JPH02176540A - Detecting device for wear of tool - Google Patents

Detecting device for wear of tool

Info

Publication number
JPH02176540A
JPH02176540A JP33267588A JP33267588A JPH02176540A JP H02176540 A JPH02176540 A JP H02176540A JP 33267588 A JP33267588 A JP 33267588A JP 33267588 A JP33267588 A JP 33267588A JP H02176540 A JPH02176540 A JP H02176540A
Authority
JP
Japan
Prior art keywords
pressure
wear
grindstone
tool
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33267588A
Other languages
Japanese (ja)
Inventor
Noboru Nagase
長瀬 登
Masao Yamaguchi
政男 山口
Noritaka Noguchi
典孝 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Iron Works Co Ltd
Original Assignee
Nagase Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Iron Works Co Ltd filed Critical Nagase Iron Works Co Ltd
Priority to JP33267588A priority Critical patent/JPH02176540A/en
Publication of JPH02176540A publication Critical patent/JPH02176540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

PURPOSE:To detect the abrasion of a grinding wheel in an early stage and to prevent in advance the working executed by a defective tool by detecting hydraulic pressure of a static pressure guide part for moving relatively a tool and a work, and deciding the wear amt. of the tool, based thereon. CONSTITUTION:When a grinding wheel 8 is worn out and becomes blunt, as a working resistance increases and decreases, hydraulic pressure of pockets 13 - 17 being static pressure guide parts to which this resistance is applied is also varied. Also, a deciding means decides the wear amt. of the wheel 8, based on the hydraulic pressure of the pockets 13 - 17 detected by pressure sensors 22, 24 and 25 being pressure detecting means. That is, when the wheel 8 is worn out and becomes blunt, main component force of the working resistance decreases and back component force increases. Also, as the main component force decreases, hydraulic pressure of the pocket 13 to which this force is applied decreases or increases, and as the back component force increases, hydraulic pressure of the pockets 14 - 17 to which this force is applied increases or decreases. Moreover, the deciding means decides the wear amt. of the wheel 8, based on the hydraulic pressure of the pocket 13 detected by the sensor 22, and the hydraulic pressure of the pockets 14 - 17 detected by the sensors 24, 25.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は工具の摩耗検出装置に関するものである。 [従来の技術] 一般に、加工機における工具の異常、例えば、フライス
のような切削工具においては摩耗やチッピング、砥石の
ような研削工具においては摩耗や目づまり、目こぼれ(
以下、まとめて摩耗という)が生じたときには、ワーク
加工面に悪影響を与える。従来、作業者は工具の摩耗を
加工後のワークに基いて判断しており、例えば、研削砥
石の場合にはワーク加工面の荒れや研削焼は等が生じた
とき、或いは研削時の切込み量に対して実際のワークの
寸法変化が少ないとき等に砥石が摩耗したと判断し、ド
レッシングを実施したり砥石を交換したりしている。 [発明が解決しようとする1!!題] ところが、上記したように砥石の摩耗量を判断するには
相当の熟練を要するばかりでなく、ワークの加工面に悪
影響を与える程度に砥石の摩耗が進行しないと摩耗を判
断することができない。このため作業者がその状態を把
握して対処するときには、すでに摩耗が進行した砥石で
かなりの量の研削を行なってしまっているという問題が
あり、これは研削砥石に限らずあらゆる加工工具にあて
はまる。 以上の問題は無人自動加工の場合に特に顕著に生じ、加
工工程が自動化されているにもかかわらず工具の摩耗を
自動的に管理することができないのが現状である。この
ため、完全な自動化、無人化を達成するためのインプロ
セス測定の開発が要望されている。 本発明の目的は、使用者に熟練を要求することなく工具
の摩耗を早期に検出でき、不良な工具で加工を行なうこ
とを未然に防ぐとともに、無人自動加工のためのインプ
ロセス測定にも対応することができる工具の摩耗検出装
置を提供することにある。 [課題を解決するための手段] 第一の発明は、加工機における工具とワークとを相対的
に移動させるための静圧案内部と接続され、同箇所の油
圧を検出する圧力検出手段と、前記圧力検出手段が示す
静圧案内部の油圧に基いて、工具の摩耗量を判定する判
定手段とを備えた工具の摩耗検出装置をその要旨とする
ものである。 第二の発明は、加工機における工具とワークとを相対的
に移動させるための静圧案内部の内、加工時に研削抵抗
の主分力が加わる第一の静圧案内部と接続され、同箇所
の油圧を検出する第一の圧力検出手段と、同じく加工機
の静圧案内部の内、加工時に研削抵抗の背分力が加わる
第二の静圧案内部と接続され、同箇所の油圧を検出する
第二の圧力検出手段と、前記第一の圧力検出手段が示す
第一の静圧案内部の油圧と、第二の圧力検出手段が示す
第二の静圧案内部の油圧とに基いて、工具の摩耗量を判
定する判定手段とを備えた工具の摩耗検出装置をその要
旨とするものである。 [作用] 工具が摩耗して切れ味が鈍ると、加工抵抗の増減に伴い
この抵抗が加わる静圧案内部の油圧も変化する。判定手
段は圧力検出手段にて検出された静圧案内部の油圧に基
いて工具の摩耗量を判定する。 工具が摩耗して切れ味が鈍ると、加工抵抗の主分力が減
少し背分力が増加する。主分力の減少に伴ってこの力が
加わる第一の静圧案内部の油圧は減少或いは増加し、背
分力の増加に従ってこのカが加わる第二の静圧案内部の
油圧は増加或いは減少する。判定手段は第一の圧力検出
手段にて検出された第一の静圧案内部の油圧と、第二の
圧力検出手段にて検出された第二の静圧案内部の油圧と
に基いて工具の摩耗量を判定する。 [実施例] 以下、この発明を研削盤の砥石を対象とした摩耗表示装
置に具体化した一実施例を図面に従って説明する。 第1図に示すように、研削盤のコラム1内を上下動し得
るスピンドル2には主軸ヘッド3が前方へ突出するよう
に設けられ、同主軸ヘッド3には軸受スリーブ4が嵌挿
されている。前記軸受スリーブ4に貫設された保持孔4
aには主軸5の大径部5aが回転可能に挿入され、同ス
リーブ4の前後に取着された前面及び後面カバー6.7
は前記大径部5aの両側に形成された段差部5bとそれ
ぞれ対向し、軸受スリーブ4に対する主軸5の軸方向の
移動を阻止してひる。前記主軸5の前端には工具として
の砥石8が装着され、後端はカップリング10を介して
前記スピンドル2に設けられた砥石駆動用のモータ9と
接続されている。 第1,2図に示すように、前記主軸5の外周と保持孔4
aの内周壁との間には静圧案内のために微細な間隙11
が形成され、この間隙11は主軸5の段差部5bと前面
カバー6及び後面カバー7との間にもそれぞれ形成され
ている。また、保持孔4aの前部及び後部にはその内周
壁の等分四箇所に静圧案内のための右側及び左側ポケッ
ト12゜13と上側及び下側ポケット14.15とがそ
れぞれ設けられるとともに、前面及び後面カバー6゜7
にも環状の前側及び後側ポケット16.17がそれぞれ
設けられている。 前記各ポケット12〜17には図示しないオイル供給路
とオイル回収路が接続され、オイルタンクの作動油はオ
イルポンプにてオイル供給路を介して各ポケット12〜
17内に圧送された後に、オイル回収路を介してオイル
タンクに回収されるようになっている。なお、前記右側
及び左側ポケット12.13を第一静圧案内部とし、上
側及び下側ポケット14.15と、前側及び後側ポケッ
ト16.17とをそれぞれ第二静圧案内部としている。 そして、各ポケット12〜17内に供給された作動油は
ポケット12〜17内を満すとともに前記各間隙11に
油膜を形成する。このため前記主軸5は軸受スリーブ4
の保持孔4a内にて油膜を介して保持されるとともに、
砥石駆動用のモータ9にて時計回りに回転されることと
なる。 前記保持孔4aの前部側にある右側、左側、上側及び下
側ポケット12〜15は油圧検出路18を介して軸受ス
リーブ4の鍔部外周に開口し、それぞれの開口部にはカ
プラ19が螺入されている。 そして、右側及び左側ポケット12.13と連通ずるカ
ブラ19にはそれぞれ第一の圧力検出手段としての右側
及び左側圧力センサ20.21が着脱可能に接続され、
上側及び下側ポケット14゜15と連通するカプラ19
にはそれぞれ第二の圧力検出手段としての上側及び下側
圧力センサ22゜23が着脱可能に接続され、それぞれ
のポケット12〜15内の油圧を検出するようになって
いる。 また、前記前側ポケット16は油圧検出路18を介して
前面カバー6の外周に開口し、後側ポケット17は油圧
検出路18を介して軸受スリーブ4の鍔部外周に開口し
、両開口部に螺入したカブラ19には第二の圧力検出セ
ンサとしての前側及び侵側圧カセンサ24.25が着脱
可能に接続され、それぞれのポケット16.17内の油
圧を検出するようになっている。 第1.2図に示すように、前記各圧力センサ20〜25
は表示盤26と接続され、同表示盤26の前面には砥石
の摩耗状態を表示するためのLEDにて構成された表示
部26aが設けられるとともに、その下側には摩耗量を
測定する砥石8の種類を指定するための砥石指定ダイヤ
ル27と電源スィッチ28が設けられている。 第3図に示すように、前記表示盤26に内装された中央
演算処理装置(以下、CPUという)29には前記各セ
ンナ20〜25と砥石指定ダイヤル27が接続されると
ともに、表示部26aが表示部駆動回路32を介して接
続されている。また、CPU29にはランダムアクセス
メモリ(以下、RAMという)30、並びにリードオン
リメモリ(以下、ROMという)31が接続され、RO
M31には砥石8がワークWを研削していることを判別
するためのプログラムと、砥石8の摩耗量を判定するた
めのプログラムとが記憶されており、CPU29はこれ
らプログラムに従って摩耗量の表示動作を行なうように
なっている。なお、前記RAM30はCPtJ29が行
なう処理のデータを一時的に記憶するようになっている
。 次に、上記のように構成された摩耗表示装置の作用を述
べるが、その前に研削に伴って発生する研削抵抗が前記
各ポケット12〜17内の油圧にどのような影響を及ぼ
すかを説明する。 ワークWの左右方向の往復動伴い砥石8がワークWから
離間する空走時には、言うまでもないが研削抵抗は発生
していない。このため砥石8及びこれを支持する主軸5
には研削抵抗が加わることがなく前記間隙11は全て均
一となっており、作動油が各ポケット12〜17内から
間隙11を介してオイル回収路に流れるときの抵抗が等
しく、各ポケット12〜17内の圧力も全て均等になっ
ている。 第4図に示すように、砥石8がその外周面にてワークW
@研削している時には、研削抵抗の背分力F2が砥石8
を上方へ移動させるように働き、この背分力F2は砥石
8を支持している主軸5にも及ぶ。このため前記上側ポ
ケット14付近の間隙11が狭くなり、この上側ポケッ
ト14内に流入した作動油がオイル回収路へ排出されに
くくなって同ポケット14内の油圧が上昇する。また、
下側ポケット15の付近の間隙11は逆に広くなるため
、この下側ポケット15内に流入した作動油がオイル回
収路へ排出され易くなって同ポケット15内の油圧が下
降する。このため両ポケット14.15に圧力差が生じ
、この圧力差は砥石8に加わる背分力F2の大きさに伴
って増減することとなる。 また、砥石8がその側面にてワークWを研削している時
には、研削抵抗の背分力F2が砥石8をその切込み方向
と反対側(第5図においては後方)へ移動させるように
働くため、上記した場合と同様に、前側及び後側ポケッ
ト16.17のいずれか一方の油圧が上昇するとともに
使方の油圧が低下する。このため両ポケット16.17
に圧力差が生じ、この場合の圧力差も砥石8に加わる背
分力F2の大きさに伴って増減する。 一方、第4図に示すように、上記したいずれの研削時で
も砥石8が時計回りに回転するため、研削抵抗の主分力
F1が砥石8を右方へ移動させるように働く。このため
研削時には常に右側ポケット12の油圧が上昇するとと
もに左側ポケット13の油圧が低下し、両ポケット12
.13に圧力差が生じる。そして、この場合の圧力差は
砥石8に加わる主分力F1の大きさに伴って増減するこ
ととなる。 般に、研削抵抗の主分力F1と背分力(=2との比率は
1:1.5から1:2.5程度の値をとり、この値は砥
石8の摩耗の進行に伴って変化する。すなわち、ある切
込み量の研削を行なって背分力が生じた時には、この時
点の砥石8の摩耗mに応じた主分力が発生する。例えば
、第7図に破線で示すように、未使用の砥石8の場合に
は切れ味が良いため、背分力F2に対する主分力F1の
割合が大きい。そして、摩耗に従って切れ味が悪くなる
と、主分力F1が減少するとともに背分力F2が増加し
、第7図にハツチングで示す摩耗限度に至る。 このように、砥石8が摩耗すると主分力F1と背分力F
2とが増減するとともに、舶記各ポケット12〜17の
油圧が変動するため、この各ポケット12〜17の油圧
に基いて砥石8の摩耗を判定することができる。 そこで、上記のような現象が生じることを舶提どして、
この摩耗表示装置にて砥石8の摩耗を測定する場合につ
いて詳述する。 まず、摩耗量を測定する砥石8の種類を、前記表示51
826の砥石指定ダイヤル27にて指定し、この砥石8
を使用し所定の材質のワークWに対して所定の切込み吊
、ワーク送り速度、砥石回転数にて研削を開始するとと
もに、表示盤26の電源スィッチ28を作動させる。 すると、第6図に示すように、前記右側圧力センサ20
の検出値はワークWの往復動に同期して、ある圧力値と
それより所定量だけ高い圧力値とを交互に繰り返し、左
側圧力センサ21の検出値は右側圧力センサ20と同一
の圧力値とそれより所定量だけ低い圧力値とを交互に繰
り返す。この検出信号を入力したCPU29は圧力差が
ある時を研削時と判定し、圧力差がない時を砥石8がワ
ークWから離間している空走時と判定する。 前述したように、研削時には常に右側及び左側ポケット
12.13に圧力差が生じ、空走時には両ポケット12
.13に圧力差が生じないため、前記右側及び左側圧力
センサ20.21が圧力差を検出した時を研削時と見做
し、圧力差を検出しない時を空走時と見做すことができ
る。 次に、CPtJ29は研削時における上側及び下側圧力
センサ22,23が示す圧力差と、前側及び後側圧力セ
ンサ24.,25が示す圧力差とのいずれが大きいかを
判定する。前述したように上側及び下側圧力センサ22
.23が大きな圧力差を示し、前側及び後側圧力センサ
24,25が圧力差をほとんど示さない時には、砥石8
の外周面にて研削していると見做すことができ、反対に
上側及び下側圧力センサ22,23が圧力差をほとんど
示さず、前側及び後側圧力ヒンサ24.25が大きな圧
力差を示す時には、砥石8の側面にて研削していると見
做すことができる。 例えば、上側及び下側圧力センサ22.23が大きな圧
力差を示した場合には、CPU29は砥石8の外周面に
よる研削と判定し、研削時におけるこの上側及び下側圧
力センサ22,23が示す圧力差と、同じく研削時にお
ける前記右側及び左側圧力センサ20.21が示す圧力
差との比率を求める。前述したように、砥石8の摩耗に
伴って上側及び下側圧力センサ22.23の示す圧力差
が大きくなるとともに、右側及び左側圧力センサ20.
21の示す圧力差が小さくなるため、肉圧力差の比率も
砥石8の摩耗に伴って変化すると見做すことができる。 前記ROM31には砥石指定ダイヤル27にて選択しく
qるそれぞれの砥石8について、未使用時と摩耗限界時
とにこの比率がどのような値になるかが記憶されており
、CPU29は求めた比率がROM31に記憶された未
使用時の比率と摩耗限界時の比率との間のどの位置にあ
るかを、未仕様時の比率を100%とし使用限界時の比
率を0%とした割合で判定し、前記表示盤26の表示部
26aに表示する。 例えば、摩耗限度に近い砥石8であれば0%に近い値が
表示され、使用者は砥石8を交換したり所定のドレッシ
ング操作を行なったりすることとなる。 一方、前側及び後側圧カレンサ24.25が大きな圧力
差を示した場合には、CPU29は砥石8の側面による
研削と判定し、研削時におけるこの前側及び後側圧力セ
ンサ24.25が示す圧力差と、同じく研削時における
前記右側及び左側圧力センサ20,21が示す圧力差と
の比率を求める。この場合も、砥石8の摩耗に伴って前
側及び後側圧力センサ24.25の示す圧力差が大きく
なるとともに、右側及び左側圧力センサ20,21の示
す圧力差が小さくなるため、肉圧力差の比率も砥石8の
摩耗に伴って変化すると見做すことができる。 前記ROM31にはこの場合の比率についても未使用時
と摩耗限界時との値が記憶されており、CP U 29
は求めた比率が未使用時の比率と摩耗限界時の比率との
間のどの位置にあるかを判定し、前記表示盤26の数値
表示部26aに表示する。 そして、上記した場合と同様に使用者はこの表示に塞い
てドレッシング操作等が必要か否かを判断する。 なお、上記したようにワークWの材質、切込み量、ワー
ク送り速度、砥石回転数を所定の値に設定するのは、こ
れらの要素が主分力F1と背分力F2との比率に影響を
与え判定結果に誤差が生じてしまうためであり、測定す
る砥石の種類に応じてROM31に記憶されたそれぞれ
の比率を使い分けているのも、それぞれの砥石8によっ
て比率が相違するためである。 このように本実施例の17耗表示装置によれば、砥石8
の摩耗間を数値として表示するため、熟練者でなくても
容易に摩耗の判定ができる上に、主分力F1と背分力F
2との比率が砥石8の摩耗に従って鋭敏に変動するため
、極めて正確かつ早期に砥石8の摩耗状態を把握するこ
とができる。従って、砥石8が摩耗したのに気付くのが
遅れ、摩耗の進行した砥石8でワークWを研削し続けて
しまうことがない。 また、本実施例の摩耗表示装置においては、上側及び下
側ポケット14.15と前側及び後側ポケット16.1
7との油圧をそれぞれ検出するようにしたため、砥石8
の外周面と側面とのそれぞれの摩耗量を表示することが
でき、砥石8のより的確な摩耗状態を使用者に把握させ
ることができる。 なお、本実施例は本発明の摩耗検出装置を砥石8の摩耗
量を表示する表示装置として具体化したが、本発明の摩
耗検出装置はこれに限定されることはなく、例えば、N
O研削盤における砥石の摩純量を判定する摩耗検出装置
として具体化し、同装置の判定値に基いてNG研削盤側
が自動的に所定の処置、例えば、ブザーにて管理者に報
知したり、自動的にドレッシングエ稈を実行したりする
ようにしてもよい。このように構成すれば自動的に砥石
の摩耗状態を管理することができ、完全な無人自動加工
を達成することができる。 また、本実施例の摩耗表示装置は研削盤の砥石8を対蒙
とするものであったが、これに限定されることはなく、
他の切削加工用の工具に適用してもよい。フライス等の
切削工具の場合には主分力F1と背分力F2との比率が
1:0.3程度になるが、この場合でも、摩耗の進行に
伴う主分力F1及び背分力F2の変動と各ポケット内の
油圧との間には、本実施例で述べたような相間関係が存
在するため、各ポケット内の油圧に基いて工具の摩耗を
判定することができる。 さらに、本実施例の摩耗表示装置は研削盤の主軸5を支
持する静圧案内部の各ポケット12〜17にそれぞれ圧
力センサ20〜25を接続し、それらの検出値に基いて
砥石8の摩耗を判定したが、例えば、研削盤のテーブル
を往復動させるための静圧案内部のポケットに前記圧力
センサを接続してもよい。この場合には研削に伴う背分
力F2がテーブルを押し下げるように作用するため、こ
のポケット内の油圧に基いて背分力F2を判定すること
ができる。 一方、本実施例の摩耗表示装置においては、研削時と空
走時の判別を右側及び左側ポケット12゜13内の油圧
の変動に基いて行なったが、例えば、研削時に使用者が
ボタンを操作するようにし、CPLJ29がこの信号を
入力した時を研削時と判定するようにしてもよい。また
、研削盤のテーブルの往復動ストロークを設定するため
の通常のリミットスイッチの他に、移動中のワークWが
砥石8に接触する位置と、同じくワークWが砥石8から
離間する位置とを検出するためのリミットスイッチを設
け、このリミットスイッチのオンオフに基いてCPU2
9が研削時を判定するようにしてもよい。 また、本実施例の摩耗表示装置においては、背分力F2
を推定するために上側及び下側圧力セン+J22.23
と前側及び後側圧力センサ24,25とを設けたが、い
ずれか一方だけでもよく、例えば、上側及び下側圧力セ
ンサ22,23のみを設けた場合には、砥石8の外周面
の摩耗にて研削を行なって摩耗量を測定することができ
る。 さらに、本実施例の摩耗表示装置においては、右側及び
左側ポケット12.13内の圧力差から主分力F1を判
定し、上側及び下側ポケット14゜15内の圧力差、或
いは前側及び後側ポケット16.17内の圧力差から背
分力F2を判定したが、必ずしもそれぞれの圧力差を求
める必要はなく、例えば、上側ポケット14内の油圧に
基いて主分力F2を判定し、右側ポケット12内の油圧
に基いて背分力F2を判定するようにしてもよい。さら
に、砥石8の摩耗に伴って全てのポケット12〜17内
の油圧がそれぞれ増減するため、特定のポケット内の油
圧が砥石8の摩耗に従ってどのように変化するかが予め
判明していれば、そのポケット内の油圧のみに基いて砥
石8の摩耗を判定することもできる。従って、例えば、
右側ポケット12内の油圧のみに基いて砥石8の摩耗を
判定するようにしてもよい。 [発明の効果] 以上詳述したように、本発明の工具の摩耗検出装置によ
れば、使用者に熟練を要求することなく工具の摩耗を早
期に検出でき、不良な工具で加工を行なうことを未然に
防ぐとともに、無人自動加工のためのインプロはス測定
にも対応することができるという優れた効果を奏する。
[Industrial Application Field] The present invention relates to a tool wear detection device. [Prior Art] In general, tool abnormalities in processing machines, such as abrasion and chipping in cutting tools such as milling cutters, and wear, clogging, and spillage in grinding tools such as grindstones, are common.
When wear (hereinafter collectively referred to as wear) occurs, it has an adverse effect on the machined surface of the workpiece. Traditionally, operators judge tool wear based on the workpiece after machining. For example, in the case of a grinding wheel, when the workpiece surface becomes rough, grinding burns, etc. occur, or when the amount of cut during grinding occurs. However, when there is little change in the dimensions of the actual workpiece, it is determined that the grindstone is worn out, and the grindstone is dressed or replaced. [The invention tries to solve 1! ! However, as mentioned above, not only does it require considerable skill to judge the amount of wear on the grindstone, but wear cannot be determined unless the wear on the grindstone progresses to the extent that it adversely affects the machined surface of the workpiece. . Therefore, by the time the worker grasps the situation and takes action, the problem is that they have already done a considerable amount of grinding with a grinding wheel that is already worn out, and this applies not only to grinding wheels but to all machining tools. . The above-mentioned problems occur particularly in the case of unmanned automatic machining, and even though the machining process is automated, the current situation is that tool wear cannot be automatically managed. Therefore, there is a demand for the development of in-process measurement to achieve complete automation and unmanned operation. The purpose of the present invention is to be able to detect tool wear early without requiring the user to be skilled, to prevent machining with defective tools, and to support in-process measurement for unmanned automatic machining. An object of the present invention is to provide a tool wear detection device that can detect tool wear. [Means for Solving the Problems] A first invention includes a pressure detection means connected to a static pressure guide for relatively moving a tool and a workpiece in a processing machine, and detecting oil pressure at the same location; The gist of the present invention is a tool wear detection device comprising a determination means for determining the amount of wear of the tool based on the hydraulic pressure of the static pressure guide indicated by the pressure detection means. The second invention is connected to the first static pressure guide part to which the main force of the grinding resistance is applied during machining, among the static pressure guide parts for relatively moving the tool and the workpiece in the processing machine, and the same A first pressure detection means for detecting the hydraulic pressure at a location is connected to a second static pressure guide section of the static pressure guide section of the processing machine to which the force of the grinding resistance is applied during machining, and the hydraulic pressure at the same location is a second pressure detection means for detecting the pressure, a hydraulic pressure of the first static pressure guide section indicated by the first pressure detection means, and a hydraulic pressure of the second static pressure guide section indicated by the second pressure detection means. Based on the above, the gist of the present invention is to provide a tool wear detection device comprising a determination means for determining the amount of wear on the tool. [Function] When the tool wears and becomes dull, the hydraulic pressure of the static pressure guide to which this resistance is applied changes as the machining resistance increases or decreases. The determination means determines the amount of wear on the tool based on the hydraulic pressure of the static pressure guide detected by the pressure detection means. When the tool wears and becomes dull, the principal force of machining resistance decreases and the thrust force increases. As the principal force decreases, the oil pressure in the first static pressure guide to which this force is applied decreases or increases, and as the back force increases, the oil pressure in the second static pressure guide to which this force is applied increases or decreases. do. The determination means detects the tool based on the oil pressure of the first static pressure guide detected by the first pressure detection means and the oil pressure of the second static pressure guide detected by the second pressure detection means. Determine the amount of wear. [Example] Hereinafter, an example in which the present invention is embodied in a wear display device for a grinding wheel of a grinding machine will be described with reference to the drawings. As shown in FIG. 1, a spindle 2 that can move up and down within a column 1 of a grinding machine is provided with a main spindle head 3 so as to protrude forward, and a bearing sleeve 4 is fitted into the main spindle head 3. There is. A holding hole 4 provided through the bearing sleeve 4
The large diameter portion 5a of the main shaft 5 is rotatably inserted into the sleeve 4, and front and rear covers 6.7 are attached to the front and rear of the sleeve 4.
are opposed to step portions 5b formed on both sides of the large diameter portion 5a, and prevent movement of the main shaft 5 in the axial direction with respect to the bearing sleeve 4. A grindstone 8 as a tool is attached to the front end of the main shaft 5, and the rear end is connected via a coupling 10 to a motor 9 for driving the grindstone provided on the spindle 2. As shown in FIGS. 1 and 2, the outer periphery of the main shaft 5 and the holding hole 4
There is a fine gap 11 between the inner circumferential wall of a for static pressure guidance.
This gap 11 is also formed between the stepped portion 5b of the main shaft 5 and the front cover 6 and rear cover 7, respectively. In addition, right and left pockets 12 and 13 and upper and lower pockets 14 and 15 for static pressure guidance are provided at four equally divided locations on the inner circumferential wall of the holding hole 4a at the front and rear parts thereof, respectively. Front and rear cover 6゜7
Also provided are annular front and rear pockets 16, 17, respectively. An oil supply path and an oil recovery path (not shown) are connected to each of the pockets 12 to 17, and the hydraulic oil in the oil tank is supplied to each pocket 12 to 17 via the oil supply path by an oil pump.
After being pumped into the oil tank 17, the oil is collected into an oil tank via an oil recovery path. The right and left pockets 12.13 are used as first static pressure guide parts, and the upper and lower pockets 14.15 and the front and rear pockets 16.17 are respectively used as second static pressure guide parts. The hydraulic oil supplied into each of the pockets 12 to 17 fills the pockets 12 to 17 and forms an oil film in each gap 11. Therefore, the main shaft 5 is connected to the bearing sleeve 4.
is held in the holding hole 4a via an oil film, and
The grindstone is rotated clockwise by a motor 9 for driving the grindstone. The right, left, upper, and lower pockets 12 to 15 on the front side of the holding hole 4a open to the outer periphery of the flange of the bearing sleeve 4 via a hydraulic pressure detection path 18, and a coupler 19 is installed in each opening. It is screwed in. Right and left pressure sensors 20.21 as first pressure detection means are removably connected to the cover 19 communicating with the right and left pockets 12.13, respectively.
Coupler 19 communicating with upper and lower pockets 14°15
Upper and lower pressure sensors 22 and 23 as second pressure detection means are respectively detachably connected to the pockets 12 to 15 to detect the oil pressure in the respective pockets 12 to 15. The front pocket 16 opens on the outer periphery of the front cover 6 via an oil pressure detection path 18, and the rear pocket 17 opens on the outer periphery of the flange of the bearing sleeve 4 via an oil pressure detection path 18. Front side and invasion side pressure sensors 24.25 as second pressure detection sensors are removably connected to the screwed cover 19 to detect the oil pressure in the respective pockets 16.17. As shown in FIG. 1.2, each of the pressure sensors 20 to 25
is connected to a display panel 26, and on the front side of the display panel 26 is provided a display section 26a composed of an LED for displaying the wear state of the grindstone, and below the display section 26a is a display section 26a for measuring the wear amount of the grindstone. A grindstone designation dial 27 and a power switch 28 are provided for designating eight types. As shown in FIG. 3, a central processing unit (hereinafter referred to as CPU) 29 installed in the display panel 26 is connected to each of the sensors 20 to 25 and a grindstone designation dial 27, and a display section 26a is connected to the central processing unit (hereinafter referred to as CPU) 29. They are connected via a display drive circuit 32. Further, a random access memory (hereinafter referred to as RAM) 30 and a read only memory (hereinafter referred to as ROM) 31 are connected to the CPU 29, and RO
The M31 stores a program for determining whether the grindstone 8 is grinding the workpiece W and a program for determining the amount of wear on the grindstone 8, and the CPU 29 operates to display the amount of wear according to these programs. It is now possible to do this. Note that the RAM 30 is designed to temporarily store data for processing performed by the CPtJ 29. Next, we will describe the operation of the wear display device configured as described above, but before that, we will explain how the grinding resistance generated during grinding affects the oil pressure in each of the pockets 12 to 17. do. Needless to say, no grinding resistance is generated during idle running when the grindstone 8 separates from the workpiece W as the workpiece W reciprocates in the left-right direction. For this reason, the grindstone 8 and the main shaft 5 that supports it
Since no grinding resistance is applied to the gaps 11, all of the gaps 11 are uniform, and the resistance when the hydraulic oil flows from inside each pocket 12 to 17 to the oil recovery path through the gap 11 is equal. The pressure inside 17 is also all equal. As shown in FIG.
@When grinding, the thrust force F2 of the grinding resistance is applied to the grinding wheel 8.
This thrust force F2 also extends to the main shaft 5 supporting the grindstone 8. As a result, the gap 11 near the upper pocket 14 becomes narrower, making it difficult for the hydraulic oil that has flowed into the upper pocket 14 to be discharged to the oil recovery path, thereby increasing the oil pressure within the pocket 14. Also,
On the contrary, the gap 11 near the lower pocket 15 becomes wider, so that the hydraulic oil that has flowed into the lower pocket 15 is easily discharged to the oil recovery path, and the oil pressure in the pocket 15 decreases. Therefore, a pressure difference is generated between both pockets 14 and 15, and this pressure difference increases or decreases in accordance with the magnitude of the thrust force F2 applied to the grindstone 8. Furthermore, when the grindstone 8 is grinding the work W on its side surface, the thrust force F2 of the grinding resistance acts to move the grindstone 8 to the side opposite to the cutting direction (backward in FIG. 5). Similarly to the case described above, the oil pressure in either the front pocket 16 or the rear pocket 16 or 17 increases, and the oil pressure in the used pocket decreases. For this reason, both pockets 16.17
A pressure difference is generated between the two, and the pressure difference in this case also increases or decreases in accordance with the magnitude of the thrust force F2 applied to the grindstone 8. On the other hand, as shown in FIG. 4, since the grindstone 8 rotates clockwise during any of the grinding operations described above, the main force F1 of the grinding resistance acts to move the grindstone 8 to the right. Therefore, during grinding, the oil pressure in the right pocket 12 always increases while the oil pressure in the left pocket 13 decreases, and both pockets 12
.. A pressure difference occurs at 13. The pressure difference in this case increases or decreases in accordance with the magnitude of the principal force F1 applied to the grindstone 8. Generally, the ratio between the principal force F1 of the grinding resistance and the back force (=2) takes a value of about 1:1.5 to 1:2.5, and this value changes as the grinding wheel 8 wears. In other words, when a back force is generated by grinding a certain depth of cut, a principal force corresponding to the wear m of the grindstone 8 at this point is generated.For example, as shown by the broken line in FIG. In the case of an unused grindstone 8, the sharpness is good, so the ratio of the principal force F1 to the back force F2 is large.When the sharpness deteriorates due to wear, the principal force F1 decreases and the back force F2 increases. increases, reaching the wear limit shown by hatching in Fig. 7. In this way, when the grindstone 8 wears, the principal force F1 and the thrust force F
2 increases or decreases, and the oil pressure in each of the pockets 12 to 17 changes. Therefore, wear of the grindstone 8 can be determined based on the oil pressure in each of the pockets 12 to 17. Therefore, in anticipation of the occurrence of the above phenomenon,
A case in which the wear of the grindstone 8 is measured using this wear display device will be described in detail. First, the type of grindstone 8 whose wear amount is to be measured is indicated on the display 51.
826 with the whetstone designation dial 27, and this whetstone 8
Grinding is started on a workpiece W of a predetermined material using a predetermined cutting depth, workpiece feed rate, and grindstone rotation speed, and the power switch 28 on the display panel 26 is activated. Then, as shown in FIG.
The detected value of is synchronized with the reciprocating movement of the workpiece W, and alternately repeats a certain pressure value and a pressure value higher by a predetermined amount than that value, and the detected value of the left pressure sensor 21 is the same pressure value as the right pressure sensor 20. A pressure value lower than that by a predetermined amount is alternately repeated. The CPU 29 inputting this detection signal determines that when there is a pressure difference, it is during grinding, and when there is no pressure difference, it determines that the grindstone 8 is running idle when it is separated from the workpiece W. As mentioned above, during grinding, a pressure difference always occurs between the right and left pockets 12, 13, and when running idle, both pockets 12.
.. Since no pressure difference occurs between the right and left pressure sensors 20 and 21, the time when the pressure difference is detected by the right and left pressure sensors 20 and 21 can be regarded as the time of grinding, and the time when no pressure difference is detected can be considered as the time of idle running. . Next, CPtJ29 calculates the pressure difference indicated by the upper and lower pressure sensors 22 and 23 during grinding, and the front and rear pressure sensors 24. , 25 is larger. As mentioned above, the upper and lower pressure sensors 22
.. 23 shows a large pressure difference, and when the front and rear pressure sensors 24 and 25 show almost no pressure difference, the grinding wheel 8
On the contrary, the upper and lower pressure sensors 22 and 23 show almost no pressure difference, and the front and rear pressure hinges 24 and 25 show a large pressure difference. When shown, it can be assumed that grinding is being performed with the side surface of the grindstone 8. For example, when the upper and lower pressure sensors 22 and 23 indicate a large pressure difference, the CPU 29 determines that grinding is being performed by the outer peripheral surface of the grinding wheel 8, and the upper and lower pressure sensors 22 and 23 indicate that the The ratio between the pressure difference and the pressure difference indicated by the right and left pressure sensors 20, 21 during grinding is determined. As described above, as the grinding wheel 8 wears, the pressure difference indicated by the upper and lower pressure sensors 22.23 increases, and the pressure difference indicated by the right and left pressure sensors 20.23 increases.
Since the pressure difference indicated by 21 becomes smaller, it can be assumed that the ratio of the meat pressure difference also changes as the grindstone 8 wears. The ROM 31 stores the value of this ratio when not in use and at the wear limit for each grindstone 8 selected with the grindstone designation dial 27, and the CPU 29 stores the calculated ratio. Determine where it is between the ratio when not in use and the ratio at the wear limit stored in the ROM31, based on the ratio where the ratio at the time of unspecified condition is 100% and the ratio at the limit of use is 0%. and is displayed on the display section 26a of the display board 26. For example, if the grindstone 8 is close to the wear limit, a value close to 0% will be displayed, and the user will need to replace the grindstone 8 or perform a predetermined dressing operation. On the other hand, if the front and rear pressure sensors 24.25 indicate a large pressure difference, the CPU 29 determines that grinding is being performed by the side surface of the grinding wheel 8, and the pressure difference indicated by the front and rear pressure sensors 24.25 during grinding. Similarly, the ratio between the pressure difference indicated by the right and left pressure sensors 20 and 21 during grinding is determined. In this case as well, as the grinding wheel 8 wears, the pressure difference indicated by the front and rear pressure sensors 24, 25 increases, and the pressure difference indicated by the right and left pressure sensors 20, 21 decreases, so the difference in meat pressure increases. It can be assumed that the ratio also changes as the grindstone 8 wears. The ROM 31 also stores values for the ratio when not in use and at the wear limit, and the CPU 29
determines where the obtained ratio is between the ratio when not in use and the ratio when at the wear limit, and displays it on the numerical display section 26a of the display panel 26. Then, as in the case described above, the user closes this display and determines whether or not a dressing operation or the like is necessary. As mentioned above, the reason why the material of the workpiece W, depth of cut, workpiece feed speed, and grindstone rotation speed are set to predetermined values is that these factors affect the ratio of the principal force F1 and the thrust force F2. This is because an error occurs in the application determination result, and the reason why the ratios stored in the ROM 31 are used depending on the type of grindstone to be measured is because the ratios differ depending on the grindstones 8. As described above, according to the wear display device of this embodiment, the grindstone 8
The wear interval is displayed as a numerical value, so even non-experts can easily judge the wear.
2 changes sharply as the grindstone 8 wears, so it is possible to grasp the wear state of the grindstone 8 extremely accurately and early. Therefore, the wear of the grindstone 8 is not noticed too late, and the workpiece W does not continue to be ground with the grindstone 8 that has become worn. In addition, in the wear display device of this embodiment, upper and lower pockets 14.15 and front and rear pockets 16.1
Since the hydraulic pressure of grinding wheel 8 and 7 is detected respectively,
The amount of wear on the outer circumferential surface and side surface of the grindstone 8 can be displayed, allowing the user to grasp the wear state of the grindstone 8 more accurately. In this embodiment, the wear detection device of the present invention is embodied as a display device that displays the amount of wear on the grindstone 8, but the wear detection device of the present invention is not limited to this, and for example, the wear detection device of the present invention is
It is embodied as a wear detection device that determines the amount of wear on the grinding wheel in an O-grinding machine, and based on the judgment value of the device, the NG grinding machine automatically takes predetermined measures, such as notifying the administrator with a buzzer, The dressing process may be performed automatically. With this configuration, the wear state of the grindstone can be automatically managed, and completely unmanned automatic machining can be achieved. Further, although the wear display device of this embodiment uses the grinding wheel 8 of a grinding machine as a grinding wheel, it is not limited to this.
It may also be applied to other cutting tools. In the case of cutting tools such as milling cutters, the ratio of principal force F1 and thrust force F2 is approximately 1:0.3, but even in this case, the principal force F1 and thrust force F2 increase as wear progresses. Since there is a correlation as described in this embodiment between the fluctuation in the pressure and the oil pressure in each pocket, tool wear can be determined based on the oil pressure in each pocket. Furthermore, the wear display device of this embodiment connects pressure sensors 20 to 25 to each pocket 12 to 17 of the static pressure guide section that supports the main shaft 5 of the grinding machine, and detects the wear of the grindstone 8 based on the detected values. However, for example, the pressure sensor may be connected to a pocket of a static pressure guide for reciprocating the table of a grinding machine. In this case, the thrust force F2 accompanying the grinding acts to push down the table, so the thrust force F2 can be determined based on the oil pressure in this pocket. On the other hand, in the wear display device of this embodiment, the discrimination between grinding and idle running is made based on the fluctuation of the oil pressure in the right and left pockets 12 and 13. For example, when the user operates the button during grinding, It is also possible to determine that the time when the CPLJ 29 inputs this signal is the time of grinding. In addition to the normal limit switch for setting the reciprocating stroke of the grinding machine table, it also detects the position where the moving workpiece W contacts the grinding wheel 8 and the position where the workpiece W separates from the grinding wheel 8. A limit switch is provided to
9 may determine when grinding is being performed. In addition, in the wear display device of this embodiment, thrust force F2
Upper and lower pressure sensor + J22.23 to estimate
Although the front and rear pressure sensors 24 and 25 are provided, only one of them may be used. For example, if only the upper and lower pressure sensors 22 and 23 are provided, the wear of the outer circumferential surface of the grinding wheel 8 may be reduced. The amount of wear can be measured by grinding. Furthermore, in the wear display device of this embodiment, the principal force F1 is determined from the pressure difference in the right and left pockets 12 and 13, and the principal force F1 is determined from the pressure difference in the upper and lower pockets 14 and 15, or the front and rear sides. Although the thrust force F2 was determined from the pressure difference in the pockets 16 and 17, it is not necessary to determine the respective pressure differences. For example, the principal force F2 is determined based on the oil pressure in the upper pocket 14, and The thrust force F2 may be determined based on the oil pressure in the engine 12. Furthermore, since the oil pressure in all the pockets 12 to 17 increases and decreases as the grinding wheel 8 wears, if it is known in advance how the oil pressure in a particular pocket changes as the grinding wheel 8 wears, It is also possible to determine the wear of the grindstone 8 based only on the oil pressure in the pocket. Therefore, for example,
The wear of the grindstone 8 may be determined based only on the oil pressure in the right side pocket 12. [Effects of the Invention] As detailed above, according to the tool wear detection device of the present invention, tool wear can be detected early without requiring skill from the user, and machining can be performed with a defective tool. It has the excellent effect of not only preventing problems from occurring, but also being able to handle improvisational measurements for unmanned automatic machining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は主軸ヘッドと表示盤とを示す研削盤の部分断面
図、第2図は同じく主軸ヘッドの側断面図、第3図は還
気的構成を示すブロック図、第4図は砥石とワークとの
間に生じる主分力と背分力を示す説明図、第5図は同じ
く砥石とワークとの間に生じる背分力を示す説明図、第
6図は砥石の往復動に伴う圧力センサの検出値の変動を
示す説明図、第7図は砥石の摩耗に伴う主分力と背分力
の変化を示す説明図である。 8は工具としての砥石、12.13は第一の静圧案内部
としての右側及び左側ポケット、13〜17は第二の静
圧案内部としての上側、下側、まえ側、及び後側ポケッ
ト、20.21は第一の検出手段としての右側及び左側
圧力センサ、22〜25は第二の検出手段としての上側
、下側、前側、及び模側圧カセンサ、29は判定手段と
してのCpu、wはワーク、Flは主弁ノ〕、F2は背
分力である。 特許出願人     株式会社 長瀬鉄工所代 理 人
     弁理士  恩1)博宣116図 17wJ 自発手続ネ1n正書 明  細  占 平成 1年6月29日 1、事件の表示 昭和63年特許願第332675号 2、発明の名称 工具の摩耗検出装置 3、補正をする者 事件との関係:特許出願人 住 所   岐阜県武儀郡武芸用町跡部1333番地の
1氏 名   株式会社 長瀬鉄工所 (名 称)  代表者  長瀬 登 4、代理人 住所 〒500  岐阜市端詰町2番地 置  <0582>65−1810(代表)ファックス
専用 <0582> 66−13396、補正の内容 1、発明の名称 工員の摩耗検出装置及び摩耗検出方法 2、特許請求の範囲 1、加工機における工具(8)とワーク(W)とを相対
的に移動させるための静圧案内部(12〜17)と接続
され、同箇所の油圧を検出づる圧力検出手段(20〜2
5)と、 前記圧力検出手段(20〜25)が示す静圧案内部(1
2〜17)の油圧に基いて、工具(8)の摩耗量を判定
する判定手段(29)とを備えた工具の摩耗検出装置。 2、加工機における工具(8)とワーク(W)とを相対
的に移動させるための静圧案内部(12〜17)の内、
加工時に研削抵抗の主分力(F1)が加わる第一の静圧
案内部(12,13)と接続され、同箇所の油圧を検出
1−る第一の圧力検出手段(20,21)と、 同じく加工機の静圧案内部(12〜17)の内、加工時
に研削抵抗の背分力(F2)が加わる第二の静圧案内部
(14〜17ンと接続され、同箇所の油圧を検出する第
二の圧力検出手段(22〜25)と、 前記第一の圧力検出手段(20,21)が示す第一の静
圧案内部(12,13)の油圧と、第一の圧力検出手段
(22〜25)が示す第二の静圧案内部(14〜17)
の油圧とに基いて、工具麺(8)の摩耗量を判定する判
定手段(29)とを備えた工具の摩耗検出装置。 3、加工機における静圧案内部(12〜17)の油圧に
基いて、工員(8)の摩耗量を判定する工具の摩耗検出
方法。 3、発明の詳細な説明 「産業上の利用分野」 本発明は工具の摩耗検出装置及び摩耗検出方法に関覆る
ものである。 し従来の技術] 般に、加工機における工具の異常、例えば、フライスの
ような切削工具においては摩耗やチッピング、砥石のよ
うな研削工具においては摩耗や目づまり、目こばれ(g
、下、まとめて摩耗という)が生じたときには、ワーク
加工面に悪影響を与える。従来、作業者は工具の摩耗を
加工後のワークに基いて判断しており、例えば、研削砥
石の場合にはワーク加工面の荒れや研削焼は等が生じた
とき、或いは研削時の切込み量に対して実際のワークの
寸法変化が少ないとき等に砥石が摩耗したと判断し、ド
レッシングを実施したり砥石を交換したりしている。 [発明が解決しようとする課題1 ところが、上記したように砥石の摩耗量を判断するには
相当の熟練を要するばかりでなく、ワークの加工面に悪
影響を与える111度に砥石の摩耗が進行しないと摩耗
を判断することができない。このため作業者がその状態
を把握して対処するときには、すでに摩耗が進行した砥
石でかなりの量の研削を行なってしまっているという問
題があり。 これは研削砥石に限らずあらゆる加エエ貝にあてはまる
。 以上の問題は無人自動加工の場合に特に顕著に生じ、加
工工程が自動化されているにもかかわらず工具の摩耗を
自動的に管理することができないのが現状である。この
ため、完全な自動化、無人化を達成するだめのインプロ
セス測定の開発が要望されている。 本発明の目的は、使用者に熟練を要求することなく工具
の摩耗を早期に検出でき、不良な工具で加工を行なうこ
とを未然に防ぐとともに、無人自動加工のためのインプ
ロセス測定にも対応することができる工具の摩耗検出装
置及び摩耗検出方法を提供することにある。 [課題を解決するための手段] 第一の発明は、加工機における工具とワークとを相対的
に移動させるための静圧案内部と接続され、同箇所の油
圧を検出する圧力検出手段と、前記圧力検出手段が示ず
静圧案内部の油圧に基いて、工具の摩耗間を判定する判
定手段とを備えた工具の摩耗検出装置をその要旨とする
ものである。 第二の発明は、加工機における工具とワークとを相対的
に移動させるための静圧案内部の内、加工時に研削抵抗
の主分力が加わる第一の静圧案内部と接続され、同箇所
の油圧を検出する第一の圧力検出手段と、同じく加工機
の静圧案内部の内、加工時に研削抵抗の背分力が加わる
第二の静圧案内部と接続され、同箇所の油圧を検出する
第二の圧力検出手段と、前記第一の圧力検出手段が示す
第一の静圧案内部の油圧と、第二の圧力検出手段が示す
第二の静圧案内部の油圧とに基いて、工具の摩耗量を判
定する判定手段とを備えた工具の摩耗検出装置をその要
旨とするものである。 第三の発明は、加工機における静圧案内部の油圧に基い
て、工具の摩耗量を判定する工具の摩耗検出方法をその
要旨とするものである。 [作用] 第一の発明においては、工具が摩耗して切れ味が鈍ると
、加工抵抗の増減に伴いこの抵抗が加わる静圧案内部の
油圧も変化する。判定手段は圧力検出手段にて検出され
た静圧案内部の油圧に基いて工具の摩耗量を判定する。 第二の発明においては、工具が摩耗して切れ味が鈍ると
、加工抵抗の主分力が減少し背分力が増加する。主nカ
の減少に伴ってこの力が加わる第一の静圧案内部の油圧
は減少或いは増加し、背分力の増加に従ってこの力が加
わる第二の静圧案内部の油圧は増加或いは減少する。判
定手段は第一の圧力検出手段にて検出された第一の静圧
案内部の油圧と、第二の圧力検出手段にて検出された第
二の静圧案内部の油圧とに基いて工具の摩耗量を判定す
る。 第三の発明においては、工具が摩耗して切れ味が鈍ると
、加工抵抗の増減に伴いこの抵抗が加わる静圧案内部の
油圧も変化する。従って、この静圧案内部の油圧に基い
て工具の摩耗間を判定することができる。 [実施例] 以下、この発明を研削盤の砥石を対象とした摩耗表示装
置に具体化した一実施例を図面に従って説明する。 第1図に示すように、研削盤のコラム1内を上下動し得
るスピンドル2には主軸ヘッド3が前方へ突出するよう
に設けられ、同主軸ヘッド3には軸受スリーブ4が嵌挿
されている。前記軸受スリーブ4に貫設された保持孔4
aには主軸5の大径部5aが回転可能に挿入され、同ス
リーブ4の前後に取着された前面及び後面カバー6.7
は前記大径部5aの両側に形成された段差部5bとそれ
ぞれ対向し、軸受スリーブ4に対する主軸5の軸方向の
移動をM止してひる。前記主軸5の前端には工具として
の砥石8が装着され、後端はカップリング10を介して
前記スピンドル2に設けられた砥石駆動用のモータ9と
接続されている。 第1.2図に示すように、前記主軸5の外周と保持孔4
aの内周壁との間には静圧案内のために微細な間隙11
が形成され、この間隙11は主軸5の段差部5bと前面
カバー6及び後面カバー7との間にもそれぞれ形成され
ている。また、保持孔4aの前部及び後部にはその内周
壁の等分目箇所に静圧案内のための右側及び左側ポケッ
ト12゜13と上側及び下側ポケット14.15とがそ
れぞれ設けられるとともに、前面及び後面カバー6゜7
にも環状の前側及び後側ポケット16.17がそれぞれ
設けられている。 前記各ポケット12〜17には図示しないオイル供給路
とオイル回収路が接続され、オイルタンクの作動油はオ
イルポンプにてオイル供給路を介して各ポケット12〜
17内に圧送された後に、オイル回収路を介してオイル
タンクに回収されるようになっている。なお、前記右側
及び左側ポケット12.13を第一静圧案内部とし、上
側及び下側ポケット14.15と、前側及び後側ポケッ
ト16.17とをそれぞれ第二静圧案内部としている。 そして、各ポケット12〜17内に供給された作動油は
ポケット12〜17内を満すとともに前記各間隙11に
油膜を形成する。このため前記主軸5は軸受スリーブ4
の保持孔4a内にて油膜を介して保持されるとともに、
砥石駆動用のモータ9にて時計回りに回転されることと
なる。 前記保持孔4aの前部側にある右側、左側、上側及び下
側ポケット12〜]5は油圧検出路18を介して軸受ス
リーブ4の鍔部外周に開口し、それぞれの開口部にはカ
プラ19が螺入されている。 そして、右側及び左側ポケット12.13と連通ずるカ
ブラ19にはそれぞれ第一の圧力検出手段としての右側
及び左側圧力センサ20.21が着脱可能に接続され、
上側及び下側ポケット14゜15と連通するカプラ19
にはそれぞれ第二の圧力検出手段としての上側及び下側
圧力ヒンサ22゜23が着脱可能に接続され、それぞれ
のポケット12〜15内の油圧を検出するようになって
いる。 また、前記前側ポケット16は油圧検出路18を介して
前面カバー6の外周に開口し、後側ポケット17は油圧
検出路18を介して軸受スリーブ4の鍔部外周に開口し
、両開口部に螺入したカブラ19には第二の圧力検出セ
ンサとしての前側及び後側圧力センサ24.25が着脱
可能に接続され、それぞれのポケット16.17内の油
圧を検出するようになっている。 第1.2図に示すように、前記各圧力センサ20〜25
は表示W26と接続され、同表示盤26の前面には砥石
の摩耗状態を表示するためのLEDにて構成された表示
部26aが設けられるとともに、その下側には摩耗量を
測定する砥石8の種類を指定するための砥石指定ダイヤ
ル27と電源スィッチ28が設りられている。 第3図に示すように、前記表示盤26に内装された中央
演緯処理装置(以下、CPUという)29には前記各レ
ンサ20〜25と砥石指定ダイヤル27が接続されると
ともに、表示部26aが表示部駆動回路32を介して接
続されている。また、CPU29にはランダムアクセス
メモリ(以下、RAMという)30、並びにリードオン
リメモリ(以下、ROMという)31が接続され、RO
M31には砥石8がワークWを研削していることを判別
するためのプログラムと、砥石8の摩耗量を判定するた
めのプログラムとが記憶されており、CPU29はこれ
らプログラムに従って摩耗量の表示動作を行なうように
なっている。なお、前記RAM30はCPU29が行な
う処理のデータを一時的に記憶づるようになっている。 次に、上記のように構成された摩耗表示装置の作用を述
べるが、その前に研削に伴って発生する研削抵抗が前記
各ポケット12〜17内の油圧にどのような影響を及ぼ
すかを説明する。 ワークWの左右方向の往復動伴い砥石8がワークWから
離間する空走時には、言うまでもないが研削抵抗は発生
していない。このため砥石8及びこれを支持する主軸5
には研削抵抗が加わることがなく前記間隙11は全て均
一となっており、作動油が各ポケット12〜17内から
間隙11を介してオイル回収路に流れるときの抵抗が等
しく、各ポケット12〜17内の圧力も全て均等になっ
ている。 第4図に示すように、砥石8がその外周面にてワークW
を研削している時には、研削抵抗の背分力F2が砥石8
を上方へ移動させるように働き、この背分力F2は砥石
8を支持している主軸5にも及ぶ。このため前記上側ポ
ケット14付近の間隙11が狭くなり、この上側ポケッ
ト14内に流入した作動油がオイル回収路へ排出されに
くくなって同ポケット14内の油圧が上昇する。また、
下側ポケット15の付近の間隙11は逆に広くなるため
、この下側ポケット15内に流入した作動油がオイル回
収路へ排出され易くなって同ポケット15内の油圧が下
降りる。このため両ポケット14.15に圧力差が生じ
、この圧力差は砥石8に加わる背分力F2の大きさに伴
って増減することとなる。 また、砥石8がその側面にてワークWを研削している時
には、研削抵抗の背分力F2が砥石8をその切込み方向
と反対側(I35図においては後方)へ移動させるよう
に働くため、上記した場合と同様に、前側及び後側ポケ
ット16.17のいずれか一方の油圧が上界するととも
に他方の油圧が低下する。このため両ポケット16.1
7に圧力差が生じ、この場合の圧力差も砥石8に加わる
背分力F2の大きさに伴って増減する。 一方、第4図に示すように、上記したいずれの研削時で
も砥石8が時計回りに回転するため、研削抵抗の主分力
F1が砥石8を右方へ移動させるように働く。このため
研削時には常に右側ポケット12の油圧が上昇するとと
もに左側ポケット13の油圧が低下し、両ポケット12
.13に圧力差が生じる。そして、この場合の圧力差は
砥石8に加わる主分力F1の大きさに伴って増減するこ
ととなる。 一般に、研削抵抗の主分力F1と背分力F2との比率は
1:1.5から1:2.5程度の値をとり、この値は砥
石8の摩耗の進行に伴って変化する。すなわち、ある切
込み楢の研削を行なって背分力が生じた時には、この時
点の砥石8の摩耗量に応じた主分力が発生する。例えば
、第7図に破線で示すように、未使用の砥石8の場合に
は切れ味が良いため、背分力F2に対する主分力F1の
割合が大きい。そして、摩耗に従って切れ味が悪くなる
と、主分力F1が減少するとともに背分力F2が増加し
、第7図にハツチングで示す摩耗限度に至る。 このように、砥石8が摩耗すると主分力F1と背分力F
2とが増減するとともに、前記各ポケット12〜17の
油圧が変動するため、この各ポケット12〜17の油圧
に基いて砥石8の摩耗を判定することができる。 そこで、上記のような現象が生じることを前提として、
この摩耗表示装置にて砥石8の摩耗を測定する場合につ
いて詳述する。 まず、摩耗量を測定する砥石8の種類を、前記表示盤2
6の砥石指定ダイセル27にて指定し、この砥石8を使
用し所定の材質のワークWに対して所定の切込み吊、ワ
ーク送り速度、砥石回転数にて研削を開始するとともに
、表示盤26の電源スィッチ28を作動させる。 すると、第6図に示すように、前記右側圧力センサ20
の検出値はワークWの往復動に同期して、ある圧力値と
それより所定量だけ高い圧力値とを交互に繰り返し、左
側圧力センサ21の検出値は右側圧力センサ20と同一
の圧力値とそれより所定量だけ低い圧力値とを交互に繰
り返す。この検出信号を入力したCPLJ29は圧力差
がある時を研ilQ時と判定し、圧力差がない時を砥石
8がワ−りWから離間している空走時と判定する。 前述したように、研削時には常に右側及び左側ポケット
12.13に圧力差が生じ、空走時には両ポケット12
.13に圧力差が生じないため、前記右側及び左側圧力
ヒンサ20,21が圧力差を検出した時を研削時と見做
し、圧力差を検出しない時を空走時と見做Jことができ
る。 次に、CPU29は研削時における上側及び下側圧力セ
ンサ22.23が示ず圧力差と、前側及び後側圧力セン
サ24.25が示す圧力差とのいずれが大きいかを判定
する。前述したように上側及び下側圧力センサ22,2
3が大きな圧力差を示し、前側及び後側圧力ヒンサ24
.25が圧力差をほとんど示さない時には、砥石8の外
周面にて研削していると見做すことができ、反対に上側
及び下側圧力センサ22.23が圧力差をほとんど示さ
ず、前側及び後側圧力センサ24.25が大きな圧力差
を示す時には、砥石8の側面にて研削していると見做づ
ことができる。 例えば、上側及び下側圧力センサ22.23が大きな圧
力差を示した場合には、CPU29は砥石8の外周面に
よる研削と判定し、研削時におけるこの上側及び下側圧
力センサ22.23が示す圧力差と、同じく研削時にお
ける前記右側及び左側圧力センサ20,21が示す圧力
差との比率を求める。前述したように、砥石8の摩耗に
伴って上側及び下側圧力センサ22,23の示す圧力差
が大きくなるとともに、石側及び左側圧力センサ20.
21の示す圧力差が小さくなるため、両正力差の比率も
砥石8の摩耗に伴って変化すると見做すことができる。 前記ROM3iにはfJ1EJ指定ダイヤル27にて選
択し得るそれぞれの砥石8について、未使用時と摩耗限
界時とにこの比率がどのような値になるかが記憶されて
おり、CPU29は求めた比率がROM31に記憶され
た未使用時の比率と摩耗限界時の比率との間のどの位置
にあるかを、未仕様時の比率を100%とし使用限界時
の比率を0%とした割合で判定し、前記表示5?a26
の表示部26aに表示する。 例えば、摩耗限度に近い砥石8であれば0%に近い値が
表示され、使用者は砥石8を交換したり所定のドレッシ
ング操作を行なったりすることとなる。 一方、前側及び後側圧力センサ24.25が大きな圧力
差を示した場合には、CPU29は砥石8の側面による
研削と判定し、研削時におけるこの前側及び後側圧力セ
ンサ24.25が示す圧力差と、同じく研削時における
前記右側及び左側圧力センサ20.21が示す圧力差と
の比率を求める。この場合も、砥石8の摩耗に伴って前
側及び後側圧力センサ24,25の示ず圧力差が大きく
なるとともに、右側及び左側圧力センサ20,21の示
す圧力差が小さくなるため、両正力差の比率も砥石8の
摩耗に伴って変化すると見做1ことができる。 前記ROM31にはこの場合の比率についても未使用時
と摩耗限界時との値が記憶されており、CPU、29は
求めた比率が未使用時の比率と摩耗限界時の比率との間
のどの位置にあるかを判定し、前記表示盤26の数値表
示部26aに表示する。 そして、上記した場合と同様に使用者はこの表示に基い
てドレッシング操作等が必要か否かを判断する。 なお、上記したようにワークWの材質、切込み量、ワー
ク送り速度、砥石回転数を所定の値に設定するのは、こ
れらの要素が主分力F1と背分力F2との比率に影響を
与え判定結果に誤差が生じてしまうためであり、測定す
る砥石の種類に応じてROM31に記憶されたそれぞれ
の比率を使い分けているのも、それぞれの砥石8によっ
て比率が相違するためである。 このように本実施例の摩耗表示装置によれば、砥石8の
摩耗量を数値として表示するため、熟練者でなくても容
易に摩耗の判定ができる上に、主分力F1と背分力E2
との比率が砥石8の摩耗に従って鋭敏に変動づるため、
極めて正確かつ早期に砥石8の摩耗状態を把握すること
ができる。従って、砥石8が摩耗したのに気付くのが遅
れ、摩耗の進行した砥石8でワークWを研削し続けてし
まうことがない。 また、本実施例の摩耗表示装置においては、上側及び下
側ポケット14.15と前側及び後側ポケット16.1
7との油圧をそれぞれ検出するようにしたため、砥石8
の外周面と側面とのそれぞれの摩耗量を表示することが
でき、砥石8のより的確な摩耗状態を使用者に把握させ
ることができる。 なお、本実施例は本発明の摩耗検出装置を砥?i8の摩
耗量を表示する表示装置として具体化したが、本発明の
摩耗検出装置はこれに限定されることはなく、例えば、
NC研削盤における砥石の摩耗量を判定する摩耗検出装
dとして具体化し、同装置の判定値に基いてNG研削盤
側が自動的に所定の処置、例えば、ブリ゛−にて管理者
に報知したり、自動的にドレッシング工程を実行したり
するようにしてもよい。このように構成すれば自動的に
砥石の摩耗状態を管理することができ、完全な無人自動
加工を達成することができる。 また、本実施例の摩耗表示装置は研削盤の砥石8を対象
とするものであったが、これに限定されることはなく、
他の切削加工用の工具に適用してもよい。フライス等の
切削工具の場合には主分力F1と背分力F2との比率が
1:0.3程度になるが、この場合でも、摩耗の進行に
伴う主分力F1及び背分力F2の変動と各ポケット内の
油圧との間には、本実施例で述べたような相間関係が存
在するため、各ポケット内の油圧に基いて工具の摩耗を
判定することができる。 ざらに、本実施例の摩耗表示装置は研削盤の主軸5を支
持する静圧案内部の各ポケット12〜17にそれぞれ圧
力センサ20〜25を接続し、それらの検出値に基いて
砥石8の摩耗を判定したが、例えば、研削盤のテーブル
を往復動させるための静圧案内部のポケットに前記圧力
センサを接続してもよい。この場合には研削に伴う背分
力F2がテーブルを押し下げるように作用するため、こ
のポケット内の油圧に基いて背分力F2を判定すること
ができる。 一方、本実施例の摩耗表示装置においては、研削時と空
走時の判別を右側及び左側ポケット12゜13内の油圧
の変動に基いて行なったが、例えば、研削時に使用者が
ボタンを操作するようにし、CPU29がこの信号を入
力した時を研削時と判定するようにしてもよい。また、
研削盤のテーブルの往復動ストロークを設定するための
通常のリミットスイッチの他に、移動中のワークWが砥
石8に接触する位置と、同じくワークWが砥石8から離
間する位置とを検出するためのリミットスイッチを設け
、このリミットスイッチのオンオフに基いてCPU29
が研削時を判定するようにしてもよい。 また、本実施例の摩耗表示装置においては、背分力F2
を推定するために上側及び下側圧力センサ22.23と
前側及び後側圧力センサ24,25とを設けたが、いず
れか一方だけでもよく、例えば、上側及び下側圧力セン
サ22.23のみを設けた場合には、砥石8の外周面の
摩耗にて研削を行なって摩耗聞を測定することができる
。 さらに、本実施例の摩耗表示装置においては、右側及び
左側ポケット12.13内の圧力差から主分力F1を判
定し、上側及び下側ポケット14゜15内の圧力差、或
いは前側及び後側ポケット16.17内の圧力差から背
分力F2を判定したが、必ずしもそれぞれの圧力差を求
める必要はなく、例えば、上側ポケット14内の油圧に
基いて主分力F2を判定し、右側ポケット12内の油圧
に基いて背分力F2を判定するようにしてもよい。さら
に、砥石8の摩耗に伴って全てのポケット12〜17内
の油圧がそれぞれ増減するため、特定のポケット内の油
圧が砥石8の摩耗に従ってどのように変化するかが予め
判明していれば、そのポケット内の油圧のみに基いて砥
石8の摩耗を判定することもできる。従って、例えば、
右側ポケット12内の油圧のみに基いて砥石8の摩耗を
判定するようにしてもよい。 [発明の効果] 以上詳述したように、本発明の工具の摩耗検出装置及び
摩耗検出方法によれば、使用者に熟練を要求することな
く工具の摩耗を早期に検出でき、不良な工具で加工を行
なうことを未然に防ぐとともに、無人自動加工のための
インプロセス測定にも対応することができるという優れ
た効果を秦する。
Fig. 1 is a partial sectional view of the grinding machine showing the spindle head and display plate, Fig. 2 is a side sectional view of the spindle head, Fig. 3 is a block diagram showing the return air configuration, and Fig. 4 is a grinding wheel and An explanatory diagram showing the principal force and thrust force generated between the grinding wheel and the workpiece, Figure 5 is an explanatory diagram showing the thrust force generated between the grindstone and the workpiece, and Figure 6 is the pressure accompanying the reciprocating movement of the grindstone. FIG. 7 is an explanatory diagram showing changes in the detected value of the sensor, and FIG. 7 is an explanatory diagram showing changes in the principal component force and thrust component force due to wear of the grindstone. 8 is a grindstone as a tool, 12.13 is a right and left pocket as a first static pressure guide, and 13 to 17 are upper, lower, front, and rear pockets as a second static pressure guide. , 20.21 are right and left pressure sensors as first detection means, 22 to 25 are upper, lower, front, and rear side pressure sensors as second detection means, and 29 is CPU, w as determination means. is the workpiece, Fl is the main valve], and F2 is the thrust force. Patent applicant Nagase Iron Works Co., Ltd. Agent Patent attorney On 1) Hironobu 116 Figure 17wJ Voluntary procedure 1n Original details Zan June 29, 1999 1, Indication of case Patent application No. 332675 of 1988 2 , Name of the invention: Tool wear detection device 3, Relationship with the person making the amendment: Patent applicant Address: 1, 1333 Atobe, Mugiyo-cho, Mugi-gun, Gifu Name: Nagase Iron Works Co., Ltd. (Name) Representative: Noboru Nagase 4, Agent address: 2 Hatazume-cho, Gifu City, 500 Japan <0582> 65-1810 (Representative) Fax only <0582> 66-13396, Contents of amendment 1, Name of invention Wear detection device for workers and wear detection Method 2, claim 1, is connected to a static pressure guide part (12 to 17) for relatively moving the tool (8) and workpiece (W) in a processing machine, and detects the hydraulic pressure at the same location. Pressure detection means (20-2
5), and a static pressure guide section (1) indicated by the pressure detection means (20 to 25).
2 to 17)) A tool wear detection device comprising: determination means (29) for determining the amount of wear of the tool (8) based on the oil pressure of items 2 to 17). 2. Among the static pressure guide parts (12 to 17) for relatively moving the tool (8) and the workpiece (W) in the processing machine,
A first pressure detection means (20, 21) is connected to the first static pressure guide part (12, 13) to which the main component force (F1) of the grinding resistance is applied during machining, and detects the hydraulic pressure at the same location. , Similarly, among the static pressure guide parts (12 to 17) of the processing machine, the second static pressure guide part (14 to 17) to which the thrust force (F2) of the grinding resistance is applied during machining, is connected to the hydraulic pressure at the same location. second pressure detection means (22 to 25) that detects the hydraulic pressure of the first static pressure guide section (12, 13) indicated by the first pressure detection means (20, 21); Second static pressure guide section (14-17) indicated by detection means (22-25)
A tool wear detection device comprising a determination means (29) for determining the amount of wear of the tool noodle (8) based on the oil pressure of the tool. 3. A tool wear detection method that determines the wear amount of the worker (8) based on the oil pressure of the static pressure guide portion (12 to 17) in the processing machine. 3. Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a tool wear detection device and a wear detection method. Conventional technology] In general, tool abnormalities in processing machines, such as abrasion and chipping in cutting tools such as milling cutters, and wear, clogging, and denting (grinding) in grinding tools such as whetstones, are common.
, below, collectively referred to as wear), it adversely affects the machined surface of the workpiece. Traditionally, operators judge tool wear based on the workpiece after machining. For example, in the case of a grinding wheel, when the workpiece surface becomes rough, grinding burns, etc. occur, or when the amount of cut during grinding occurs. However, when there is little change in the dimensions of the actual workpiece, it is determined that the grindstone is worn out, and the grindstone is dressed or replaced. [Problem to be Solved by the Invention 1] However, as mentioned above, not only does it require considerable skill to judge the amount of wear on the grindstone, but it also requires a certain amount of skill to judge the amount of wear on the grindstone. and wear cannot be determined. Therefore, by the time the operator grasps the situation and takes action, there is a problem that a considerable amount of grinding has already been done with a grindstone that is already worn out. This applies not only to grinding wheels but also to all types of machining shells. The above-mentioned problems occur particularly in the case of unmanned automatic machining, and even though the machining process is automated, the current situation is that tool wear cannot be automatically managed. For this reason, there is a demand for the development of in-process measurement that achieves complete automation and unmanned operation. The purpose of the present invention is to be able to detect tool wear early without requiring the user to be skilled, to prevent machining with defective tools, and to support in-process measurement for unmanned automatic machining. An object of the present invention is to provide a tool wear detection device and a tool wear detection method that can perform the following steps. [Means for Solving the Problems] A first invention includes a pressure detection means connected to a static pressure guide for relatively moving a tool and a workpiece in a processing machine, and detecting oil pressure at the same location; The gist of the present invention is a tool wear detection device comprising a determination means for determining whether the tool is worn out based on the hydraulic pressure of the static pressure guide section, which is not indicated by the pressure detection means. The second invention is connected to the first static pressure guide part to which the main force of the grinding resistance is applied during machining, among the static pressure guide parts for relatively moving the tool and the workpiece in the processing machine, and the same A first pressure detection means for detecting the hydraulic pressure at a location is connected to a second static pressure guide section of the static pressure guide section of the processing machine to which the force of the grinding resistance is applied during machining, and the hydraulic pressure at the same location is a second pressure detection means for detecting the pressure, a hydraulic pressure of the first static pressure guide section indicated by the first pressure detection means, and a hydraulic pressure of the second static pressure guide section indicated by the second pressure detection means. Based on the above, the gist of the present invention is to provide a tool wear detection device comprising a determination means for determining the amount of wear on the tool. The gist of the third invention is a tool wear detection method for determining the amount of tool wear based on the hydraulic pressure of a static pressure guide in a processing machine. [Function] In the first invention, when the tool wears and becomes dull, the hydraulic pressure of the static pressure guide section to which this resistance is applied changes as the machining resistance increases or decreases. The determination means determines the amount of wear on the tool based on the hydraulic pressure of the static pressure guide detected by the pressure detection means. In the second invention, when the tool wears and becomes dull, the principal force of the machining resistance decreases and the thrust force increases. As the main force decreases, the oil pressure of the first static pressure guide to which this force is applied decreases or increases, and as the thrust force increases, the oil pressure of the second static pressure guide to which this force is applied increases or decreases. do. The determination means detects the tool based on the oil pressure of the first static pressure guide detected by the first pressure detection means and the oil pressure of the second static pressure guide detected by the second pressure detection means. Determine the amount of wear. In the third invention, when the tool wears and becomes dull, the hydraulic pressure of the static pressure guide section to which this resistance is applied changes as the machining resistance increases or decreases. Therefore, it is possible to determine whether the tool is worn out based on the hydraulic pressure of the static pressure guide. [Example] Hereinafter, an example in which the present invention is embodied in a wear display device for a grinding wheel of a grinding machine will be described with reference to the drawings. As shown in FIG. 1, a spindle 2 that can move up and down within a column 1 of a grinding machine is provided with a main spindle head 3 so as to protrude forward, and a bearing sleeve 4 is fitted into the main spindle head 3. There is. A holding hole 4 provided through the bearing sleeve 4
The large diameter portion 5a of the main shaft 5 is rotatably inserted into the sleeve 4, and front and rear covers 6.7 are attached to the front and rear of the sleeve 4.
are opposed to the step portions 5b formed on both sides of the large diameter portion 5a, and stop the movement of the main shaft 5 in the axial direction with respect to the bearing sleeve 4. A grindstone 8 as a tool is attached to the front end of the main shaft 5, and the rear end is connected via a coupling 10 to a motor 9 for driving the grindstone provided on the spindle 2. As shown in Figure 1.2, the outer periphery of the main shaft 5 and the holding hole 4
There is a fine gap 11 between the inner circumferential wall of a for static pressure guidance.
This gap 11 is also formed between the stepped portion 5b of the main shaft 5 and the front cover 6 and rear cover 7, respectively. In addition, right and left pockets 12 and 13 and upper and lower pockets 14 and 15 for static pressure guidance are provided at equal intervals on the inner circumferential wall of the holding hole 4a at the front and rear parts thereof, respectively. Front and rear cover 6゜7
Also provided are annular front and rear pockets 16, 17, respectively. An oil supply path and an oil recovery path (not shown) are connected to each of the pockets 12 to 17, and the hydraulic oil in the oil tank is supplied to each pocket 12 to 17 via the oil supply path by an oil pump.
After being pumped into the oil tank 17, the oil is collected into an oil tank via an oil recovery path. The right and left pockets 12.13 are used as first static pressure guide parts, and the upper and lower pockets 14.15 and the front and rear pockets 16.17 are respectively used as second static pressure guide parts. The hydraulic oil supplied into each of the pockets 12 to 17 fills the pockets 12 to 17 and forms an oil film in each gap 11. Therefore, the main shaft 5 is connected to the bearing sleeve 4.
is held in the holding hole 4a via an oil film, and
The grindstone is rotated clockwise by a motor 9 for driving the grindstone. The right, left, upper, and lower pockets 12 to 5 on the front side of the holding hole 4a open to the outer periphery of the flange of the bearing sleeve 4 via an oil pressure detection path 18, and each opening has a coupler 19. is screwed in. Right and left pressure sensors 20.21 as first pressure detection means are removably connected to the cover 19 communicating with the right and left pockets 12.13, respectively.
Coupler 19 communicating with upper and lower pockets 14°15
Upper and lower pressure hinges 22 and 23 as second pressure detection means are removably connected to the respective pockets 12 to 15 to detect the hydraulic pressure in the respective pockets 12 to 15. The front pocket 16 opens on the outer periphery of the front cover 6 via an oil pressure detection path 18, and the rear pocket 17 opens on the outer periphery of the flange of the bearing sleeve 4 via an oil pressure detection path 18. Front and rear pressure sensors 24.25 as second pressure detection sensors are detachably connected to the screwed cover 19 to detect the oil pressure in each pocket 16.17. As shown in FIG. 1.2, each of the pressure sensors 20 to 25
is connected to a display W26, and on the front surface of the display panel 26 is provided a display section 26a composed of an LED for displaying the wear state of the grindstone, and below the display section 26a is a display section 26a for measuring the wear amount of the grindstone 8. A grindstone specification dial 27 and a power switch 28 are provided for specifying the type of grindstone. As shown in FIG. 3, each of the lenses 20 to 25 and a grindstone designation dial 27 are connected to a central processing unit (hereinafter referred to as CPU) 29 installed in the display panel 26, and a display section 26a are connected via a display unit drive circuit 32. Further, a random access memory (hereinafter referred to as RAM) 30 and a read only memory (hereinafter referred to as ROM) 31 are connected to the CPU 29, and RO
The M31 stores a program for determining whether the grindstone 8 is grinding the workpiece W and a program for determining the amount of wear on the grindstone 8, and the CPU 29 operates to display the amount of wear according to these programs. It is now possible to do this. Note that the RAM 30 is designed to temporarily store data for processing performed by the CPU 29. Next, we will describe the operation of the wear display device configured as described above, but before that, we will explain how the grinding resistance generated during grinding affects the oil pressure in each of the pockets 12 to 17. do. Needless to say, no grinding resistance is generated during idle running when the grindstone 8 separates from the workpiece W as the workpiece W reciprocates in the left-right direction. For this reason, the grindstone 8 and the main shaft 5 that supports it
Since no grinding resistance is applied to the gaps 11, all of the gaps 11 are uniform, and the resistance when the hydraulic oil flows from inside each pocket 12 to 17 to the oil recovery path through the gap 11 is equal. The pressure inside 17 is also all equal. As shown in FIG.
When grinding, the thrust force F2 of the grinding resistance is applied to the grinding wheel 8.
This thrust force F2 also extends to the main shaft 5 supporting the grindstone 8. As a result, the gap 11 near the upper pocket 14 becomes narrower, making it difficult for the hydraulic oil that has flowed into the upper pocket 14 to be discharged to the oil recovery path, thereby increasing the oil pressure within the pocket 14. Also,
On the contrary, the gap 11 near the lower pocket 15 becomes wider, so that the hydraulic oil that has flowed into the lower pocket 15 is easily discharged to the oil recovery path, and the oil pressure in the pocket 15 decreases. Therefore, a pressure difference is generated between both pockets 14 and 15, and this pressure difference increases or decreases in accordance with the magnitude of the thrust force F2 applied to the grindstone 8. Furthermore, when the grindstone 8 is grinding the workpiece W on its side surface, the thrust force F2 of the grinding resistance acts to move the grindstone 8 to the side opposite to the cutting direction (backward in Figure I35). As in the case described above, the oil pressure in one of the front and rear pockets 16, 17 increases while the other oil pressure decreases. For this reason, both pockets 16.1
A pressure difference is generated between the wheels 7 and 7, and the pressure difference in this case also increases or decreases in accordance with the magnitude of the thrust force F2 applied to the grindstone 8. On the other hand, as shown in FIG. 4, since the grindstone 8 rotates clockwise during any of the grinding operations described above, the main force F1 of the grinding resistance acts to move the grindstone 8 to the right. Therefore, during grinding, the oil pressure in the right pocket 12 always increases while the oil pressure in the left pocket 13 decreases, and both pockets 12
.. A pressure difference occurs at 13. The pressure difference in this case increases or decreases in accordance with the magnitude of the principal force F1 applied to the grindstone 8. Generally, the ratio of the principal force F1 of the grinding resistance to the thrust force F2 takes a value of about 1:1.5 to 1:2.5, and this value changes as the grinding wheel 8 wears out. That is, when a back force is generated by grinding a certain cutting edge, a principal force corresponding to the amount of wear of the grindstone 8 at this point in time is generated. For example, as shown by the broken line in FIG. 7, an unused grindstone 8 has good sharpness, so the ratio of the principal force F1 to the back force F2 is large. When the sharpness deteriorates due to wear, the principal force F1 decreases and the thrust force F2 increases, reaching the wear limit shown by hatching in FIG. In this way, when the grinding wheel 8 wears out, the principal force F1 and the thrust force F
2 increases or decreases, and the oil pressure in each of the pockets 12 to 17 changes. Therefore, the wear of the grindstone 8 can be determined based on the oil pressure in each of the pockets 12 to 17. Therefore, assuming that the above phenomenon occurs,
A case in which the wear of the grindstone 8 is measured using this wear display device will be described in detail. First, the type of grindstone 8 whose wear amount is to be measured is determined from the display panel 2.
Grinding wheel 8 is specified using Daicel 27, and grinding is started on a work W of a predetermined material at a predetermined cutting depth, workpiece feed speed, and grindstone rotation speed. Activate the power switch 28. Then, as shown in FIG.
The detected value of is synchronized with the reciprocating movement of the workpiece W, and alternately repeats a certain pressure value and a pressure value higher by a predetermined amount than that value, and the detected value of the left pressure sensor 21 is the same pressure value as the right pressure sensor 20. A pressure value lower than that by a predetermined amount is alternately repeated. The CPLJ 29 inputting this detection signal determines that when there is a pressure difference, it is the time of grinding ilQ, and when there is no pressure difference, it determines that it is the time of idle running when the grindstone 8 is separated from the workpiece W. As mentioned above, during grinding, a pressure difference always occurs between the right and left pockets 12, 13, and when running idle, both pockets 12.
.. 13, the time when the right and left pressure hinges 20 and 21 detect a pressure difference can be regarded as the time of grinding, and the time when no pressure difference is detected can be considered as the time of idle running. . Next, the CPU 29 determines which of the pressure difference indicated by the upper and lower pressure sensors 22.23 and the pressure difference indicated by the front and rear pressure sensors 24.25 is larger during grinding. As mentioned above, the upper and lower pressure sensors 22,2
3 indicates a large pressure difference, the front and rear pressure hinges 24
.. 25 shows almost no pressure difference, it can be assumed that grinding is being carried out on the outer peripheral surface of the grindstone 8. On the contrary, the upper and lower pressure sensors 22 and 23 show almost no pressure difference, and the front and When the rear pressure sensors 24 and 25 indicate a large pressure difference, it can be assumed that grinding is being performed on the side surface of the grindstone 8. For example, if the upper and lower pressure sensors 22.23 indicate a large pressure difference, the CPU 29 determines that grinding is being performed by the outer peripheral surface of the grindstone 8, and the upper and lower pressure sensors 22.23 indicate that the The ratio between the pressure difference and the pressure difference indicated by the right and left pressure sensors 20 and 21 during grinding is determined. As described above, as the grindstone 8 wears, the pressure difference indicated by the upper and lower pressure sensors 22 and 23 increases, and the pressure difference between the stone and left pressure sensors 20.
Since the pressure difference indicated by 21 becomes smaller, it can be assumed that the ratio of the difference between the two positive forces also changes as the grindstone 8 wears. The ROM 3i stores the ratio of each grindstone 8 that can be selected with the fJ1EJ designation dial 27 when it is not in use and at the wear limit, and the CPU 29 stores the calculated ratio. The position between the ratio when not in use and the ratio at the limit of wear stored in the ROM 31 is determined based on the ratio where the ratio when not in use is 100% and the ratio at the limit of use is 0%. , said display 5? a26
is displayed on the display section 26a. For example, if the grindstone 8 is close to the wear limit, a value close to 0% will be displayed, and the user will need to replace the grindstone 8 or perform a predetermined dressing operation. On the other hand, if the front and rear pressure sensors 24.25 indicate a large pressure difference, the CPU 29 determines that grinding is being performed by the side surface of the grindstone 8, and the pressures indicated by the front and rear pressure sensors 24.25 during grinding. The ratio of the difference to the pressure difference indicated by the right and left pressure sensors 20, 21 during grinding is determined. In this case, as the grinding wheel 8 wears out, the pressure difference between the front and rear pressure sensors 24 and 25 increases, and the pressure difference between the right and left pressure sensors 20 and 21 decreases, so both positive It can be assumed that the ratio of the difference also changes as the grindstone 8 wears. The ROM 31 also stores the values of the ratio when unused and at the wear limit, and the CPU 29 determines which ratio the calculated ratio is between the ratio when unused and the ratio at the wear limit. It is determined whether it is in the position or not, and the result is displayed on the numerical display section 26a of the display panel 26. Then, as in the case described above, the user determines whether a dressing operation or the like is necessary based on this display. As mentioned above, the reason why the material of the workpiece W, depth of cut, workpiece feed speed, and grindstone rotation speed are set to predetermined values is that these factors affect the ratio of the principal force F1 and the thrust force F2. This is because an error occurs in the application determination result, and the reason why the ratios stored in the ROM 31 are used depending on the type of grindstone to be measured is because the ratios differ depending on the grindstones 8. In this way, according to the wear display device of this embodiment, since the amount of wear on the grinding wheel 8 is displayed as a numerical value, even an unskilled person can easily judge the wear. E2
Since the ratio between the
The wear state of the grindstone 8 can be determined extremely accurately and quickly. Therefore, the wear of the grindstone 8 is not noticed too late, and the workpiece W does not continue to be ground with the grindstone 8 that has become worn. In addition, in the wear display device of this embodiment, upper and lower pockets 14.15 and front and rear pockets 16.1
Since the hydraulic pressure of grinding wheel 8 and 7 is detected respectively,
The amount of wear on the outer circumferential surface and side surface of the grindstone 8 can be displayed, allowing the user to grasp the wear state of the grindstone 8 more accurately. Note that this embodiment uses the wear detection device of the present invention. Although the wear detection device of the present invention is embodied as a display device that displays the amount of wear of i8, the wear detection device of the present invention is not limited to this, and for example,
It is embodied as a wear detection device d that determines the amount of wear on the grinding wheel in an NC grinding machine, and based on the judgment value of the device, the NG grinding machine side automatically takes a predetermined action, for example, notifies the administrator with a brake. Alternatively, the dressing process may be performed automatically. With this configuration, the wear state of the grindstone can be automatically managed, and completely unmanned automatic machining can be achieved. Further, although the wear display device of this embodiment was intended for the grinding wheel 8 of a grinding machine, it is not limited to this.
It may also be applied to other cutting tools. In the case of cutting tools such as milling cutters, the ratio of principal force F1 and thrust force F2 is approximately 1:0.3, but even in this case, the principal force F1 and thrust force F2 increase as wear progresses. Since there is a correlation as described in this embodiment between the fluctuation in the pressure and the oil pressure in each pocket, tool wear can be determined based on the oil pressure in each pocket. Roughly speaking, the wear display device of this embodiment connects pressure sensors 20 to 25 to each pocket 12 to 17 of the static pressure guide that supports the main shaft 5 of the grinding machine, and adjusts the grinding wheel 8 based on the detected values. Although wear has been determined, the pressure sensor may, for example, be connected to a pocket of a static pressure guide for reciprocating the table of a grinding machine. In this case, the thrust force F2 accompanying the grinding acts to push down the table, so the thrust force F2 can be determined based on the oil pressure in this pocket. On the other hand, in the wear display device of this embodiment, the discrimination between grinding and idle running is made based on the fluctuation of the oil pressure in the right and left pockets 12 and 13. For example, when the user operates the button during grinding, The CPU 29 may determine that the time when this signal is inputted is the time of grinding. Also,
In addition to the normal limit switch for setting the reciprocating stroke of the table of the grinding machine, there is also a limit switch for detecting the position where the moving workpiece W contacts the grinding wheel 8 and the position where the workpiece W separates from the grinding wheel 8. A limit switch is provided, and based on the on/off of this limit switch, the CPU 29
Alternatively, the grinding time may be determined. In addition, in the wear display device of this embodiment, thrust force F2
Although the upper and lower pressure sensors 22, 23 and the front and rear pressure sensors 24, 25 are provided in order to estimate the If provided, it is possible to grind the outer circumferential surface of the grindstone 8 and measure the wear distance. Furthermore, in the wear display device of this embodiment, the principal force F1 is determined from the pressure difference in the right and left pockets 12 and 13, and the principal force F1 is determined from the pressure difference in the upper and lower pockets 14 and 15, or the front and rear sides. Although the thrust force F2 was determined from the pressure difference in the pockets 16 and 17, it is not necessary to determine the respective pressure differences. For example, the principal force F2 is determined based on the oil pressure in the upper pocket 14, and The thrust force F2 may be determined based on the oil pressure in the engine 12. Furthermore, since the oil pressure in all the pockets 12 to 17 increases and decreases as the grinding wheel 8 wears, if it is known in advance how the oil pressure in a particular pocket changes as the grinding wheel 8 wears, It is also possible to determine the wear of the grindstone 8 based only on the oil pressure in the pocket. Therefore, for example,
The wear of the grindstone 8 may be determined based only on the oil pressure in the right side pocket 12. [Effects of the Invention] As detailed above, according to the tool wear detection device and the tool wear detection method of the present invention, tool wear can be detected early without requiring the user to be skilled, and defective tools can be detected. It has the excellent effect of preventing machining in advance and also supporting in-process measurement for unmanned automatic machining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は主軸ヘッドと表示盤とを示す研削盤の部分断面
図、第2図は同じく主軸ヘッドの側断面図、第3図は電
気的構成を示すブロック図、第4図は砥石とワークとの
間に生じる主分力と背分力を示す説明図、第5図は同じ
く砥石とワークとの間に生じる背分力を示す説明図、第
6図は砥石の往復動に伴う圧力センサの検出値の変動を
示す説明図、第7図は砥石の摩耗に伴う主分力と背分力
の変化を示す説明図である。 8は工具としての砥石、12.13は第一の静圧案内部
としての右側及び左側ポケット、13〜17は第二の静
圧案内部としての上側、下側、前側、及び後側ポケット
、20.21は第一の検出手段としての右側及び左側圧
力センサ、22〜25は第二の検出手段としての上側、
下側、前側、及び復側圧カセンサ、29は判定手段とし
てのCpu、wはワーク、Flは主分力、F2は背分力
である。
Figure 1 is a partial sectional view of the grinding machine showing the spindle head and display plate, Figure 2 is a side sectional view of the spindle head, Figure 3 is a block diagram showing the electrical configuration, and Figure 4 is the grinding wheel and workpiece. Fig. 5 is an explanatory diagram showing the principal force and thrust force generated between the grinding wheel and the workpiece, Figure 5 is an explanatory diagram showing the thrust force generated between the grinding wheel and the workpiece, and Fig. 6 is a pressure sensor accompanying the reciprocating movement of the grinding wheel. FIG. 7 is an explanatory diagram showing changes in the detected value of , and FIG. 7 is an explanatory diagram showing changes in the principal component force and thrust component force due to wear of the grindstone. 8 is a grindstone as a tool; 12.13 is a right and left pocket as a first static pressure guide; 13 to 17 are upper, lower, front, and rear pockets as a second static pressure guide; 20. 21 are right and left pressure sensors as first detection means, 22 to 25 are upper side as second detection means,
Lower side, front side, and return side pressure sensors, 29 are Cpu as a determination means, w is a workpiece, Fl is a principal component force, and F2 is a thrust component force.

Claims (1)

【特許請求の範囲】 1、加工機における工具(8)とワーク(W)とを相対
的に移動させるための静圧案内部(12〜17)と接続
され、同箇所の油圧を検出する圧力検出手段(20〜2
5)と、 前記圧力検出手段(20〜25)が示す静圧案内部(1
2〜17)の油圧に基いて、工具(8)の摩耗量を判定
する判定手段(29)と を備えた工具の摩耗検出装置。 2、加工機における工具(8)とワーク(W)とを相対
的に移動させるための静圧案内部(12〜17)の内、
加工時に研削抵抗の主分力(F1)が加わる第一の静圧
案内部(12,13)と接続され、同箇所の油圧を検出
する第一の圧力検出手段(20,21)と、 同じく加工機の静圧案内部(12〜17)の内、加工時
に研削抵抗の背分力(F2)が加わる第二の静圧案内部
(14〜17)と接続され、同箇所の油圧を検出する第
二の圧力検出手段(22〜25)と、 前記第一の圧力検出手段(20,21)が示す第一の静
圧案内部(12,13)の油圧と、第二の圧力検出手段
(22〜25)が示す第二の静圧案内部(14〜17)
の油圧とに基いて、工具(8)の摩耗量を判定する判定
手段(29)とを備えた工具の摩耗検出装置。
[Claims] 1. Pressure connected to the static pressure guide section (12 to 17) for relatively moving the tool (8) and workpiece (W) in the processing machine and detecting the hydraulic pressure at the same location. Detection means (20-2
5), and a static pressure guide section (1) indicated by the pressure detection means (20 to 25).
2 to 17)) A tool wear detection device comprising: determination means (29) for determining the amount of wear of the tool (8) based on the oil pressure of items 2 to 17). 2. Among the static pressure guide parts (12 to 17) for relatively moving the tool (8) and the workpiece (W) in the processing machine,
The first pressure detection means (20, 21) is connected to the first static pressure guide section (12, 13) to which the main component force (F1) of the grinding resistance is applied during machining, and detects the hydraulic pressure at the same location. Among the static pressure guide parts (12 to 17) of the processing machine, it is connected to the second static pressure guide part (14 to 17) to which the thrust force (F2) of the grinding resistance is applied during machining, and the hydraulic pressure at the same point is detected. second pressure detection means (22 to 25), the hydraulic pressure of the first static pressure guide section (12, 13) indicated by the first pressure detection means (20, 21), and a second pressure detection means The second static pressure guide section (14-17) indicated by (22-25)
A tool wear detection device comprising a determination means (29) for determining the amount of wear of the tool (8) based on the oil pressure of the tool.
JP33267588A 1988-12-28 1988-12-28 Detecting device for wear of tool Pending JPH02176540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33267588A JPH02176540A (en) 1988-12-28 1988-12-28 Detecting device for wear of tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33267588A JPH02176540A (en) 1988-12-28 1988-12-28 Detecting device for wear of tool

Publications (1)

Publication Number Publication Date
JPH02176540A true JPH02176540A (en) 1990-07-09

Family

ID=18257623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33267588A Pending JPH02176540A (en) 1988-12-28 1988-12-28 Detecting device for wear of tool

Country Status (1)

Country Link
JP (1) JPH02176540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2396981A (en) * 2003-01-02 2004-07-07 Unova Uk Ltd Monitoring wear of a grinding wheel
JP2021049626A (en) * 2019-09-26 2021-04-01 株式会社ジェイテクト Cylinder grinding device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873886A (en) * 1971-12-29 1973-10-05
JPS62188649A (en) * 1986-02-12 1987-08-18 Murata Mach Ltd Method and device for supervising tool wearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873886A (en) * 1971-12-29 1973-10-05
JPS62188649A (en) * 1986-02-12 1987-08-18 Murata Mach Ltd Method and device for supervising tool wearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2396981A (en) * 2003-01-02 2004-07-07 Unova Uk Ltd Monitoring wear of a grinding wheel
GB2396981B (en) * 2003-01-02 2004-12-15 Unova Uk Ltd Grinding wheel monitoring
JP2021049626A (en) * 2019-09-26 2021-04-01 株式会社ジェイテクト Cylinder grinding device

Similar Documents

Publication Publication Date Title
US20080161959A1 (en) Method to measure tool wear from process model parameters
JPH0241872A (en) Numerical control grinder
CN106378668A (en) Control method of five-axis double-end-surface grinding machine
CN114473870A (en) Grinding machine monitoring system and monitoring method
EP3209460A1 (en) Way of saving costs in connection with grinding and means for that
JP3944942B2 (en) Tool abnormality detecting device for machine tool and recording medium recording tool abnormality detecting program for machine tool
JPH02176540A (en) Detecting device for wear of tool
JP4261493B2 (en) Dressing device, grinding device, dressing method, and numerical control program
JP3305076B2 (en) Cutting equipment
JP3305732B2 (en) Control method of surface grinder
JPH02256461A (en) Abrasion detecting device for grindstone and abrasion detecting method
JP2003295134A (en) Method of fabricating lens, apparatus for fabricating lens and information recording medium
US5277529A (en) Sensor-controlled deburring and cutting sensor to carry out the process
JP2508051B2 (en) Processing device with correction function
JP2006334748A (en) Internal surface grinding wheel, grinding device and forming device
JP2660203B2 (en) Grindstone wear detector
KR101967509B1 (en) Processing machine, control method thereof and program
JPH06339859A (en) Dressing timing judging method for super abrasive grain wheel and device thereof
JP2009502528A (en) Method and apparatus for measuring the shape of a chamfered cutting blade
EP4252964A1 (en) Automated grinding system
JP2004114195A (en) Grinding method and cylindrical grinding machine
JP2021102247A (en) Processing method with use of rotary tool and machine tool
JPH0938859A (en) Automatic grinding device
JP2003275947A (en) Method of automatically grinding blade for cold shear cutting machine
JP2024087249A (en) Processing evaluation device