JPH0217639A - Method of forming silicon oxide film - Google Patents

Method of forming silicon oxide film

Info

Publication number
JPH0217639A
JPH0217639A JP16801488A JP16801488A JPH0217639A JP H0217639 A JPH0217639 A JP H0217639A JP 16801488 A JP16801488 A JP 16801488A JP 16801488 A JP16801488 A JP 16801488A JP H0217639 A JPH0217639 A JP H0217639A
Authority
JP
Japan
Prior art keywords
oxide film
silicon oxide
gas
substrate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16801488A
Other languages
Japanese (ja)
Other versions
JP2801604B2 (en
Inventor
Sadahisa Noguchi
野口 禎久
Haruo Okano
晴雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63168014A priority Critical patent/JP2801604B2/en
Publication of JPH0217639A publication Critical patent/JPH0217639A/en
Application granted granted Critical
Publication of JP2801604B2 publication Critical patent/JP2801604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To make it possible to accumulate insulation films inside a groove of high aspect ratio and simplify the control and device by setting a pressure inside a reaction container and a substrate temperature to be processed for a condition that a product from the reaction of feedstock gas and reactive gas becomes a liquid. CONSTITUTION:A processed substrate 15 on which surface is formed a groove is housed in a reaction container 11 capable of vacuum-discharged. At least feedstock gas representing by SiHaXb (where, X is at least one kind of halogen atom selected from F, Cl, Br, a=0 to 4, b=0 to 4, a+b=4) and reactive gas containing oxygen capable of chemically reacting with the feedstock gas are introduced in the reaction container at the same time. For a condition such that the feedstock gas, the reactive gas, or the product from the reaction of the two gas become a liquid on the above processed substrate, the pressure inside the reaction container and the temperature of the processed substrate are set, and a silicon oxide film is buried in the grooved on the surface of the processed substrate. As a reactive gas containing oxygen capable of chemically reacting with the feedstock gas, for example, it should preferably be H2O, O2, NO, NO2, CO, CO2 or an organic compound gas containing at least silicon and oxygen.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は超LSIデバイス等の半導体製造に用いられる
シリコン酸化膜形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for forming a silicon oxide film used in the manufacture of semiconductors such as VLSI devices.

(従来の技術) 超LSIデバイス等の半導体製造に用いられる薄膜形成
方法を大別すると、化学的気相成長法(CheIIli
cal Vapor Deposition:CVD)
と、物理的気相成長法(Physical Vapor
 Deposition:PVD)とに分類される。上
記CVD法は基板表面や気相中での化学反応を利用して
、基板上に薄膜を形成する方法であり、主としてシリコ
ン酸化膜やシリコン窒化膜などの絶縁膜の形成に用いら
れている。また、PVD法は気相中で生成した堆積粒子
を基板へ衝突させて薄膜を形成する方法であり、主とし
て金属膜の形成に用いられている。
(Prior art) Thin film forming methods used in the manufacture of semiconductors such as VLSI devices can be roughly divided into chemical vapor deposition methods (CheIIli
cal Vapor Deposition:CVD)
and physical vapor deposition method.
Deposition: PVD). The CVD method is a method of forming a thin film on a substrate by utilizing a chemical reaction on the surface of the substrate or in a gas phase, and is mainly used for forming an insulating film such as a silicon oxide film or a silicon nitride film. The PVD method is a method of forming a thin film by colliding deposited particles generated in a gas phase with a substrate, and is mainly used for forming metal films.

一方、最近の超LSIデバイスではアスペクト比(深さ
7幅)の高い溝内への薄膜堆積技術が必須となりつつあ
る。しかし、例えば従来のブラズTCVD法(例えばJ
、L、Vossen  & W、Kern;ThinF
ilm Process;Academic Pres
s 1978)などを用い、第6図に示すようにシリコ
ン基板1の表面に形成された溝2内に例えばシリコン酸
化膜3を埋め込む場合、シリコン基板1の角部4近傍に
おいて気相中で生じた堆積種の堆積が多く、堆積種がし
だいに溝2底部に入りにくくなり、溝2内部に空洞を生
じて段差被覆特性が劣化する。
On the other hand, in recent VLSI devices, thin film deposition technology in trenches with a high aspect ratio (depth 7 width) is becoming essential. However, for example, conventional Braz TCVD method (e.g. J
, L., Vossen & W., Kern; ThinF.
ilmProcess;Academic Pres
When, for example, a silicon oxide film 3 is buried in the groove 2 formed on the surface of the silicon substrate 1 as shown in FIG. As a result, it becomes increasingly difficult for the deposited species to enter the bottom of the groove 2, creating a cavity inside the groove 2 and deteriorating the step coverage characteristics.

この段差被覆形状を改善する方法としてPVD法の一つ
であるバイアススパッタ法と称される技術が知られてい
る(例えばT、Mogami、Morlmoto &0
kabayasl;Extended abstrac
ts 1ath conf’、5olldState 
Devices & Materials、 Kobe
、19114.p、43)。
A technique called bias sputtering, which is one of the PVD methods, is known as a method for improving the step coverage shape (for example, T, Mogami, Morlmoto &0
Extended abstrac
ts 1ath conf', 5oldState
Devices & Materials, Kobe
, 19114. p. 43).

この方法では、Arイオンで基板表面を物理的にスパッ
タリングして堆積種を除去しながら、これとの競争反応
を用いて例えばシリコン酸化膜を堆積する。このため、
プラズマCVD法の場合と異なり、シリコン基板の角部
近傍での堆積は起こらず、平坦部(2!板表面及び溝底
部)でのみ堆積を生じるので、溝内への絶縁膜の堆積が
可能になる。
In this method, Ar ions are used to physically sputter the substrate surface to remove deposited species, and a competitive reaction with the deposited species is used to deposit, for example, a silicon oxide film. For this reason,
Unlike the plasma CVD method, deposition does not occur near the corners of the silicon substrate, but only on the flat areas (2! board surface and trench bottom), making it possible to deposit an insulating film inside the trench. Become.

しかし、この方法では気相中の堆積種が溝内へ斜めに入
射してくるため、アスペクト比〉1の溝ではやはり埋め
込み困難となる。また、物理的スパッタリングによる堆
積種の除去と堆積との競争反応を用いているので、実効
的な堆積速度が遅く、生産性が極めて低い。更に、プラ
ズマ中での照射損傷も避けられない。
However, in this method, the deposited species in the gas phase enter the groove obliquely, so it is still difficult to fill the groove with an aspect ratio>1. Furthermore, since a competitive reaction between removal of deposited species by physical sputtering and deposition is used, the effective deposition rate is slow and productivity is extremely low. Furthermore, irradiation damage in plasma is also unavoidable.

そこで、最近、堆積種のうち溝内へ斜めに入射する成分
を少なくしたECRバイアススパッタ法(例えば!1.
0ikava;SEMITECIINOLOGY SY
M、 1980 E3〜1)が提案されている。しかし
、この方法でも上述した問題は軽減されるものの、本質
的な解決策とはなっていない。
Therefore, recently, the ECR bias sputtering method (for example, 1.
0ikava;SEMITECIINOLOGY SY
M, 1980 E3-1) has been proposed. However, although this method also alleviates the above-mentioned problem, it is not an essential solution.

このほか、例えばTE01の熱分解法(例えばR,D、
Rang、Y、Moll1ose &  Y、Naga
kubo;IEDM、TECH。
In addition, for example, the thermal decomposition method of TE01 (for example, R, D,
Rang, Y, Moll1ose & Y, Naga
kubo; IEDM, TECH.

DIG、1982.p、237)を用いてシリコン酸化
膜を形成した場合、堆積種の大きな表面移動が起こるの
で、第7図(a)に示すように、シリコン基板1の表面
に形成された溝2内に堆積されるシリコン酸化膜3は優
れた段差被覆特性を示す。しかし、この方法により溝2
内にシリコン酸化膜3を埋め込んだ後、例えば希釈した
HF溶液で洗浄処理すると、同図(b)に示すように、
溝2の中央部上面(図中Xで表示)でシリコン酸化膜3
の除去速度が異常に速くなり、結局埋め込み平坦化が実
現できない。
DIG, 1982. When a silicon oxide film is formed using a silicon oxide film (p, 237), large movement of the deposited species occurs on the surface, so as shown in FIG. The silicon oxide film 3 shown here exhibits excellent step coverage characteristics. However, with this method, groove 2
After embedding the silicon oxide film 3 in the silicon oxide film 3, cleaning treatment is performed using, for example, a diluted HF solution, as shown in FIG.
Silicon oxide film 3 is formed on the upper surface of the central part of groove 2 (indicated by X in the figure).
The removal speed becomes abnormally fast, and as a result, buried flattening cannot be achieved.

この原因は、溝3の側壁から成長してきたシリコン酸化
膜3どうしの歪みが溝3の中央部付近に残存するためと
考えられる。
The reason for this is thought to be that distortions between the silicon oxide films 3 that have grown from the sidewalls of the groove 3 remain near the center of the groove 3.

以上のように、コンファーマブルに薄膜を形成する方法
でも、高アスペクト比の溝内にシリコン酸化膜などの絶
縁膜を埋め込むことは極めて困難であると考えられてい
た。
As described above, even with the method of forming a thin film in a conformable manner, it was thought to be extremely difficult to bury an insulating film such as a silicon oxide film into a trench with a high aspect ratio.

このような問題を解決するために、テトラメチルシラン
(S i  (CH3)4  ; TMS)ガスとマイ
クロ波放電によって励起した酸素原子とを反応させ、そ
の反応生成物の沸点以下に基板を冷却することによって
、高アスペクト比の溝内にシリコン酸化膜を堆積する方
法(液相酸化法)が知られている(例えばS、Nogu
chi et al、;SSDM 5−11−13(1
987)451)。この方法によれば、第8図(a)〜
(C)に示すように、シリコン基板1表面に形成された
溝2の底部からシリコン酸化膜3が堆積されるので、高
アスペクト比の溝2内にも容易にシリコン酸化膜3を埋
め込むことができる。しかし、この方法ではマイクロ波
放電によって活性化した酸素原子により原料ガスを酸化
しているため、マイクロ波放電部と試料ウェハまでの距
離、マイクロ波放電電力やマイクロ波放電圧力など堆積
パラメータが多くなり、装置が複雑になるとともに堆積
パラメータの制御が複雑になるという問題がある。
To solve these problems, tetramethylsilane (S i (CH3)4; TMS) gas is reacted with oxygen atoms excited by microwave discharge, and the substrate is cooled to below the boiling point of the reaction product. Therefore, a method (liquid phase oxidation method) of depositing a silicon oxide film in a trench with a high aspect ratio is known (for example, S, Nogu
chi et al; SSDM 5-11-13 (1
987)451). According to this method, FIG.
As shown in (C), since the silicon oxide film 3 is deposited from the bottom of the groove 2 formed on the surface of the silicon substrate 1, it is possible to easily fill the silicon oxide film 3 into the groove 2 having a high aspect ratio. can. However, since this method oxidizes the source gas with oxygen atoms activated by microwave discharge, there are many deposition parameters such as the distance between the microwave discharge section and the sample wafer, microwave discharge power, and microwave discharge pressure. However, there are problems in that the apparatus becomes complicated and the control of the deposition parameters becomes complicated.

(発明が解決しようとする課題) 上述したように従来のマイクロ波放電を用いた液相酸化
法によると、高アスペクト比の溝内にシリコン酸化膜を
堆積できるという利点があるが、マイクロ波放電に関す
る堆積パラメータが多くなり、堆積制御が複雑になると
いう問題がある。
(Problem to be Solved by the Invention) As mentioned above, the conventional liquid phase oxidation method using microwave discharge has the advantage of being able to deposit a silicon oxide film in a trench with a high aspect ratio. There is a problem in that the number of deposition parameters related to the method increases, making deposition control complicated.

本発明の目的は、マイクロ波放電を用いずに液相酸化法
によって高アスペクト比の溝内にシリコン酸化膜を堆積
することができ、堆積パラメータめ制御や装置を簡単に
できる方法を提供することにある。
An object of the present invention is to provide a method that can deposit a silicon oxide film in a high aspect ratio trench by a liquid phase oxidation method without using microwave discharge, and that allows easy control of deposition parameters and equipment. It is in.

[発明の構成] (課題を解決するための手段と作用) 本発明のシリコン酸化膜形成方法は、真空排気できる反
応容器内に表面に溝が形成された被処理基体を収容し、
反応容器内に3iH,Xb(ただし、XはFs Ci’
 SB rから選ばれる少な(とも1種のハロゲン原子
、a −0〜4、b−0〜4、a + b 〜4)で表
わされる原料ガス及び該原料ガスと化学反応しうる酸素
を含有する反応性ガスを同時に導入し、かつ原料ガス、
反応性ガス、又は両者との反応生成物が上記被処理基体
上で液体となる条件に、反応容器内の圧力及び被処理基
体の温度を設定することにより、上記被処理基体表面の
溝にシリコン酸化膜を埋め込むことを特徴とするもので
ある。
[Structure of the Invention] (Means and Effects for Solving the Problems) The method for forming a silicon oxide film of the present invention includes accommodating a substrate to be processed having grooves formed on its surface in a reaction vessel that can be evacuated;
3iH, Xb (X is Fs Ci'
Contains a raw material gas represented by a small number (both one type of halogen atom, a -0 to 4, b-0 to 4, a + b to 4) selected from SBr and oxygen that can chemically react with the raw material gas. Reactive gas is introduced at the same time, and raw material gas,
By setting the pressure inside the reaction vessel and the temperature of the substrate to be treated so that the reactive gas or the reaction product with both becomes liquid on the substrate, silicon is deposited in the grooves on the surface of the substrate to be treated. It is characterized by embedding an oxide film.

本発明において、原料ガスと化学反応しうる酸素を含有
する反応性ガスとしては、例えばH2O,0□、NO,
NO2、Co、CO2又は少なくともシリコンと酸素と
を含む有機化合物ガスを挙げることができる。
In the present invention, the reactive gas containing oxygen that can chemically react with the source gas includes, for example, H2O, 0□, NO,
Examples include NO2, Co, CO2, or an organic compound gas containing at least silicon and oxygen.

本発明方法で用いられる原料ガス及び反応性ガスとこれ
らの反応を例示すると、例えば原料ガスとしてSiCΩ
4、反応性ガスとしてH2Oを用いた場合、 S 1C4) 4 + 2H20S t 02 +4H
C11という加水分解反応が起る。また、反応性ガスと
してH2Oの代りに官能基−0−Yを有するシロキサン
化合物を用いた場合、 という縮重合反応が起る。
To illustrate the raw material gas and reactive gas used in the method of the present invention and their reactions, for example, SiCΩ as the raw material gas
4. When H2O is used as the reactive gas, S 1C4) 4 + 2H20S t 02 +4H
A hydrolysis reaction called C11 occurs. Furthermore, when a siloxane compound having a functional group -0-Y is used instead of H2O as the reactive gas, the following condensation polymerization reaction occurs.

これらの反応は激しい化学反応であり、マイクロ波数7
uによって励起した活性種を用いなくとも反応が起るの
で、原料ガス、反応性ガス、又は両者の反応生成物が被
処理基体上で液体となる条件に、反応容器内の圧力及び
被処理基体の温度を設定すれば、被処理基体表面の溝に
シリコン酸化膜薄膜を埋め込むことができる。したがっ
て、本発明方法によれば、従来のマイクロ波放電を用い
た液相酸化法の場合と異なり、液体酸化法により高アス
ペクト比の溝内にシリコン酸化膜を堆積する際の堆積パ
ラメータの制御を簡単にすることができる。
These reactions are violent chemical reactions, and the microwave number is 7.
Since the reaction occurs even without using active species excited by u, the pressure inside the reaction vessel and the substrate to be treated must be adjusted so that the raw material gas, the reactive gas, or the reaction product of both become liquid on the substrate to be treated. By setting a temperature of , it is possible to embed a thin silicon oxide film into the grooves on the surface of the substrate to be processed. Therefore, according to the method of the present invention, unlike the conventional liquid phase oxidation method using microwave discharge, it is possible to control the deposition parameters when depositing a silicon oxide film in a high aspect ratio trench by the liquid oxidation method. It can be done easily.

本発明において、反応容器内の圧力及び被処理基体の温
度は、原料ガス、反応性ガス、又は両者の反応生成物の
種類などによっても液体となる条件が異なるため一概に
限定できない。例えば、上述したSiCΩ4とH2Oと
の反応については、反応容器内の圧力を約2 Torr
とした場合、被処理基体の温度を0℃以下、好ましくは
一15℃以下とすればよいが、上記原料ガス、反応ガス
、又は両者の反応生成物を液化せしめる被処理基体の温
度は、反応容器内の圧力を上げることにより、より高い
温度に設定することができる。
In the present invention, the pressure inside the reaction vessel and the temperature of the substrate to be processed cannot be absolutely limited because the conditions for turning into a liquid vary depending on the type of raw material gas, reactive gas, or the reaction product of both. For example, for the reaction of SiCΩ4 and H2O mentioned above, the pressure inside the reaction vessel is set to about 2 Torr.
In this case, the temperature of the substrate to be processed may be 0°C or lower, preferably -15°C or lower; Higher temperatures can be set by increasing the pressure within the container.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明方法を実施するための反応装置の概略構
成図である。第1図において、反応容器11内には試料
ホルダー12が設置され、この試料ホルダー12にはヒ
ーター13が設けられるとともに、冷却管14が接続さ
れており、この試料ホルダー12上に載置される試料1
5の温度を−100℃〜600℃の範囲で制御すること
が可能である。この装置では、冷却媒として液体窒素に
よって冷却された窒素ガスが用いられている。反応容器
11内は真空排気装置lGによって排気され、コンダク
タンスバルブ17によって内部の圧力を調節することが
可能になっている。反応容器ll内には導入口18.1
9からそれぞれ原料ガスと反応性ガスとが導入され、試
料15の表面に供給される。そして、原料ガス、反応性
ガス及び両者の反応生成物のうち、堆積に関与しなかっ
た残留ガスは真空排気装置16によって排気される。
FIG. 1 is a schematic diagram of a reaction apparatus for carrying out the method of the present invention. In FIG. 1, a sample holder 12 is installed in a reaction vessel 11, a heater 13 is provided to this sample holder 12, and a cooling pipe 14 is connected to the sample holder 12. Sample 1
It is possible to control the temperature of No. 5 in the range of -100°C to 600°C. This device uses nitrogen gas cooled by liquid nitrogen as a cooling medium. The inside of the reaction vessel 11 is evacuated by a vacuum evacuation device 1G, and the internal pressure can be adjusted by a conductance valve 17. There is an inlet 18.1 in the reaction vessel 11.
A raw material gas and a reactive gas are respectively introduced from 9 and supplied to the surface of the sample 15. Then, among the raw material gas, the reactive gas, and the reaction products thereof, residual gas that did not participate in the deposition is exhausted by the vacuum evacuation device 16.

次に、この装置を用いて実際にシリコン酸化膜の堆積を
行った実施例について説明する。
Next, an example in which a silicon oxide film was actually deposited using this apparatus will be described.

実施例1 本実施例では原料ガスとして四塩化ケイ素(810g4
)、反応性ガスとして水(H20)を用いた。反応容器
ll内にアスペクト比5の溝が形成されたシリコン基板
を収容し、S i C(14の流量を12sccaSS
 i CΩ4とH2Oとの分圧比(SiCΩ4/H20
)を1/2、反応容器11内の圧力を2 Torrに設
定し、基板温度を変化させたときのシリコン酸化膜の堆
積速度及び堆積形状を調べた。第2図に基板温度と堆積
速度及び堆積形状との関係を示す。
Example 1 In this example, silicon tetrachloride (810g4
), water (H20) was used as the reactive gas. A silicon substrate in which a groove with an aspect ratio of 5 was formed was housed in a reaction vessel 11, and a flow rate of S i C (14 was 12 sccaSS).
i Partial pressure ratio of CΩ4 and H2O (SiCΩ4/H20
) was set to 1/2, the pressure inside the reaction vessel 11 was set to 2 Torr, and the deposition rate and shape of the silicon oxide film were investigated when the substrate temperature was changed. FIG. 2 shows the relationship between substrate temperature, deposition rate, and deposition shape.

第2図に示されるように、シリコン基板1の温度が0℃
以上のときには、シリコン酸化膜3は溝2l部でオーバ
ーハングした状態で堆積され、溝2内には空洞が形成さ
れた。一方、シリコン基板1の温度を一15℃以下にす
ると、シリコン酸化膜3は溝2の底部から形成され、ア
スペクト比が5の溝も容易に埋め込むことができ、表面
は完全に平坦化された。
As shown in FIG. 2, the temperature of the silicon substrate 1 is 0°C.
In the above case, the silicon oxide film 3 was deposited in an overhanging state at the trench 2l portion, and a cavity was formed in the trench 2. On the other hand, when the temperature of the silicon substrate 1 is lowered to below -15°C, the silicon oxide film 3 is formed from the bottom of the groove 2, and even a groove with an aspect ratio of 5 can be easily filled, and the surface is completely flattened. .

本実施例における原料ガスと反応性ガスとの反応機構に
ついて考察する。ここで、第3図にH2Oの状態図を、
第4図にS i Cf74の状態図をそれぞれ示す。上
述した条件では、H2Oの分圧は約1.3 Torr、
 S i CD 4の分圧は約0,7Torrである。
The reaction mechanism between the raw material gas and the reactive gas in this example will be considered. Here, Fig. 3 shows the phase diagram of H2O,
FIG. 4 shows state diagrams of S i Cf74. Under the above conditions, the partial pressure of H2O is approximately 1.3 Torr,
The partial pressure of S i CD 4 is approximately 0.7 Torr.

しかし、第3図及び第4図より、15℃の基板上ではH
2O,810g4ともに液体にはならないと考えられる
。したがって、これらのガスは 5iCJL+ H2O5t(Jh (OH) + HC
i)S 1c1)4 +2H20→S i Cjl) 
2  (OH) 2 +2HCNS t C1’ 4 
+ 3 H20→S i C1’  (OH) 3  
+ 3 HCf1S t CN 4 +4H20→S 
i (OH) 4   +4HCNという反応によって
、S i C1) 3  (OH)、S i CN 2
  (OH) 2 、S i CΩ (OH)3、Si
(OH)4という反応中間体を生成し、これらの反応中
間体が液化して溝内に流れ込み、更にS i C1l 
3  (OH)  +H20→SiO□+3HC1!S
 i C(12(OR) 2 + H20→SiO□+
2HCD+ H20sicg(OH)3  +H20→
5i02+ HCl1+2H20S t (OH) 4
+H20→S i 02 +3 H20のように加水分
解し、シリコン酸化膜が形成されると考えられる。
However, from Figures 3 and 4, on a substrate at 15°C, H
It is thought that neither 2O nor 810g4 becomes liquid. Therefore, these gases are 5iCJL+H2O5t(Jh (OH) + HC
i)S 1c1)4 +2H20→S i Cjl)
2 (OH) 2 +2HCNS t C1' 4
+ 3 H20→S i C1' (OH) 3
+ 3 HCf1S t CN 4 +4H20→S
Through the reaction i (OH) 4 +4HCN, S i C1) 3 (OH), S i CN 2
(OH)2, Si CΩ (OH)3, Si
A reaction intermediate called (OH)4 is produced, and these reaction intermediates liquefy and flow into the groove, and further S i C1l
3 (OH) +H20→SiO□+3HC1! S
i C(12(OR) 2 + H20→SiO□+
2HCD+ H20sicg(OH)3 +H20→
5i02+ HCl1+2H20S t (OH) 4
+H20→S i 02 +3 It is thought that hydrolysis occurs as shown in H20, and a silicon oxide film is formed.

なお、この堆積膜の赤外吸収スペクトルを調べたところ
、堆積直後にはS i−0、S i −OH。
In addition, when the infrared absorption spectrum of this deposited film was examined, it was found that immediately after deposition, it was S i-0 and S i -OH.

0−Hの各結合が存在するシリコン酸化膜であることが
判明した。しかし、300℃という低温のアニールを行
うことにより、5t−OH,O−Hの各結合はなくなり
、完全なシリコン酸化膜となった。
It was found that the film was a silicon oxide film in which 0-H bonds existed. However, by performing annealing at a low temperature of 300° C., the 5t-OH and O-H bonds were eliminated, resulting in a complete silicon oxide film.

また、以上では原料ガスとしてSiCΩ4、反応性ガス
としてH2Oを用いた場合について説明したが、SiF
4とH2O、S i B r、とH2Oのそれぞれの組
合わせでも、上記と同様の堆積形状及び膜質が得られる
In addition, although the case where SiCΩ4 is used as the raw material gas and H2O is used as the reactive gas is explained above, SiF
The same deposition shape and film quality as above can be obtained with each combination of 4 and H2O, S i Br, and H2O.

実施例2 本実施例では原料ガスとして四塩化ケイ素(SiCII
4)、反応性ガスとしてテトラメトキシシラン(S f
  (OCH3) 4 )を用いた。反応容器11内に
アスペクト比5の溝が形成されたシリコン基板を設置し
、5iCN4の流量を12sec+asS i C1l
 4とS i (OCH3)4との分圧比(SiCΩ4
/St (OCH3)4)を1、反応容器ll内の圧力
を2Torrに設定し、基板温度を変化させたときのシ
リコン酸化膜の堆積速度及び堆積形状を調べた。第5図
に基板温度と堆積速度との関係を示す。
Example 2 In this example, silicon tetrachloride (SiCII) was used as the raw material gas.
4), tetramethoxysilane (S f
(OCH3) 4) was used. A silicon substrate in which a groove with an aspect ratio of 5 was formed was placed in the reaction vessel 11, and the flow rate of 5iCN4 was set to 12 sec + asS i C1l.
4 and S i (OCH3)4 (SiCΩ4
/St (OCH3)4) was set to 1, the pressure inside the reaction vessel 11 was set to 2 Torr, and the deposition rate and shape of the silicon oxide film were investigated when the substrate temperature was changed. FIG. 5 shows the relationship between substrate temperature and deposition rate.

第5図に示されるように、シリコン基板1の温度が一4
0℃以上のときには、シリコン酸化膜3は溝2l部でオ
ーバーハングした状態で堆積され、溝2内には空洞が形
成された。一方、シリコン基板1の温度を一50℃以下
にすると、シリコン酸化膜3は溝2の底部から形成され
、アスペクト比5の溝2も容易に埋め込むことができ、
表面は完全に平坦化された。
As shown in FIG.
When the temperature was 0° C. or higher, the silicon oxide film 3 was deposited in an overhanging state in the groove 2l portion, and a cavity was formed in the groove 2. On the other hand, when the temperature of the silicon substrate 1 is lowered to -50°C or less, the silicon oxide film 3 is formed from the bottom of the groove 2, and the groove 2 with an aspect ratio of 5 can be easily filled.
The surface was completely flattened.

本実施例における原料ガスと反応性ガスとの反応機構に
ついて考察する。上述した条件では、SiCΩ4及びS
 i (OCH3)aの分圧とも約I Torrである
。第4図より、−50℃のシリコン基板1上では5iC
114が液体になると考えられる。
The reaction mechanism between the raw material gas and the reactive gas in this example will be considered. Under the above conditions, SiCΩ4 and S
The partial pressure of i (OCH3)a is also approximately I Torr. From Figure 4, on silicon substrate 1 at -50°C, 5iC
It is thought that 114 becomes a liquid.

したがって、5LCN4が液化して溝内に流れ込み、 S 1cj) 4 +S i (OCHi ) a→2
S i02+4CH,CDという重縮合反応により、シ
リコン酸化膜3が形成されると考えられる。
Therefore, 5LCN4 liquefies and flows into the groove, S 1cj) 4 +S i (OCHi) a→2
It is thought that the silicon oxide film 3 is formed by a polycondensation reaction of Si02+4CH,CD.

なお、この堆積膜の赤外吸収スペクトルを調べたところ
、堆積直後には5t−0、S iOH%0−Hの各結合
があるが、5t−CSC−0などの各結合はなく、カー
ボンを含まないシリコン酸化膜であることが判明した。
Furthermore, when we examined the infrared absorption spectrum of this deposited film, we found that there were bonds of 5t-0 and SiOH%0-H immediately after deposition, but there were no bonds such as 5t-CSC-0, indicating that carbon It turned out that it was a silicon oxide film that did not contain any.

しかし、300℃という低温のアニールを行うことによ
り、S i −OH。
However, by performing annealing at a low temperature of 300°C, Si-OH.

0−Hの各結合はなくなり、完全なシリコン酸化膜とな
った。
Each 0-H bond disappeared and a complete silicon oxide film was formed.

また、以上では原料ガスとしてS I CD 4 、反
応性ガスとしてS i  (OCH3)4を用いた場合
について説明したが、 S i C04とS i (OC2H5)いSiF4と
S i (OCHi )4、SiF4と5j(OC2H
1)4のそれぞれの組合わせでも、上記と同様の堆積形
状及び膜質が得られる。
In addition, although the case where S I CD 4 was used as the raw material gas and S i (OCH3)4 as the reactive gas was explained above, S i C04 and S i (OC2H5), SiF4 and S i (OCHi )4, SiF4 and 5j (OC2H
The same deposition shape and film quality as above can be obtained with each combination of 1) and 4.

[発明の効果] 以上詳述したように本発明方法によれば、液体酸化法に
より高アスペクト比の溝内にシリコン酸化膜を堆積する
際の堆積パラメータの制御が簡単になり、その工業的価
値は大きい。
[Effects of the Invention] As detailed above, according to the method of the present invention, it is easy to control the deposition parameters when depositing a silicon oxide film in a high aspect ratio trench by a liquid oxidation method, and its industrial value is improved. is big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例において用いられた反応装置の
概略構成図、第2図は本発明の実施例1におけるシリコ
ン基板の温度とシリコン酸化膜の堆積速度及び堆積形状
との関係を示す特性図、第3図はH2Oの状態図、第4
図はSiCΩ4の状態図、第5図は本発明の実施例2に
おけるシリコン基板の温度とシリコン酸化膜の堆積速度
及び堆積形状との関係を示す特性図、第6図は従来のプ
ラズマCVD法の問題点を示すシリコン基板の断面図、
第7図(a)及び(b)は従来のTE01の熱分解法の
問題点を示すシリコン基板の断面図、第8図(a)〜(
c)は従来の液相酸化法を示すシリコン基板の断面図で
ある。 1・・・シリコン基板、2・・・溝、3・・・シリコン
酸化膜、11・・・反応容器、12・・・試料ホルダ、
13・・・ヒーター、14・・・冷却管、15・・・試
料、1G・・・真空排気装置、17・・・コンダクタン
スバルブ、18.19・・・導入口。 出願人代理人 弁理士 鈴江武彦 第1図 基板ぷ彦(’C) 第 温度(°C) @4 ユ墓浸 (0C) 基板1渡(°C) 第 図 第6 第 第8
FIG. 1 is a schematic configuration diagram of a reaction apparatus used in an example of the present invention, and FIG. 2 shows the relationship between the temperature of a silicon substrate and the deposition rate and shape of a silicon oxide film in Example 1 of the present invention. Characteristic diagram, Figure 3 is the phase diagram of H2O, Figure 4
The figure is a state diagram of SiCΩ4, Figure 5 is a characteristic diagram showing the relationship between the temperature of the silicon substrate and the deposition rate and shape of the silicon oxide film in Example 2 of the present invention, and Figure 6 is a diagram of the conventional plasma CVD method. A cross-sectional view of a silicon substrate showing the problem,
FIGS. 7(a) and (b) are cross-sectional views of a silicon substrate showing problems in the conventional thermal decomposition method of TE01, and FIGS. 8(a) to (
c) is a cross-sectional view of a silicon substrate showing a conventional liquid phase oxidation method. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Groove, 3... Silicon oxide film, 11... Reaction container, 12... Sample holder,
13...Heater, 14...Cooling pipe, 15...Sample, 1G...Evacuation device, 17...Conductance valve, 18.19...Inlet. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Board temperature (°C) @ 4 U grave soak (0C) Board 1 width (°C) Figure 6 No. 8

Claims (2)

【特許請求の範囲】[Claims] (1)真空排気できる反応容器内に表面に溝が形成され
た被処理基体を収容し、反応容器内にSiH_aX_b
(ただし、XはF、Cl、Brから選ばれる少なくとも
1種のハロゲン原子、a=0〜4、b=0〜4、a+b
=4)で表わされる原料ガス及び該原料ガスと化学反応
しうる酸素を含有する反応性ガスを同時に導入し、かつ
原料ガス、反応性ガス、又は両者の反応生成物が上記被
処理基体上で液体となる条件に、反応容器内の圧力及び
被処理基体の温度を設定することにより、上記被処理基
体表面の溝にシリコン酸化膜を埋め込むことを特徴とす
るシリコン酸化膜形成方法。
(1) A substrate to be processed with grooves formed on the surface is housed in a reaction vessel that can be evacuated, and SiH_aX_b is placed inside the reaction vessel.
(However, X is at least one halogen atom selected from F, Cl, and Br, a=0-4, b=0-4, a+b
A raw material gas represented by =4) and a reactive gas containing oxygen capable of chemically reacting with the raw material gas are simultaneously introduced, and the raw material gas, the reactive gas, or the reaction product of both is on the substrate to be treated. A method for forming a silicon oxide film, which comprises embedding a silicon oxide film in a groove on the surface of the substrate to be processed by setting the pressure inside the reaction vessel and the temperature of the substrate to be a liquid.
(2)反応ガスがH_2O、O_2、NO、NO_2、
CO、CO_2又は少なくともシリコンと酸素とを含む
有機化合物ガスであることを特徴とする請求項(1)記
載のシリコン酸化膜形成方法。
(2) The reaction gas is H_2O, O_2, NO, NO_2,
2. The method for forming a silicon oxide film according to claim 1, wherein the gas is CO, CO_2, or an organic compound gas containing at least silicon and oxygen.
JP63168014A 1988-07-06 1988-07-06 Silicon oxide film forming method Expired - Lifetime JP2801604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63168014A JP2801604B2 (en) 1988-07-06 1988-07-06 Silicon oxide film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63168014A JP2801604B2 (en) 1988-07-06 1988-07-06 Silicon oxide film forming method

Publications (2)

Publication Number Publication Date
JPH0217639A true JPH0217639A (en) 1990-01-22
JP2801604B2 JP2801604B2 (en) 1998-09-21

Family

ID=15860206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63168014A Expired - Lifetime JP2801604B2 (en) 1988-07-06 1988-07-06 Silicon oxide film forming method

Country Status (1)

Country Link
JP (1) JP2801604B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131655U (en) * 1991-05-20 1992-12-03 昭和アルミニウム株式会社 Device to prevent misalignment of carrier for transporting processed material in anodizing processing material drying equipment
JPH09155264A (en) * 1995-12-11 1997-06-17 Toyama Keikinzoku Kogyo Kk Surface treating device for aluminum or aluminum alloy material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293832A (en) * 1987-05-27 1988-11-30 Hitachi Ltd Low-temperature formation of thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293832A (en) * 1987-05-27 1988-11-30 Hitachi Ltd Low-temperature formation of thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131655U (en) * 1991-05-20 1992-12-03 昭和アルミニウム株式会社 Device to prevent misalignment of carrier for transporting processed material in anodizing processing material drying equipment
JPH09155264A (en) * 1995-12-11 1997-06-17 Toyama Keikinzoku Kogyo Kk Surface treating device for aluminum or aluminum alloy material

Also Published As

Publication number Publication date
JP2801604B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
US4617087A (en) Method for differential selective deposition of metal for fabricating metal contacts in integrated semiconductor circuits
US6143377A (en) Process of forming a refractory metal thin film
US5750211A (en) Process for depositing a SiOx film having reduced intrinsic stress and/or reduced hydrogen content
TWI331364B (en)
US4411734A (en) Etching of tantalum silicide/doped polysilicon structures
JPS6345373A (en) Adhesion of tungsten silicide high in silicon content
US5876796A (en) Process for selectively depositing a refractory metal silicide on silicon, and silicon wafer metallized using this process
JP3607398B2 (en) Method for forming metal wiring layer of semiconductor device
JPH0697111A (en) Formation of barrier metal
US6025269A (en) Method for depositioning a substantially void-free aluminum film over a refractory metal nitride layer
JP2763100B2 (en) Thin film formation method
JPH11507770A (en) Salicide formation method
JPH01235259A (en) Formation of silicon oxide film
JP2645215B2 (en) Thin film forming equipment
JPH0217639A (en) Method of forming silicon oxide film
JP3215898B2 (en) Plasma CVD method and plasma CVD apparatus
KR0172559B1 (en) Method of fabricating semiconductor device
JP2637110B2 (en) Thin film formation method
JP2978704B2 (en) Thin film formation method
JP2844693B2 (en) Method of forming high melting point metal film
JPH08283944A (en) Formation of high melting point metal silicide film
Chang et al. Influence of Deposition Parameters on the Texture of Chemical Vapor Deposited Tungsten Films by a WF 6/H 2/Ar Gas Source
JP3191477B2 (en) Wiring structure and method of manufacturing the same
JP3197580B2 (en) Thin film forming method and thin film forming apparatus
JPH0941147A (en) Plasma cvd method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

EXPY Cancellation because of completion of term