成した被アニール体(1)が用
意される。
An example of the method of the present invention for forming a silicon polycrystalline layer in a TPT manufacturing process will be explained. In this case, as shown in FIGS. 1 and 2, amorphous layers (3) such as a-3i:8 layers formed by CVD on various substrates (2) such as glass plates are used. An annealed body (1) is prepared.

そして、この被アニール体(1)の非晶質層(3)、す
なわちa−3i:8層に、例えば第1図に示すように、
例えばXeCj!エキシマレーザ−からのレーザー光に
よる光ビームスポットSを、第1図において矢印をもっ
て示すように左右にジグザクパターンの軌跡を描いて平
行線上に沿うように1回だけ掃引する。
Then, in the amorphous layer (3) of this object to be annealed (1), that is, the a-3i:8 layer,
For example, XeCj! A light beam spot S by a laser beam from an excimer laser is swept once along parallel lines, drawing a locus of a zigzag pattern left and right as shown by the arrows in FIG.

この場合の光ビームスポットSのエネルギー分布は、ス
ポラl−sの掃引方向の先方側から後方側に向って、複
数段階、例えば7段階に、a−3i:H層(2)の表面
を結晶化、すなわち溶融する1400℃に達するエネル
ギーE1 例えば1?OmJ/cdから、所要の厚さ例
えば1000人に亘って結晶化することのできるエネル
ギーE1例えば250mJ/cdまでを例えばほぼ等分
割したエネルギーE1〜E、に分布させる。そして、今
光ビームの掃引を第1図におけるように、奇数番目の掃
引線す、、 bl、 b、・・・・に関しては同図にお
いて左から右へ、偶数番目の掃引線b2. b、、 b
、 ・・・・に関しては、スポットSの上下左右関係を
変えずに逆の右から左へ行うように、往復2方向の掃引
を行うときは、第3図に示すように、両方向に関して対
称的な分布とする。
In this case, the energy distribution of the light beam spot S crystallizes the surface of the a-3i:H layer (2) in multiple stages, for example, seven stages, from the front side to the rear side in the sweeping direction of the spora l-s. The energy E1 that reaches 1400 degrees Celsius, that is, melting, for example 1? The energy E1 that can crystallize from OmJ/cd to, for example, 250 mJ/cd over a required thickness, for example, 1000 people, is distributed into, for example, approximately equally divided energies E1 to E. Now, as shown in FIG. 1, the sweep of the light beam is changed to the even numbered sweep lines b2, bl, b, . . . from left to right in the figure. b,, b
, ..., when performing a reciprocating sweep in two directions, such as from right to left without changing the vertical and horizontal relationship of the spot S, it is symmetrical in both directions as shown in Figure 3. distribution.

しかしながら、光ビームの掃引方向が特定の一方向であ
る場合、例えば第3図中実線矢印方向の左から右向きで
ある場合は、そのエネルギー分布は実線図示のように、
スポットSの先方、つまり掃引によって、被アニール体
(1)のすなわち、非晶質層(2)上の各位置にスポッ
ト照射が始まる側が低いエネルギーを示し後方に向って
エネルギーが高くなる分布のみとし、掃引方向が逆方向
である場合は、破線図示の逆傾斜の分布のみとする。
However, if the sweeping direction of the light beam is one specific direction, for example from left to right in the direction of the solid arrow in FIG. 3, the energy distribution will be as shown by the solid line.
By sweeping the spot S, it is assumed that the side where the spot irradiation starts at each position on the object to be annealed (1), that is, the amorphous layer (2), has low energy and the energy increases toward the rear. , when the sweep direction is the opposite direction, only the distribution with the reverse slope shown by the broken line is used.

このようなエネルギー分布を有するスポットSを得るに
は、レーザー光を、このレーザー光の波長に対する光透
過率が掃引方向に沿って中心から両側に向って1次元的
に変化するか、同心円的に変化する光学フィルタFに通
過させることによって得ることができる。
In order to obtain a spot S having such an energy distribution, the laser beam is changed so that the light transmittance for the wavelength of the laser beam changes one-dimensionally from the center to both sides along the sweep direction, or concentrically. It can be obtained by passing it through a changing optical filter F.

このフィルタFとしては、例えば第4図に示すように、
得ようとするエネルギー分布の段数に応じたフィルタ枚
数のフィルタ板f(f、、f2 ・・・・)の積層によ
って構成し得る。例えば、令書3図に示した左右対称の
7段階のエネルギー分布を得ようとする場合は、第4図
に示すように、スポット幅Ws に対応する幅(直径)
Wl の高光透過率部り、を中心部に有し、両側若しく
は周辺が低光透過率部b1 を有するフィルタ板f、と
、その高光透過率部h1 の内縁から、第3図で示した
第1段のエネルギーE、のステップ幅に対応する幅だけ
内方に突出する高光透過率部り、を有しその両側若しく
は周辺が低光透過率部す、を有するフィルタ板f2 と
、順次各段のステップ幅に対応する幅だけ内方に突出す
る高光透過率部り、・・・・hl を有しその両側若し
くは周辺に低光透過率部す、・・・・b、を有するフィ
ルタf、・・・・f、とを積層した光学フィルタFを用
い得る。この光学フィルタFのフィルタ板「1〜f、の
各低光通過率部b1゜b2.b、・・・・bl は、そ
れぞれその透過率を例えば93%に選定する。このフィ
ルタFに、アニール用の所要のエネルギーの光ビームL
例えはXeC1’エキシマ−レーザー光を透過させれば
、フィルタFの透過後のスポットに、第3図に示した段
階的エネルギー分布を得ることができる。
As this filter F, for example, as shown in FIG.
It can be constructed by laminating filter plates f (f,, f2 . . . ) in a number corresponding to the number of stages of energy distribution to be obtained. For example, when trying to obtain a symmetrical seven-stage energy distribution shown in Figure 3 of the Ordinance, as shown in Figure 4, the width (diameter) corresponding to the spot width Ws is
From the inner edge of the high light transmittance part h1, there is a filter plate f having a high light transmittance part b1 in the center and a low light transmittance part b1 on both sides or the periphery. A filter plate f2 having a high light transmittance part protruding inward by a width corresponding to the step width of the energy E of one stage, and a filter plate f2 having a low light transmittance part on both sides or the periphery of the filter plate f2, A filter f having a high light transmittance portion protruding inward by a width corresponding to the step width, and having a low light transmittance portion on both sides or around the high light transmittance portion, b, . The transmittance of each of the low light transmittance parts b1, b2.b, . A light beam L of the required energy for
For example, if XeC1' excimer laser light is transmitted, the stepwise energy distribution shown in FIG. 3 can be obtained at the spot after passing through filter F.

このエネルギー分布を有するレーザービームを、第1図
で示した掃引パターンをもってその掃引速度を例えば5
mm/秒で掃引し、この掃引速度に比し充分小さい例え
ば30X10 ’secのパルス幅及びピッチを有する
パルスレーザ−光を照射した。このようにしてa−3i
:Hによる非晶質層(2)をアニールしたところ、水素
の噴出による結晶化の阻害、不均一性が回避され、良好
な結晶化がなされ、緻密で均一な結晶粒の生成がなされ
た良好なキャリアの移動度の高い多結晶S1層が得られ
た。このSi 層に対して電界効果トランジスタを作製
したいわゆる薄膜トランジスタTPTの、そのドレイン
電圧V、をパラメータとするドレイ電圧!。
A laser beam having this energy distribution is used in the sweep pattern shown in FIG.
It was swept at a rate of mm/sec, and pulsed laser light having a pulse width and pitch of, for example, 30 x 10' sec, which was sufficiently small compared to this sweep speed, was irradiated. In this way a-3i
: When the amorphous layer (2) was annealed with H, inhibition of crystallization and non-uniformity due to hydrogen ejection was avoided, good crystallization was achieved, and dense and uniform crystal grains were formed. A polycrystalline S1 layer with high carrier mobility was obtained. A drain voltage using the drain voltage V of the so-called thin film transistor TPT, which is a field effect transistor fabricated from this Si layer, as a parameter! .

−ゲート電圧V6特性の測定結果は、第5図で示すよう
に優れた特性を示した。
- The measurement results of gate voltage V6 characteristics showed excellent characteristics as shown in FIG.

尚、上述した例では光ビームのエネルギーを段階的分布
とした場合であるが、ある場合は、連続的に変化する分
布とすることもできる。
In the above example, the energy of the light beam is distributed in stages, but in some cases, the energy of the light beam may be distributed in a continuously changing manner.

また上述した例では、a−3i:Hの非晶質層(2)に
対する結晶化のアニールに本発明を適用した場合である
が、そのほか同様に水素等の揮発性物質を含むシリコン
ゲルマニウム、シリコンカーバイトの各非晶質層の結晶
化、或いは微結晶シリコン層等の微結晶多結層の再結晶
化アニール等の各種アニールに本発明を適用することが
できる。
In addition, in the above example, the present invention is applied to crystallization annealing for the a-3i:H amorphous layer (2), but in addition, silicon germanium, silicon, etc. containing volatile substances such as hydrogen, The present invention can be applied to various types of annealing such as crystallization of each amorphous layer of carbide or recrystallization annealing of a microcrystalline polycrystalline layer such as a microcrystalline silicon layer.

〔発明の効果〕〔Effect of the invention〕

上述の本発明方法によれば、被アニール体(1)側から
みて、そのアニールされるべき各位置で、光ビームスボ
ッ)Sの掃引につれ、そのエネルギー分布によって漸次
、段階的或いは連続的に各部において目的とする所要の
深さのアニールを行い得るエネルギーの大きさまで高め
られていくので、各位置で一回の掃引で漸次被アニール
体(1)中の揮発性物質の蒸発が進行することにより、
この揮発性物質の爆発的噴出が回避されて、アニール処
理による結晶化の不均一性率の結晶性の低下を回避でき
ると共に、従来における光ビームの多数回の繰返し掃引
を、1回または少数回にとどめることができ、作業時間
の短縮化、更に例えば光ビームのパルス照射によるとき
はそのパルス数の減少をはかることができる。
According to the above-mentioned method of the present invention, as the light beam (S) sweeps at each position to be annealed when viewed from the side of the object to be annealed (1), the energy distribution is applied to gradually, stepwise or continuously at each part. Since the energy is increased to a level that allows annealing to the desired depth, the volatile substances in the object to be annealed (1) gradually evaporate in one sweep at each position, thereby
This explosive ejection of volatile substances is avoided, thereby avoiding a decrease in the crystallinity of the crystallization non-uniformity rate due to the annealing process, and the conventional multiple repeated sweeps of the light beam can be replaced with one or a few times. This makes it possible to shorten the working time and further reduce the number of pulses when using pulsed light beam irradiation, for example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一例の光ビーム掃引の態様を示す
平面図、第2図はその側面図、第3図はその一例の光ビ
ームエネルギー分布図、第4図は光学フィルタの一例の
断面図、第5図は本発明方法を用いて得たTPTの■。 −■、特性曲線図、第6図は従来方法の説明図である。 (1)は被アニール体、Fは光学フィルタである。 代  理  人 伊藤 貞 同 松  隈  秀  盛 Sた【−4ス不グノト fe−ムアニールの一イ)すの平面図 第1図 S+引大薗 第3図 た仁゛−4アニー1L4−今・1のイ哄1虐已コ第2図 尤↑フィル7の@直+O 第4図
FIG. 1 is a plan view showing a mode of light beam sweeping in an example of the method of the present invention, FIG. 2 is a side view thereof, FIG. 3 is a light beam energy distribution diagram of the example, and FIG. 4 is an example of an optical filter. The cross-sectional view, FIG. 5, is ◯ of TPT obtained using the method of the present invention. -■, characteristic curve diagram; FIG. 6 is an explanatory diagram of the conventional method. (1) is a body to be annealed, and F is an optical filter. Deputy person Sadomatsu Ito Hide Mori I 哄 1 已 こ 2 尤↑Phil 7@Direct+O fig. 4

Claims (1)

【特許請求の範囲】 光ビームの掃引照射によりアニールを行う光ビームアニ
ーリング法において、 被アニール体上に、掃引照射する光ビームのスポットが
、上記掃引の先方側から後方側に向ってそのエネルギー
が上記被アニール体表面でのアニール効果が生じる程度
のエネルギーの大きさから所要の深さまでアニール効果
を生じ得るエネルギーの大きさまで段階的に或いは連続
的に大となるエネルギー分布を有するようにされたこと
を特徴とする光ビームアニーリング法。
[Claims] In a light beam annealing method in which annealing is performed by sweeping irradiation of a light beam, the spot of the light beam irradiated in a sweeping manner on the object to be annealed is such that its energy increases from the front side of the sweep toward the rear side. It has an energy distribution that increases stepwise or continuously from an energy level that causes an annealing effect on the surface of the object to be annealed to an energy level that can cause an annealing effect to a required depth. A light beam annealing method characterized by
JP63331343A 1988-12-28 1988-12-28 Light beam annealing equipment Expired - Fee Related JP2995736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63331343A JP2995736B2 (en) 1988-12-28 1988-12-28 Light beam annealing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63331343A JP2995736B2 (en) 1988-12-28 1988-12-28 Light beam annealing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP409898A Division JPH10163109A (en) 1998-01-12 1998-01-12 Light beam annealing method

Publications (2)

Publication Number Publication Date
JPH02177422A true JPH02177422A (en) 1990-07-10
JP2995736B2 JP2995736B2 (en) 1999-12-27

Family

ID=18242623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63331343A Expired - Fee Related JP2995736B2 (en) 1988-12-28 1988-12-28 Light beam annealing equipment

Country Status (1)

Country Link
JP (1) JP2995736B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194023B1 (en) 1997-09-25 2001-02-27 Kabushiki Kaisha Toshiba Method of manufacturing a poly-crystalline silicon film
US6210996B1 (en) 1995-01-13 2001-04-03 Semiconductor Energy Laboratory Co., Ltd. Laser illumination system
US6323069B1 (en) 1992-03-25 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor using light irradiation to form impurity regions
US6373870B1 (en) 1996-02-13 2002-04-16 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and laser irradiation method
JP2003273018A (en) * 2002-03-13 2003-09-26 Sharp Corp Method of manufacturing semiconductor crystal layer, laser irradiation method, multi-pattern mask, and laser irradiation system
US6638800B1 (en) 1992-11-06 2003-10-28 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus and laser processing process
US6919533B2 (en) 1995-05-31 2005-07-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a display device including irradiating overlapping regions
JP2007207896A (en) * 2006-01-31 2007-08-16 Sharp Corp Laser beam projection mask, laser processing method using same, laser processing apparatus
US7714251B2 (en) 2005-11-23 2010-05-11 Semiconductor Energy Laboratory Co., Ltd Laser irradiation apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198625A (en) * 1981-06-01 1982-12-06 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198625A (en) * 1981-06-01 1982-12-06 Fujitsu Ltd Manufacture of semiconductor device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569724B2 (en) 1992-03-25 2003-05-27 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect transistor and method for forming the same
US6887746B2 (en) 1992-03-25 2005-05-03 Semiconductor Energy Lab Insulated gate field effect transistor and method for forming the same
US6323069B1 (en) 1992-03-25 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor using light irradiation to form impurity regions
US6638800B1 (en) 1992-11-06 2003-10-28 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus and laser processing process
US6706570B2 (en) 1995-01-13 2004-03-16 Semiconductor Energy Laboratory Co., Ltd., Laser illumination system
US7528079B2 (en) 1995-01-13 2009-05-05 Semiconductor Energy Laboratory Co., Ltd. Method of changing an energy attenuation factor of a linear light in order to crystallize a semiconductor film
US6468842B2 (en) 1995-01-13 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Laser illumination system
US6784030B2 (en) 1995-01-13 2004-08-31 Semiconductor Energy Laboratory Co., Ltd. Laser illumination system
US6210996B1 (en) 1995-01-13 2001-04-03 Semiconductor Energy Laboratory Co., Ltd. Laser illumination system
US7223938B2 (en) 1995-05-31 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a display device including irradiating overlapping regions
US8835801B2 (en) 1995-05-31 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Laser processing method
US6982396B2 (en) 1995-05-31 2006-01-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a display device including irradiating overlapping regions
US6919533B2 (en) 1995-05-31 2005-07-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a display device including irradiating overlapping regions
US6558991B2 (en) 1996-02-13 2003-05-06 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and laser irradiation method
US6373870B1 (en) 1996-02-13 2002-04-16 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and laser irradiation method
US6194023B1 (en) 1997-09-25 2001-02-27 Kabushiki Kaisha Toshiba Method of manufacturing a poly-crystalline silicon film
JP2003273018A (en) * 2002-03-13 2003-09-26 Sharp Corp Method of manufacturing semiconductor crystal layer, laser irradiation method, multi-pattern mask, and laser irradiation system
JP4518369B2 (en) * 2002-03-13 2010-08-04 シャープ株式会社 Semiconductor crystal layer manufacturing method, laser irradiation method, multi-pattern mask, and laser irradiation system
US7714251B2 (en) 2005-11-23 2010-05-11 Semiconductor Energy Laboratory Co., Ltd Laser irradiation apparatus
JP2007207896A (en) * 2006-01-31 2007-08-16 Sharp Corp Laser beam projection mask, laser processing method using same, laser processing apparatus

Also Published As

Publication number Publication date
JP2995736B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US8598588B2 (en) Systems and methods for processing a film, and thin films
US6495405B2 (en) Method of optimizing channel characteristics using laterally-crystallized ELA poly-Si films
EP1748471B1 (en) Laser heat treatment apparatus
KR100364944B1 (en) Method of forming a semiconductor thin film
US6169014B1 (en) Laser crystallization of thin films
US7259081B2 (en) Process and system for laser crystallization processing of film regions on a substrate to provide substantial uniformity, and a structure of such film regions
JP3254072B2 (en) Method for manufacturing semiconductor device
JP2001110743A (en) Semiconductor device and manufacturing method therefor
US20060054077A1 (en) Pulse sequencing lateral growth method
US9087696B2 (en) Systems and methods for non-periodic pulse partial melt film processing
US6686978B2 (en) Method of forming an LCD with predominantly <100> polycrystalline silicon regions
US20020102821A1 (en) Mask pattern design to improve quality uniformity in lateral laser crystallized poly-Si films
JPH02177422A (en) Light beam annealing
JP2002261015A (en) Semiconductor thin film, method of manufacturing it, manufacturing device, semiconductor element and method of manufacturing it
US20040087116A1 (en) Semiconductor devices and methods of manufacture thereof
US5795816A (en) Method of fabricating semiconductor device
JP2603418B2 (en) Method for manufacturing polycrystalline semiconductor thin film
WO2004040628A1 (en) Process for producing polycrystalline film using laser and polycrystalline film
KR100611040B1 (en) Apparutus for thermal treatment using laser
US20040084679A1 (en) Semiconductor devices and methods of manufacture thereof
JPH10163109A (en) Light beam annealing method
JPS6325913A (en) Manufacuture of semiconductor thin film
JP2001210591A (en) Laser irradiation apparatus and laser irradiation method
KR100575235B1 (en) Optical system using laser and crystallization method using thereof
JPS63168021A (en) Polycrystalline sige thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees