JPH0217678A - Element structure of infrared detector and manufacture thereof - Google Patents
Element structure of infrared detector and manufacture thereofInfo
- Publication number
- JPH0217678A JPH0217678A JP63166793A JP16679388A JPH0217678A JP H0217678 A JPH0217678 A JP H0217678A JP 63166793 A JP63166793 A JP 63166793A JP 16679388 A JP16679388 A JP 16679388A JP H0217678 A JPH0217678 A JP H0217678A
- Authority
- JP
- Japan
- Prior art keywords
- bonding pad
- compound semiconductor
- semiconductor crystal
- electrode wiring
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000004065 semiconductor Substances 0.000 claims abstract description 38
- 150000001875 compounds Chemical class 0.000 claims abstract description 31
- 239000013078 crystal Substances 0.000 claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 238000010030 laminating Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 abstract description 4
- 230000001070 adhesive effect Effects 0.000 abstract description 4
- 238000007743 anodising Methods 0.000 abstract 1
- 230000002950 deficient Effects 0.000 abstract 1
- 238000007493 shaping process Methods 0.000 abstract 1
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 5
- 239000010980 sapphire Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 4
- 239000010407 anodic oxide Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 229910004262 HgTe Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- MCMSPRNYOJJPIZ-UHFFFAOYSA-N cadmium;mercury;tellurium Chemical compound [Cd]=[Te]=[Hg] MCMSPRNYOJJPIZ-UHFFFAOYSA-N 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
概要
赤外線検知素子の素子構造及び製造方法に関し、断線す
る恐れの少ない電極配線を有し、更に素子製造プロセス
を簡素化した赤外線検知素子の素子構造及び製造方法を
提供することを目的とし、受光部、電極配線及びボンデ
ィングパッド部を有する化合物半導体結晶を用いた赤外
線検知素子の素子構造において、ボンディングパッド部
ヲ基板に接着された化合物半導体結晶上にバッファ層及
び金属層を積層して形成するとともに、電極配線をボン
ディングパッド部の金属層と同一金属で該金属層に連続
して化合物半導体結晶上に形成して構成する。DETAILED DESCRIPTION OF THE INVENTION Overview Regarding the element structure and manufacturing method of an infrared sensing element, an element structure and manufacturing method of an infrared sensing element which has electrode wiring with less risk of disconnection and further simplifies the element manufacturing process is provided. For this purpose, in an element structure of an infrared sensing element using a compound semiconductor crystal having a light receiving part, an electrode wiring, and a bonding pad part, a buffer layer and a metal layer are placed on the compound semiconductor crystal bonded to the bonding pad part. The electrode wiring is formed by laminating the same metal as the metal layer of the bonding pad portion, and is formed continuously from the metal layer on the compound semiconductor crystal.
産業上の利用分野
本発明は赤外線検知素子の素子構造及び製造方法に関す
る。INDUSTRIAL APPLICATION FIELD The present invention relates to an element structure and manufacturing method of an infrared sensing element.
赤外線センサには、焦電素子、サーモバイル等を用いた
熱型センサと半導体を利用した光電効果型(量子型)セ
ンサがある。一般に熱型センサでは感度の波長依存性は
無いが、感度が低く応答速度も遅いのでリアルタイムの
赤外線センサとしては不向きである。一方、光電効果型
センサは感度が高く、応答速度も速いが、素子の液体窒
素温度での冷却が必要である。光電効果型赤外線センサ
は、光導電型、光起電力型、MIS型に分類される。こ
のうち光導電型センサは、光照射時の抵抗変化を利用す
るもので、テルル化カドミウム水銀(HgCdTe)や
Pb5SPbSeなどの真性半導体を用いるものと、S
i : In5S+ :Ga。Infrared sensors include thermal type sensors using pyroelectric elements, thermomobiles, etc., and photoelectric effect type (quantum type) sensors using semiconductors. In general, thermal sensors have no wavelength dependence in sensitivity, but their low sensitivity and slow response speed make them unsuitable as real-time infrared sensors. On the other hand, photoelectric effect sensors have high sensitivity and fast response speed, but require cooling of the device to liquid nitrogen temperature. Photoelectric effect type infrared sensors are classified into photoconductive type, photovoltaic type, and MIS type. Among these, photoconductive sensors utilize resistance changes during light irradiation, and include those that use intrinsic semiconductors such as cadmium mercury telluride (HgCdTe) and Pb5SPbSe, and those that use intrinsic semiconductors such as S
i: In5S+:Ga.
Ge :Hg5Ge :Auなどのように不純物をドー
プした外因性半導体を用いるものがある。Some use extrinsic semiconductors doped with impurities, such as Ge:Hg5Ge:Au.
又赤外線による計測では、目標物体に接触することなく
物体の存在、形状、温度、組成などを知ることが重要で
あり、赤外線センサは人工衛星による気象観測、防犯、
防災、地質・資源調査、赤外線サーモグラフィによる医
療用等に用いられている。この目的のためには、波長2
〜15μm領域での赤外線センサの開発が重要となる。In addition, in infrared measurement, it is important to know the existence, shape, temperature, composition, etc. of a target object without touching it, and infrared sensors are used for meteorological observation by artificial satellites, crime prevention,
It is used for disaster prevention, geological and resource surveys, and medical purposes using infrared thermography. For this purpose, wavelength 2
The development of infrared sensors in the ~15 μm region is important.
かつてInSbよりも長い波長のセンサにはGe:Hg
などの外因性半導体が用いられていたが、最近ではHg
CdTeセンサが大きな注目を集めている。In the past, Ge:Hg was used as a sensor with a longer wavelength than InSb.
Extrinsic semiconductors such as Hg
CdTe sensors are attracting a lot of attention.
HgCdTeは半導体のCdTeと半金属のHgTeの
混晶であり、その組成を制御することにより波長2〜1
5μmの範囲で自由に分光感度特性を選ぶことが可能に
なる。そこで半導体としてHgCdTe等の化合物半導
体結晶を用いた、電極部の断線等を起こすことの無い信
頼性の高い赤外線検知素子の素子構造が要望されている
。HgCdTe is a mixed crystal of semiconductor CdTe and semimetal HgTe, and by controlling its composition, wavelengths of 2 to 1
It becomes possible to freely select spectral sensitivity characteristics within the range of 5 μm. Therefore, there is a need for a highly reliable infrared sensing element structure that uses a compound semiconductor crystal such as HgCdTe as a semiconductor and does not cause disconnection of the electrode portion.
従来の技術
第5図は従来の赤外線検知素子の素子構造断面図を示し
ている。1はサファイヤ基板であり、このサファイヤ基
板1上にHgCdTe等の化合物半導体結晶2が接着剤
3によりストライブ状に接着されている。4は赤外線受
光部であり、電極配線6を両側から形成して受光部4の
幅を規制している。電極配線6は例えばIn、、A、u
等の金属から形成されており、化合物半導体結晶2の段
差部2aに沿ってサファイヤ基板1まで伸長しており、
サファイヤ基板1上に形成されたボンディングパッド部
8に接続されている。ボンディングパッド部8はCr、
AIを積層して構成されており、このボンディングパッ
ド部8に信号取り出し用のボンディングワイヤが超音波
ボンディングによりボンディングされている。BACKGROUND OF THE INVENTION FIG. 5 shows a sectional view of the structure of a conventional infrared sensing element. Reference numeral 1 denotes a sapphire substrate, on which a compound semiconductor crystal 2 such as HgCdTe is adhered in the form of a stripe with an adhesive 3. As shown in FIG. Reference numeral 4 denotes an infrared light receiving section, and the width of the light receiving section 4 is regulated by forming electrode wiring 6 on both sides. The electrode wiring 6 is made of, for example, In, A, u
The sapphire substrate 1 is formed from a metal such as, and extends along the stepped portion 2a of the compound semiconductor crystal 2 to the sapphire substrate 1.
It is connected to a bonding pad section 8 formed on the sapphire substrate 1. The bonding pad portion 8 is made of Cr,
It is constructed by laminating AI, and a bonding wire for signal extraction is bonded to this bonding pad portion 8 by ultrasonic bonding.
発明が解決しようとする課題
しかし上述したような素子構造では、化合物半導体結晶
の段差部で電極の断線を生じる恐れがあり、また製造プ
ロセスでのバターニング回数が多く、製造プロセスが複
雑になるという問題があった。更に電極配線とボンディ
ングパッド部とを異種金属から形成していたため、コン
タクト不良を生じやすいとともに熱的反応により合金化
を生じ、コンタクト抵抗を増大させるという問題があっ
た。Problems to be Solved by the Invention However, with the device structure described above, there is a risk of electrode disconnection at the stepped portion of the compound semiconductor crystal, and the manufacturing process is complicated due to the large number of patterning steps. There was a problem. Furthermore, since the electrode wiring and the bonding pad portion are made of different metals, there are problems in that contact failure is likely to occur and alloying occurs due to thermal reaction, increasing contact resistance.
本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、断線する恐れの少ない電極配線
を有し、更に素子製造プロセスを簡素化した赤外線検知
素子の素子構造及び製造方法を提供することである。The present invention has been made in view of these points, and its purpose is to provide an element structure and manufacturing method for an infrared sensing element that has electrode wiring that is less likely to be disconnected and further simplifies the element manufacturing process. The purpose is to provide a method.
課題を解決するための手段 第1図は本発明の素子構造の原理図を示している。Means to solve problems FIG. 1 shows a principle diagram of the device structure of the present invention.
12は基板10上に接着剤13により接着された化合物
半導体結晶であり、この化合物半導体結晶12上に受光
部14及びボンディングパッド部16を形成する。ボン
ディングパッド部16は、化合物半導体結晶12の陽極
酸化膜24上にバッファ層26を形成し、このバッファ
層26上に金属層28を積層して構成される。更に、電
極配線30をボンディングパッド部16の金属層28と
同一金属で該金属層に連続して化合物半導体装置12上
に形成する。A compound semiconductor crystal 12 is bonded onto the substrate 10 with an adhesive 13, and a light receiving section 14 and a bonding pad section 16 are formed on this compound semiconductor crystal 12. The bonding pad portion 16 is constructed by forming a buffer layer 26 on the anodic oxide film 24 of the compound semiconductor crystal 12, and laminating a metal layer 28 on the buffer layer 26. Further, an electrode wiring 30 is formed of the same metal as the metal layer 28 of the bonding pad section 16 and continuous to the metal layer on the compound semiconductor device 12.
製造方法としては、バッファ層26をメタルマスクを用
いて形成し、このバッファ層26上及び化合物半導体結
晶12上に、ボンディングパッド部16の金属層28及
び電極配線30をリフトオフ法により形成する。As a manufacturing method, the buffer layer 26 is formed using a metal mask, and the metal layer 28 and electrode wiring 30 of the bonding pad section 16 are formed on the buffer layer 26 and the compound semiconductor crystal 12 by a lift-off method.
作 用
ボンディングパッド部16の金属層28をバッファ層2
8を介して化合物半導体結晶12上に形成しているので
、信号取り出し用のボンディングワイヤを超音波ボンデ
ィングによりボンディングパッド部16の金属層28に
取り付けても、超音波がバッファ層26で吸収されるた
め、化合物半導体結晶12が破壊されることは無い。ま
た、ボンディングパッド部16を化合物半導体結晶12
上に形成しているため、電極配線30を従来構造のよう
に段差に沿って形成する必要が無く、電極配線の断線を
防止することができる。更に、電極配線30をボンディ
ングパッド部16の金属層28と同一金属で該金属層に
連続して形成しているため、ボンディングパッド部と電
極配線とのコンタクト不良を完全に防止できる。Function: The metal layer 28 of the bonding pad portion 16 is replaced with the buffer layer 2.
Since it is formed on the compound semiconductor crystal 12 via the buffer layer 8, even if a bonding wire for signal extraction is attached to the metal layer 28 of the bonding pad portion 16 by ultrasonic bonding, the ultrasonic wave is absorbed by the buffer layer 26. Therefore, the compound semiconductor crystal 12 is not destroyed. Further, the bonding pad portion 16 is connected to the compound semiconductor crystal 12.
Since the electrode wiring 30 is formed above, there is no need to form the electrode wiring 30 along the step unlike in the conventional structure, and disconnection of the electrode wiring can be prevented. Furthermore, since the electrode wiring 30 is made of the same metal as the metal layer 28 of the bonding pad portion 16 and is formed continuously thereto, contact failure between the bonding pad portion and the electrode wiring can be completely prevented.
実 施 例 以下本発明の実施例を図面に基づいて詳細に説明する。Example Embodiments of the present invention will be described in detail below based on the drawings.
第2図は本発明実施例の斜視図を示しており、サファイ
ヤ基板10上にはHgCdTe等の化合物半導体結晶1
2がストライプ状に接着剤により接着されている。化合
物半導体結晶12の一端にはアースに接続する共通アー
スパッド部11が設けられており、他端にはボンディン
グワイヤを接続して信号を取り出すボンディングパッド
部16が設けられている。ボンディングパッド部16は
互い違いになるように設けられている。FIG. 2 shows a perspective view of an embodiment of the present invention, in which a compound semiconductor crystal 1 such as HgCdTe is placed on a sapphire substrate 10.
2 are glued together in stripes with adhesive. A common ground pad section 11 connected to the ground is provided at one end of the compound semiconductor crystal 12, and a bonding pad section 16 is provided at the other end to which a bonding wire is connected to extract a signal. The bonding pad portions 16 are provided alternately.
第3図は第2図のI−III線断面図、第4図は第2図
のIV−IV線断面図であり、以下第3図及び第4図を
参照して本実施例の素子構造について説明する。3 is a sectional view taken along the line I-III in FIG. 2, and FIG. 4 is a sectional view taken along the line IV-IV in FIG. I will explain about it.
化合物半導体結晶12上には受光部14及びボンディン
グパッド部16が設けられている。A light receiving section 14 and a bonding pad section 16 are provided on the compound semiconductor crystal 12.
ボンディングパッド部16には化合物半導体結晶12の
陽極酸化膜24が形成されており、その上に超音波ボン
ディング時の衝撃を吸収するためのバッファ層の役目を
するZnS膜26がメタルマスクを用いて蒸着されてい
る。ZnSnS膜上6上膜厚500Å以下のCr膜32
が積層されている。このCr膜32は化合物半導体結晶
12上にも連続して形成されて奢り、電極配線30の下
地を構成している。Cr膜32上には膜厚1500Å以
下のNi膜膜種4積層されており、このNl膜34も電
極配線30の一部を構成するように延設されている。更
にNi膜34上には膜厚8000Å以下のAu膜36が
積層されており、ボンディングパッド部16の最上層を
構成している。An anodic oxide film 24 of the compound semiconductor crystal 12 is formed on the bonding pad portion 16, and a ZnS film 26, which serves as a buffer layer to absorb shock during ultrasonic bonding, is formed on the anodic oxide film 24 using a metal mask. It is vapor deposited. Cr film 32 with a thickness of 500 Å or less on the ZnSnS film 6
are layered. This Cr film 32 is also continuously formed on the compound semiconductor crystal 12 and forms the base of the electrode wiring 30. On the Cr film 32, four kinds of Ni films each having a thickness of 1500 Å or less are laminated, and this Nl film 34 is also extended so as to constitute a part of the electrode wiring 30. Further, an Au film 36 having a thickness of 8000 Å or less is laminated on the Ni film 34, and constitutes the uppermost layer of the bonding pad portion 16.
Au膜36も電極配線30の最上層を構成するように延
設されている。The Au film 36 is also extended to form the uppermost layer of the electrode wiring 30.
Cr膜32、Ni膜膜種4Au膜36はポジレジストを
用いたリフトオフ法により形成する。ポジレジストを用
いるのはアセトン等の有機溶剤により容易に形成(リフ
トオフ)できるためである。The Cr film 32, Ni film type 4, and Au film 36 are formed by a lift-off method using a positive resist. The reason why a positive resist is used is that it can be easily formed (lifted off) using an organic solvent such as acetone.
Cr膜32は上部のNi膜膜種4の密着を良くするため
に設けられており、Ni膜膜種4上部のAU膜36の密
着を良くするため及びボンディングを容易にするために
設けられており、最上層のAU膜36はボンディングを
容易にするために設けられている。The Cr film 32 is provided to improve the adhesion of the upper Ni film type 4, and is provided to improve the adhesion of the AU film 36 on the upper part of the Ni film type 4 and to facilitate bonding. The top layer AU film 36 is provided to facilitate bonding.
上述した素子構造で超音波ボンディングを行ったところ
、ボンディング歩留り95%以上、ボンディング強度4
〜5gが得られ、充分実用に耐え得るものであった。When ultrasonic bonding was performed on the above-mentioned element structure, the bonding yield was 95% or more, and the bonding strength was 4.
~5 g was obtained, which was sufficient for practical use.
発明の効果
本発明の素子構造は以上詳述したように、化合物半導体
上にボンディングパッド部を形成したので、従来構造の
ように電極配線部に大きな段差部が生じることが無く、
電極配線部の断線を有効に防止できるという効果を奏す
る。またボンディングパッド部の金属層と同一金属で電
極配線部を形成しているため、ボンディングパッド部と
電極配線部との間でコンタクト不良、コンタクト抵抗等
を生じることが無い。更に、製造プロセスが平面上で行
われるため、プロセスを簡素化できるという効果もある
。Effects of the Invention As described in detail above, in the device structure of the present invention, the bonding pad portion is formed on the compound semiconductor, so unlike the conventional structure, large step portions do not occur in the electrode wiring portion.
This has the effect of effectively preventing disconnection of the electrode wiring portion. Further, since the electrode wiring portion is formed of the same metal as the metal layer of the bonding pad portion, contact failure, contact resistance, etc. will not occur between the bonding pad portion and the electrode wiring portion. Furthermore, since the manufacturing process is performed on a flat surface, there is an advantage that the process can be simplified.
第1図は本発明方法の原理図、
第2図は本発明一実施例の斜視図、
第3図は第2図の■−■線断面図、
第4図は第2図のI’V−1’V線断面図、第5図は従
来例断面図である。
0・・・基板、 12・・・化合物半導体結晶、4
・・・受光部、 16・・・ボンディングパッド部、
8.24・・・陽極酸化膜、
0・・・ZnS反射防止膜、
2・・・遮光膜、 26・・・バッファ層、8・・・金
属層、 30・・・電極配線。
う【 姥 イグリ 余ヰ ヨを貝−βn第2図
苓扱
化争オ勿半尊イ番辛ケ^
受尤#下
オ、゛ンナ“−イ・ンク゛r得トJ
\゛・ファ漕
4ヒA1
電稜配I!L
ネ 姶 ヨ月 の刃−理 図
第1図
12・化腎特牛厚俸惇昆
14、命尤(T
16 方パンラ′インク゛IX’・ド1シ“下26
・ ZnS 月爽
3o:電極層↑良
環2図/)N−IS7線町面図
第4図Figure 1 is a principle diagram of the method of the present invention, Figure 2 is a perspective view of an embodiment of the present invention, Figure 3 is a sectional view taken along the line ■-■ in Figure 2, and Figure 4 is I'V in Figure 2. A sectional view taken along the line -1'V, and FIG. 5 is a sectional view of a conventional example. 0...Substrate, 12...Compound semiconductor crystal, 4
... Light receiving part, 16... Bonding pad part,
8.24... Anodized film, 0... ZnS antireflection film, 2... Light shielding film, 26... Buffer layer, 8... Metal layer, 30... Electrode wiring. U [ 入 Igri Yui Yo wo shell - βn 2nd figure 蓓 treated as a dispute O, of course, it's hard ke ^ Received # lower O, ゛ nna `` - I Nk ゛ r to get J \゛ Fa row 4 hiA1 Electric ridge arrangement I!L ne 姶 YO月の Blade-ri Figure 1 Figure 12・Kaneki Tokugyu Atsushi Junkon 14, Life (T 16 Way Panra'Ink゛IX'・Do1shi"Bottom 26
・ZnS Tsukisou 3o: Electrode layer ↑ Ryokan 2 Figure/) N-IS7 line town map Figure 4
Claims (2)
ングパッド部(16)を有する化合物半導体結晶を用い
た赤外線検知素子の素子構造において、ボンディングパ
ッド部(16)を基板(10)に接着された化合物半導
体結晶(12)上にバッファ層(26)及び金属層(2
8)を積層して形成するとともに、電極配線(30)を
ボンディングパッド部(16)の金属層(28)と同一
金属で該金属層に連続して化合物半導体結晶(12)上
に形成したことを特徴とする赤外線検知素子の素子構造
。(1) In the element structure of an infrared sensing element using a compound semiconductor crystal having a light receiving part (14), an electrode wiring (30) and a bonding pad part (16), the bonding pad part (16) is bonded to the substrate (10). A buffer layer (26) and a metal layer (2) are formed on the compound semiconductor crystal (12).
8) is formed by laminating them, and the electrode wiring (30) is made of the same metal as the metal layer (28) of the bonding pad portion (16) and is formed continuously on the compound semiconductor crystal (12). An element structure of an infrared sensing element characterized by:
2)上にメタルマスクを用いてバッファ層(26)を形
成し、 該バッファ層(26)上及び化合物半導体結晶(12)
上にボンディングパッド部(16)の金属層(28)及
び電極配線(30)をリフトオフ法により形成すること
を特徴とする請求項1記載の赤外線検知素子の製造方法
。(2) Compound semiconductor crystal (1) adhered to the substrate (10)
2) Form a buffer layer (26) using a metal mask on the buffer layer (26) and the compound semiconductor crystal (12).
2. The method of manufacturing an infrared sensing element according to claim 1, wherein the metal layer (28) of the bonding pad portion (16) and the electrode wiring (30) are formed thereon by a lift-off method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63166793A JPH0738450B2 (en) | 1988-07-06 | 1988-07-06 | Element structure of infrared detection element and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63166793A JPH0738450B2 (en) | 1988-07-06 | 1988-07-06 | Element structure of infrared detection element and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0217678A true JPH0217678A (en) | 1990-01-22 |
JPH0738450B2 JPH0738450B2 (en) | 1995-04-26 |
Family
ID=15837777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63166793A Expired - Lifetime JPH0738450B2 (en) | 1988-07-06 | 1988-07-06 | Element structure of infrared detection element and manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0738450B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6873025B2 (en) * | 2000-10-31 | 2005-03-29 | Sharp Kabushiki Kaisha | Photodiode device including window defined in passivation layer for removing electrostatic charge |
-
1988
- 1988-07-06 JP JP63166793A patent/JPH0738450B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6873025B2 (en) * | 2000-10-31 | 2005-03-29 | Sharp Kabushiki Kaisha | Photodiode device including window defined in passivation layer for removing electrostatic charge |
Also Published As
Publication number | Publication date |
---|---|
JPH0738450B2 (en) | 1995-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5567975A (en) | Group II-VI radiation detector for simultaneous visible and IR detection | |
US5367167A (en) | Uncooled infrared detector and method for forming the same | |
US6215123B1 (en) | Forming contacts on semiconductor substrates, radiation detectors and imaging devices | |
JPH027417B2 (en) | ||
US20210391505A1 (en) | Semiconductor device | |
JPH0671097B2 (en) | Color sensor | |
JPS62160776A (en) | Photovoltage detector and manufacture of the same | |
JPH0217678A (en) | Element structure of infrared detector and manufacture thereof | |
CN112768598B (en) | Infrared pyroelectric detector and preparation method thereof | |
JPH0712089B2 (en) | Infrared sensor and infrared camera including the infrared sensor | |
JPS5813034B2 (en) | semiconductor radiation detector | |
JPS6015005B2 (en) | Photovoltaic infrared sensing element | |
JPS6222405B2 (en) | ||
JPS6314873B2 (en) | ||
JPS6011810B2 (en) | semiconductor equipment | |
CN118281104A (en) | Tellurium-cadmium-mercury photodiode structure absorbed by resonant cavity | |
JPS6140148B2 (en) | ||
JPH0454969B2 (en) | ||
JPH0321078A (en) | Infrared ray detector device | |
JPH03122533A (en) | Photodetecting apparatus | |
JPH07106622A (en) | Semiconductor light receiving device and fabrication thereof | |
JPS63305568A (en) | Photodetector | |
JPH03276683A (en) | Photoelectric conversion element and photovoltaic device | |
JP2005191440A (en) | Wide energy range radiation detector and manufacturing method therefor | |
JPH03122534A (en) | Photodetecting apparatus |