JPH01235259A - Formation of silicon oxide film - Google Patents

Formation of silicon oxide film

Info

Publication number
JPH01235259A
JPH01235259A JP6025088A JP6025088A JPH01235259A JP H01235259 A JPH01235259 A JP H01235259A JP 6025088 A JP6025088 A JP 6025088A JP 6025088 A JP6025088 A JP 6025088A JP H01235259 A JPH01235259 A JP H01235259A
Authority
JP
Japan
Prior art keywords
gas
oxide film
silicon oxide
substrate
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6025088A
Other languages
Japanese (ja)
Other versions
JP2763104B2 (en
Inventor
Sadahisa Noguchi
野口 禎久
Nobuo Hayasaka
伸夫 早坂
Haruo Okano
晴雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6025088A priority Critical patent/JP2763104B2/en
Publication of JPH01235259A publication Critical patent/JPH01235259A/en
Application granted granted Critical
Publication of JP2763104B2 publication Critical patent/JP2763104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To decrease an amount of dopant in a silicon oxide film buried in a groove so that the silicon oxide film of good quality can be buried in the groove having a high aspect ratio in a desirable manner, by selecting, as a gas used in the liquid-phase oxidation, a silicon compound in which oxygen atoms are directly bonded to all the four hands of a silicon atom. CONSTITUTION:A groove having a high aspect ratio is formed on the surface of an Si substrate 12. A base 13 can be heated by a heater and cooled by nitrogen gas cooled by liquid nitrogen. Raw gas is supplied into a vessel 11 through a gas inlet port 14 and discharged through a gas exhaust port 15. Reactive gas excited by a microwave discharge tube 16 is also supplied into the vessel 11 through an inlet port 17 and evacuated through an exhaust port 15. Tetramethoxy silane having four oxygen atoms bonded around an Si atom is used as the raw gas. The raw gas is introduced into the vessel 11 as it is, without being excited by electric discharge. Oxygen used as the reactive gas is excited by microwave discharge and active species of oxygen produced thereby are introduced into the vessel 11.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、超LSIデバイス等の半導体製造に用いられ
る薄膜堆積方法に係わり、特に溝部内にシリコン酸化膜
を埋込み形成するシリコン酸化膜の形成方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a thin film deposition method used in the manufacture of semiconductors such as VLSI devices, and in particular relates to a method for embedding a silicon oxide film in a trench. The present invention relates to a method of forming a silicon oxide film.

(従来の技術) 薄膜形成方法を大別すると、化学的気相成長法(Che
mical Vapor Deposition ; 
CV D )と物理的気相成長法(Physical 
Vapor Deposltlon;PVD)とに分類
される。CVD法は基板表面や気相中での化学反応を利
用して基板上に薄膜を堆積する方法であり、主にシリコ
ン酸化膜やシリコン窒化膜等の絶縁膜の形成に用いられ
ている。また、PVD法は気相中で生成した堆積粒子を
基板へ衝突させて薄膜を形成するもので、主に金属膜の
形成に用いられている。
(Conventional technology) Thin film forming methods can be roughly divided into chemical vapor deposition (Chemistry)
Mical Vapor Deposition;
CVD) and physical vapor deposition (Physical
Vapor Depositslon (PVD). The CVD method is a method of depositing a thin film on a substrate using chemical reactions on the substrate surface or in a gas phase, and is mainly used for forming insulating films such as silicon oxide films and silicon nitride films. Furthermore, the PVD method forms a thin film by colliding deposited particles generated in a gas phase with a substrate, and is mainly used for forming metal films.

一方、最近の超LSIデバイスではアスペクト比(深さ
7幅)の高い溝内への薄膜堆積技術が必須となりつつあ
る。しかし、CVD法の一つであるブラズvCVD法(
例えば、J、L、Vossen & W。
On the other hand, in recent VLSI devices, thin film deposition technology in trenches with a high aspect ratio (depth 7 width) is becoming essential. However, the Braz vCVD method, which is one of the CVD methods (
For example, J.L., Vossen & W.

Kern: Th1n Film Process; 
Academic Press 1978)等を用いて
、第10図(a)に示すようにSi基板81に形成され
た深い溝82内にSiO□膜83を堆積すると、気相中
で生じた堆積種の角部への堆積が大きく、堆積種が次第
に溝底部に入り難くなり空洞84を生じ、段差被覆特性
が劣化する。
Kern: Th1n Film Process;
When a SiO□ film 83 is deposited in a deep groove 82 formed in a Si substrate 81 as shown in FIG. As the amount of sedimentation increases, it becomes increasingly difficult for the deposited species to enter the bottom of the groove, creating a cavity 84 and deteriorating the step coverage characteristics.

この段差被覆形状を改善する方法として、P V D法
の一つであるバイアススパッタ法と称される技術が用い
られている(例えば、T、Moaose。
As a method for improving the step coverage shape, a technique called bias sputtering, which is one of the PVD methods, is used (for example, T, Moaose, etc.).

Morimoto  &  0kabayashi: 
 Extended  abstractslath 
eon「、 5olid 5tate Devices
 & Materials。
Morimoto & 0kabayashi:
Extended abstract slath
eon', 5olid 5tate Devices
& Materials.

Kobe、1984.p43) 、この方法は、A「イ
オンで基板表面を物理的にスパッタリングしながら、例
えばシリコン酸化膜を形成するため、角部での堆積は起
こらず平坦部でのみ堆積を生じる。従って、空洞発生な
しに溝内への埋め込みが可能になるが、気相中の堆積種
が溝内に斜めに入射してくるため、アスペクト比〉1で
はやはり埋め込み困難となる。
Kobe, 1984. p43), this method A: ``For example, a silicon oxide film is formed while physically sputtering the substrate surface with ions, so deposition does not occur at the corners but only on the flat areas.Therefore, the formation of cavities. However, since the deposited species in the gas phase enter the groove obliquely, embedding becomes difficult when the aspect ratio is >1.

さらに、物理的スパッタリングによる堆積膜の除去と堆
積の競合反応を用いているので、正味の堆積速度が低く
生産性が極めて悪い。また、プラズマ中での照射照射も
避けられない。最近、堆積種の溝内への斜め入射の成分
を少なくしたECRバイアススパッタ法(例えば、11
.01kawa;SEMITECNOLOGY SYM
、 19861E3−1)も提案されているが、上記の
問題は軽減されるものの本質的な解決策とはならない。
Furthermore, since a competitive reaction between removal of the deposited film by physical sputtering and deposition is used, the net deposition rate is low and productivity is extremely poor. Further, irradiation in plasma cannot be avoided. Recently, the ECR bias sputtering method (for example, 11
.. 01kawa; SEMITECNOLOGY SYM
, 19861E3-1) has also been proposed, but although it alleviates the above problem, it does not provide an essential solution.

この他、例えばTEO3O熱分解法(例えば、R,D、
Rang、 Y、Moaose & Y、Nagaku
bo; lEDM、TEctl。
In addition, for example, TEO3O thermal decomposition method (for example, R, D,
Rang, Y., Moaose & Y., Nagaku.
bo; lEDM, TEctl.

DIG、 19g2. p、237)を用いてシリコン
酸化膜を形成すると、堆積種の大きな表面移動によって
第10図(b)に示すように優れた段差被覆特性を示す
DIG, 19g2. When a silicon oxide film is formed using a silicon oxide film (p, 237), it exhibits excellent step coverage characteristics as shown in FIG. 10(b) due to large surface movement of deposited species.

しかし、この方法により溝内に埋め込んだ酸化膜83を
例えば希釈したHF溶液で洗浄処理すると、第10図(
C)に示すように中央部85での酸化膜83の除去速度
が異常に速くなり、結局埋込み平坦化が実現できないの
が現状である。この原因は、溝の壁の両側から成長して
きた酸化膜同士の歪みが中央部付近で残存するためと考
えられる。このように、コンファーマブルに薄膜を形成
する方法でも、高アスペクト比の溝内への埋め込みは極
めて困難であると考えられていた。
However, if the oxide film 83 buried in the trench is cleaned using a diluted HF solution using this method, then
As shown in C), the removal rate of the oxide film 83 in the central portion 85 becomes abnormally fast, and as a result, buried planarization cannot be realized. The reason for this is thought to be that distortions between the oxide films that have grown from both sides of the trench wall remain near the center. As described above, even with the method of forming a thin film in a conformable manner, it was considered extremely difficult to fill the trench with a high aspect ratio.

上記問題を解決するために、テトラメチルシラン(S 
i (CHI ) 4 ; TMS)ガスとマイクロ波
放電によって励起した酸素原子による反応生成物の露点
以下に基板を冷却することによって、高アスペクト比の
溝内にシリコン酸化膜を堆積する方法(液相酸化法)が
ある(例えば、S、NOguehiet at、; S
SDM S−1−13(1987) 451) 、これ
は、基板表面に反応生成物を液化させることにより、第
11図(a)〜(C)に示す如く溝の底からシリコン酸
化膜を徐々に埋込む方法である。ここで、図中91はS
t基板、92は溝、93はシリコン酸化膜を示している
In order to solve the above problem, tetramethylsilane (S
A method of depositing a silicon oxide film in high aspect ratio trenches by cooling the substrate below the dew point of the reaction product of oxygen atoms excited by a microwave discharge (CHI) gas and oxygen atoms excited by a microwave discharge (liquid phase oxidation method) (for example, S, NOguehiet at,; S
SDM S-1-13 (1987) 451), by liquefying reaction products on the substrate surface, the silicon oxide film is gradually removed from the bottom of the groove as shown in Figures 11(a) to (C). This is the embedding method. Here, 91 in the figure is S
A t-substrate, 92 is a groove, and 93 is a silicon oxide film.

しかしながら、この方法によって堆積した膜中には、第
12図に赤外吸収スペクトルを示す如(,5i−CHi
の結合が存在し、多くのメチル基が取込まれている(図
中A)。この堆積膜を300℃の温度でアニールするこ
とによって、図中Bに示す如(St−OHの結合はなく
なり、脱水反応により膜中の水素は取去られる。しかし
、S 1−CH3の結合は殆ど変化せず、膜中のメチル
基を取去ることはできず、純粋なシリコン酸化膜を得る
ことは困難である。
However, in the film deposited by this method, as shown in the infrared absorption spectrum in Fig. 12 (,5i-CHi
bonds exist, and many methyl groups are incorporated (A in the figure). By annealing this deposited film at a temperature of 300°C, as shown in B in the figure (the St-OH bond disappears and the hydrogen in the film is removed by the dehydration reaction. However, the S1-CH3 bond is Almost no change occurs, and the methyl groups in the film cannot be removed, making it difficult to obtain a pure silicon oxide film.

(発明が解決しようとする課題) このように従来、液相酸化法を用いて溝内をシリコン酸
化膜等で埋込む方法にあっては、堆積膜中に多くの不純
物を含むという難点があった。
(Problem to be Solved by the Invention) As described above, the conventional method of filling the trench with a silicon oxide film or the like using the liquid phase oxidation method has the disadvantage that the deposited film contains many impurities. Ta.

例えば、テトラメチルシランを原料ガスとした液相酸化
では、堆積膜中に多くのメチル基が含まれる問題があっ
た。
For example, in liquid phase oxidation using tetramethylsilane as a raw material gas, there is a problem in that the deposited film contains many methyl groups.

本発明は、上記事情を考慮してなされたもので、その目
的とするところは、液相酸化法によって不純物を含まな
いシリコン酸化膜を堆積することができ、溝内に良質の
シリコン酸化膜を良好に埋め込むことができるシリコン
酸化膜の形成方法を提供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to be able to deposit a silicon oxide film that does not contain impurities by a liquid phase oxidation method, and to deposit a high quality silicon oxide film in a trench. It is an object of the present invention to provide a method for forming a silicon oxide film that can be buried well.

[発明の構成コ (課題を解決するための手段) 本発明の骨子は、液相酸化法で用いるガスを選択するこ
とにより、溝内に埋込み形成されるシリコン酸化膜の不
純物を低減することにある。
[Structure of the Invention (Means for Solving the Problems) The gist of the present invention is to reduce impurities in the silicon oxide film embedded in the trench by selecting a gas to be used in the liquid phase oxidation method. be.

即ち本発明は、表面に溝が形成された被処理基体を反応
容器内に収容し、容器内に該容器とは別の領域で励起し
た反応性ガス(例えは酸素)を導入すると共に、同時に
容器内に原料ガス(例えばテトラメトキシシラン)を導
入し、且つ被処理基体の温度と反応容器内の圧力を原料
ガス又は原料ガスと反応性ガスとの反応生成物が液化す
る範囲に設定し、被処理基体の表面に原料ガス又は反応
生成物を液化して付着させることにより、被処理基体の
表面の溝をシリコン酸化膜で埋込むシリコン酸化膜の形
成方法において、前記原料ガスとしてシリコン原子の4
つの全ての結合手に酸素原子が直接結合しているシリコ
ン化合物を用いるようにした方法である。
That is, in the present invention, a substrate to be processed having grooves formed on its surface is housed in a reaction vessel, a reactive gas (for example, oxygen) excited in a region other than the vessel is introduced into the vessel, and at the same time Introducing a raw material gas (for example, tetramethoxysilane) into the container, and setting the temperature of the substrate to be treated and the pressure in the reaction container within a range in which the raw material gas or the reaction product of the raw material gas and the reactive gas is liquefied, In a method for forming a silicon oxide film in which a silicon oxide film is filled in a groove on the surface of a substrate to be processed by liquefying and adhering a raw material gas or a reaction product to the surface of the substrate to be processed, silicon atoms are used as the source gas. 4
This method uses a silicon compound in which oxygen atoms are directly bonded to all of the bonds.

また本発明は、表面に溝が形成された被処理基体を反応
容器内に収容し、容器内に該容器とは別の領域で励起し
た反応性ガス(例えば酸素)及び原料ガス(例えばテト
ラエトキシシラン)を導入すると共に、被処理基体の温
度と反応容器内の圧力を原料ガス又は原料ガスと反応性
ガスとの反応生成物が液化する範囲に設定し、被処理基
体の表面に原料ガス又は反応生成物を液化して付着させ
ることにより、被処理基体の表面の溝をシリコン酸化膜
で埋込むシリコン酸化膜の形成方法において、前記原料
ガスとしてシリコン原子の4つの全ての結合手に酸素原
子が直接結合しているシリコン化合物を用いるようにし
た方法である。
Further, the present invention accommodates a substrate to be processed having grooves formed on its surface in a reaction vessel, and contains a reactive gas (for example, oxygen) and a source gas (for example, tetraethoxyoxygenate) excited in a region other than the vessel. At the same time, the temperature of the substrate to be treated and the pressure in the reaction vessel are set within a range where the raw material gas or the reaction product of the raw material gas and the reactive gas is liquefied, and the raw material gas or In a method for forming a silicon oxide film in which a silicon oxide film is filled in the grooves on the surface of a substrate by liquefying a reaction product and depositing the reaction product, oxygen atoms are added to all four bonds of silicon atoms as the raw material gas. This method uses a silicon compound to which are directly bonded.

(作 用) 本発明によれば、液相酸化法等によって薄膜を堆積する
際に、原料ガスとしてSi原子の4つの結合手に全てO
原子が直接結合しているシリコン化合物を用いることに
より、堆積膜中にメチル基等の不純物を含まないシリコ
ン酸化膜を堆積することができる。例えば、テトラメチ
ルシラン。
(Function) According to the present invention, when depositing a thin film by a liquid phase oxidation method or the like, all four bonds of Si atoms are supplied with O as a source gas.
By using a silicon compound in which atoms are directly bonded, it is possible to deposit a silicon oxide film that does not contain impurities such as methyl groups in the deposited film. For example, tetramethylsilane.

ジメチルジメトキシシラン、ヘキサメチルシラン等の置
換基を含まないシリコン有機化合物を原料ガスとして用
いる場合、5i−Cの結合が有りこの結合をマイクロ波
放電で励起した酸素ガスで切断し完全なシリコン酸化膜
を堆積するのは困難であり、第12図のテトラメチルシ
ランを用いた時の赤外吸収スペクトルに示すように膜中
には多くのメチル基が含まれている。しかし、原料ガス
としてシリコンに4つのOR(Rは有機基)置換基が結
合したシリコン有機化合物を用いると、5t−0−Cの
結合の中で5i−0(結合エネルギー:  106Kc
al/ mol )よりも結合エネルギーが小さい0−
C(結合エネルギー: 85.5Kcal/ aoi)
がO原子によって切断され、第5図のテトラメトキシシ
ランを用いたときの赤外吸収スペクトルに示すように、
Cを含まないシリコン酸化膜を堆積することができる。
When a silicon organic compound containing no substituents such as dimethyldimethoxysilane or hexamethylsilane is used as a raw material gas, there is a 5i-C bond, and this bond is cut with oxygen gas excited by microwave discharge to form a complete silicon oxide film. As shown in the infrared absorption spectrum using tetramethylsilane in FIG. 12, the film contains many methyl groups. However, when a silicon organic compound in which four OR (R is an organic group) substituents are bonded to silicon as a raw material gas, 5i-0 (bond energy: 106Kc) is formed among the 5t-0-C bonds.
0-, which has a lower binding energy than al/mol)
C (Binding energy: 85.5Kcal/aoi)
is cleaved by the O atom, as shown in the infrared absorption spectrum when using tetramethoxysilane in Figure 5.
A silicon oxide film that does not contain C can be deposited.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例方法を実施するための薄膜形
成装置を示す概略構成図である。図中11は反応容器で
あり、この容器11内には被処理基体としてのSi基板
12を載置する試料台13が収容されている。Si基板
12はその表面に、高アスペクト比の溝が形成されたも
のである。
FIG. 1 is a schematic diagram showing a thin film forming apparatus for carrying out a method according to an embodiment of the present invention. In the figure, reference numeral 11 denotes a reaction vessel, and a sample stage 13 on which a Si substrate 12 as a substrate to be processed is placed is accommodated within this vessel 11. The Si substrate 12 has high aspect ratio grooves formed on its surface.

試料台13は、ヒータによる加熱及び液体窒素によって
冷却した窒素ガスによる冷却が可能となっており、この
上に載置される基板12が温度制御されるものとなって
いる。
The sample stage 13 can be heated by a heater and cooled by nitrogen gas cooled by liquid nitrogen, and the temperature of the substrate 12 placed thereon is controlled.

容器ll内には、ガス導入口14から原料ガスが供給さ
れ、このガスはガス排気口15から排気される。また、
容器11内には、マイクロ波放電管16により励起され
た反応性ガスがガス導入口17を介して供給され、この
ガスもガス排気口15から排気されるものとなっている
。なお、図中18はマイクロ波電源、21.22はそれ
ぞれバルブを示している。
A raw material gas is supplied into the container 11 from a gas inlet 14, and this gas is exhausted from a gas exhaust port 15. Also,
A reactive gas excited by a microwave discharge tube 16 is supplied into the container 11 through a gas inlet 17, and this gas is also exhausted through a gas exhaust port 15. In addition, in the figure, 18 indicates a microwave power source, and 21 and 22 each indicate a valve.

次に、第1図の装置を用いた薄膜形成方法について説明
する。原料ガスとしてテトラメトキシシラン(TM01
)を用い、このガスは放電励起することなくそのまま容
器11内に導入した。また、反応性ガスである酸素はマ
イクロ波放電により励起し、生成した酸素の活性種を容
器11内に導入した。なお、容器11内をターボ分子ポ
ンプにより予め10−’Torr以下に真空排気した後
、上記原料ガス及び反応性ガスの導入により薄膜の堆積
を行った。
Next, a method for forming a thin film using the apparatus shown in FIG. 1 will be explained. Tetramethoxysilane (TM01
), and this gas was introduced into the container 11 as it was without being excited by discharge. Further, oxygen, which is a reactive gas, was excited by microwave discharge, and the generated active species of oxygen were introduced into the container 11. The inside of the container 11 was previously evacuated to 10-' Torr or less using a turbo molecular pump, and then the above-mentioned source gas and reactive gas were introduced to deposit a thin film.

第2図に基板温度に対する堆積速度及び堆積形状の関係
を示す。酸素の流量は168scca+、テトラメトキ
シシランと酸素の分圧比は0,2、容器内圧力は2To
rrとした。堆積速度は基板の温度が30℃付近で最大
(0,5μm /1ln)となり、10℃では略零、1
00℃以上では略一定となる。また、基板の温度が70
℃以上では堆積形状はオーバハングしたちのとなり溝内
をシリコン酸化膜で埋込むことができないが、70℃未
満のときは溝の底から液体を溜めるようにシリコン酸化
膜が形成され、高アスペクト比の溝が完全に埋込まれた
FIG. 2 shows the relationship between the deposition rate and the deposition shape with respect to the substrate temperature. The flow rate of oxygen is 168scca+, the partial pressure ratio of tetramethoxysilane and oxygen is 0.2, and the pressure inside the container is 2To.
It was set as rr. The deposition rate reaches its maximum (0.5 μm/1ln) when the substrate temperature is around 30°C, and reaches approximately zero at 10°C, reaching 1
It becomes approximately constant above 00°C. Also, the temperature of the substrate is 70℃.
At temperatures above 70°C, the deposited shape overhangs and the trench cannot be filled with a silicon oxide film, but at temperatures below 70°C, a silicon oxide film is formed to collect liquid from the bottom of the trench, resulting in a high aspect ratio. groove was completely filled.

第3図に容器内圧力に対する堆積速度及び堆積形状の関
係を示す。溝の底からシリコン酸化膜が形成されたのは
圧力が0.3Torrより高< 1QTorrより低い
ときであった。0.3Torr以下では堆積形状がオー
バハングしたものであり、これは基板上で液化する物質
の分圧がその平衡蒸気圧よりも低くなったためと考えら
れる。また、1QTorr以上の時は基板上に直径が3
000A程度の粉体が°付着した。
FIG. 3 shows the relationship between the deposition rate and the deposition shape with respect to the pressure inside the container. A silicon oxide film was formed from the bottom of the trench when the pressure was higher than 0.3 Torr and lower than 1 Q Torr. At 0.3 Torr or less, the deposition shape was overhanging, and this is thought to be because the partial pressure of the substance liquefied on the substrate became lower than its equilibrium vapor pressure. Also, when the temperature is 1QTorr or more, there is a diameter of 3mm on the board.
Powder of approximately 000A was attached.

第4図にテトラメトキシシランと酸素の分圧比に対する
堆積速度及び堆積形状の関係を示す。溝の底からシリコ
ン酸化膜が形成されたのは分圧比が0655より大きい
ときであり、0.55以下ではオーバハングした堆積形
状であった。また、分圧比が0.3以上では堆積速度が
略零となり、溝を埋込むことはできなかった。
FIG. 4 shows the relationship between the deposition rate and the deposition shape with respect to the partial pressure ratio of tetramethoxysilane and oxygen. The silicon oxide film was formed from the bottom of the trench when the partial pressure ratio was greater than 0.655, and when the partial pressure ratio was less than 0.55, the deposition shape was overhanging. Furthermore, when the partial pressure ratio was 0.3 or more, the deposition rate became approximately zero, making it impossible to fill the groove.

そこで本実施例では、基板温度30℃、圧力2Torr
、テトラメトキシシランと酸素の分圧比を0.2として
、溝が形成されたSt基板上にシリコン酸化膜を堆積し
た。これにより、Si基板の表面の溝はシリコン酸化膜
で平坦に埋込まれたものとなる。第5図にこのときのシ
リコン酸化膜の赤外吸収スペクトルを示す。OHに起因
するピークは存在するが5i−Cに起因するピークは殆
どなく、テトラメチルシランを用いて堆積したときの赤
外吸収スペクトル(第12図)に存在したCに起因する
ピークはないことが判る。また、このシリコン酸化膜の
オージェスペクトルを測定した結果、Cに起因するピー
クはなく、この膜中のC含有量は〜数atmlc%以下
であると考えられる。
Therefore, in this embodiment, the substrate temperature is 30°C and the pressure is 2 Torr.
A silicon oxide film was deposited on the St substrate in which the grooves were formed, with the partial pressure ratio of tetramethoxysilane and oxygen set to 0.2. As a result, the grooves on the surface of the Si substrate are flattened and filled with a silicon oxide film. FIG. 5 shows the infrared absorption spectrum of the silicon oxide film at this time. Although there are peaks due to OH, there are almost no peaks due to 5i-C, and there is no peak due to C, which was present in the infrared absorption spectrum (Figure 12) when deposited using tetramethylsilane. I understand. Furthermore, as a result of measuring the Auger spectrum of this silicon oxide film, there was no peak due to C, and it is thought that the C content in this film was ~ several atmlc% or less.

このように本実施例方法によれば、Si原子の周りに4
つの0原子が結合したテトラメトキシシランを原料ガス
として用いることにより、81−〇−Cの結合の中で5
i−0よりも結合エネルギーの小さいO−Cを0原子に
よって切断することができる。その結果、不純物である
Cを含まないシリコン酸化膜を堆積することができた。
In this way, according to the method of this embodiment, 4
By using tetramethoxysilane with two 0 atoms bonded as a raw material gas, 5 in the bond of 81-〇-C
O-C, which has a lower bond energy than i-0, can be cleaved by the 0 atom. As a result, a silicon oxide film containing no C as an impurity could be deposited.

従って、Si基板の表面に形成した溝内を良質のシリコ
ン酸化膜で埋込むことが可能となり、半導体製造技術に
おける有用性は極めて大きい。
Therefore, it becomes possible to fill the grooves formed on the surface of the Si substrate with a high-quality silicon oxide film, which is extremely useful in semiconductor manufacturing technology.

第6図は本発明の他の実施例方法に使用した薄膜形成装
置を示す概略構成図である。なお、第1図と同一部分に
は同一符号を付して、その詳しい説明は省略する。この
装置が第1図の装置と異なる点は、原料ガスを反応性ガ
スと同様にマイクロ波励起して反応容器内に導入するこ
とにある。即ち、原料ガスは反応性ガスと共にマイクロ
波放電管16に供給され、この放電管16内で励起され
て容器11内に導入されるものとなっている。
FIG. 6 is a schematic diagram showing a thin film forming apparatus used in another embodiment of the present invention. Note that the same parts as in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted. This apparatus differs from the apparatus shown in FIG. 1 in that the raw material gas is excited by microwaves and introduced into the reaction vessel in the same way as the reactive gas. That is, the source gas is supplied to the microwave discharge tube 16 together with the reactive gas, excited within the discharge tube 16, and introduced into the container 11.

この実施例では原料ガスとしてテトラエトキシシラン(
TE01)、反応性ガスとして酸素を用い、先の実施例
と同様にしてSi基板の表面にシリコン酸化膜を堆積し
た。
In this example, tetraethoxysilane (
TE01), using oxygen as a reactive gas, a silicon oxide film was deposited on the surface of a Si substrate in the same manner as in the previous example.

第7図に基板温度に対する堆積速度及の関係を示す。酸
素の流量は168scca+ %テトラエトキシシラン
と酸素の分圧比は0.67、容器内圧力は2Torrと
した。堆積速度は基板の温度が低いほど大きくなる。ま
た、基板の温度が0℃以上では堆積が観i1?Jされな
かったが、それ以下の温度では溝の底から液体を溜める
ようにシリコン酸化膜が形成され、高アスペクト比の溝
が完全に埋込まれた。また、堆積形状はいずれもオーバ
ハングはなく良好な物であった。
FIG. 7 shows the relationship between deposition rate and substrate temperature. The flow rate of oxygen was 168 scca+%, the partial pressure ratio of tetraethoxysilane to oxygen was 0.67, and the pressure inside the container was 2 Torr. The deposition rate increases as the substrate temperature decreases. Also, if the substrate temperature is 0°C or higher, no deposition occurs. However, at lower temperatures, a silicon oxide film was formed to collect liquid from the bottom of the groove, completely filling the high aspect ratio groove. In addition, the deposited shapes were all good with no overhang.

第8図に容器内圧力に対する堆積速度の関係を示す。圧
力が9Torr以上では堆積が観測されなかったが、そ
れ以下の圧力では溝の底がらシリコン酸化膜が形成され
、圧力が低いほど堆積速度が速くなった。また、テトラ
エトキシシランと酸素の分圧比に対する堆積速度は、分
圧比が0.1以下では堆積が観JpJされなかったが、
それ以上の圧力では溝の底からシリコン酸化膜が形成さ
れ、分圧比が大きいほど堆積速度が速くなった。この場
合も圧力9分圧比に関係なく、堆積形状はいずれもオー
バハングはなく良好なものであった。
FIG. 8 shows the relationship between the deposition rate and the pressure inside the container. No deposition was observed at a pressure of 9 Torr or higher, but at a pressure lower than that, a silicon oxide film was formed on the bottom of the trench, and the lower the pressure, the faster the deposition rate. In addition, regarding the deposition rate with respect to the partial pressure ratio of tetraethoxysilane and oxygen, no deposition was observed when the partial pressure ratio was less than 0.1.
At higher pressures, a silicon oxide film was formed from the bottom of the trench, and the higher the partial pressure ratio, the faster the deposition rate. In this case as well, regardless of the partial pressure ratio, the deposition shape was good with no overhang.

第9図に基板温度−40’C、容器内圧力2 Torr
Figure 9 shows a substrate temperature of -40'C and a pressure inside the container of 2 Torr.
.

テトラエトキシシランと酸素の分圧比0.67として堆
積したシリコン酸化膜の赤外吸収スペクトルを示す。5
t−0に起因するピークは存在するが、OHが存在する
ことに起因するピークは殆どなく、テトラメチルシラン
を用いて堆積したときの赤外吸収スペクトルに存在した
Cに起因するピークはないことが判る。このように、S
i原子の周りに4つのO原子が結合したテトラエトキシ
シランを原料ガスとして用いることにより、不純物であ
るCを全く含まないシリコン酸化膜を堆積することがで
きた。
This figure shows an infrared absorption spectrum of a silicon oxide film deposited at a partial pressure ratio of tetraethoxysilane and oxygen of 0.67. 5
Although there is a peak due to t-0, there is almost no peak due to the presence of OH, and there is no peak due to C that was present in the infrared absorption spectrum when deposited using tetramethylsilane. I understand. In this way, S
By using tetraethoxysilane in which four O atoms are bonded around an i atom as a source gas, it was possible to deposit a silicon oxide film that does not contain any C as an impurity.

なお、本発明は上述した各実施例方法に限定されるもの
ではない。例えば、前記原料ガスとしてはテトラメトキ
シシラン、テトラエトキシシランに限るものではなく、
テトラアセトキシシラン。
Note that the present invention is not limited to the methods of each embodiment described above. For example, the raw material gas is not limited to tetramethoxysilane, tetraethoxysilane,
Tetraacetoxysilane.

テトラプロポキシシラン、テトライソプロポキシシラン
、テトラキス(2−エチルブトキシ)シラン。
Tetrapropoxysilane, tetraisopropoxysilane, tetrakis(2-ethylbutoxy)silane.

テトラフェノキシシラン、テトラキス(2−エチルへキ
シロキシ)シラン等のように、シリコン原子の4つの全
ての結合手に酸素原子が直接結合しているシリコン化合
物を用いることができる。つまり、一般式 %式% で示されるシリコン化合物を用いることができる。
A silicon compound such as tetraphenoxysilane, tetrakis(2-ethylhexyloxy)silane, etc., in which an oxygen atom is directly bonded to all four bonds of a silicon atom, can be used. That is, a silicon compound represented by the general formula % can be used.

但し、Rはアルキル基、アルコキシ基、アリール基等で
ある。
However, R is an alkyl group, an alkoxy group, an aryl group, etc.

また、反応性ガスとして水素、窒素或いは塩素や弗素等
のハロゲンガスを含むガス又はアルゴン等の不活性ガス
の1つ、又はこれらの混合ガスを用いて減量ガスを励起
させても、原料ガス自身に多量の酸素が含まれているた
め同様に不純物を含まないシリコン酸化膜を形成するこ
とが可能である。さらに、基板温度、容器内圧力、原料
ガスと反応性ガスとの分圧比等の条件は、溝内に埋め込
まれるシリコン酸化膜にオーバハングが生じない範囲で
適宜変更可能である。その他、本発明の要旨を逸脱しな
い範囲で、種々変形して実施することができる。
Furthermore, even if the weight loss gas is excited using hydrogen, nitrogen, a gas containing halogen gas such as chlorine or fluorine, or an inert gas such as argon, or a mixture thereof as a reactive gas, the raw material gas itself Since it contains a large amount of oxygen, it is also possible to form a silicon oxide film that does not contain impurities. Further, conditions such as the substrate temperature, the pressure inside the container, and the partial pressure ratio between the raw material gas and the reactive gas can be changed as appropriate within a range where no overhang occurs in the silicon oxide film buried in the trench. In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果] 以上詳述したように本発明によれば、液相酸化法で用い
るガスとしてシリコン原子の4つの全ての結合手に酸素
原子が直接結合しているシリコン化合物を選択すること
により、溝内に埋込み形成されるシリコン酸化膜の不純
物を低減することができ、高アスペクト比の溝内に良質
のシリコン酸化膜を良好に埋め込むことができる。
[Effects of the Invention] As detailed above, according to the present invention, by selecting a silicon compound in which oxygen atoms are directly bonded to all four bonds of silicon atoms as the gas used in the liquid phase oxidation method, , it is possible to reduce impurities in the silicon oxide film buried in the trench, and it is possible to satisfactorily bury a high-quality silicon oxide film in the trench with a high aspect ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は本発明の一実施例方法を説明するた
めのもので、第1図は同実施例方法に使用した薄膜形成
装置を示す概略構成図、第2図は基板温度に対する堆積
速度及び堆積形状の関係を示す特性図、第3図は容器内
圧力に対する堆積速度及び堆積形状の関係を示す特性図
、第4図は分圧比に対する堆積速度及び堆積形状の関係
を示す特性図、第5図は同実施例方法により形成したシ
リコン酸化膜の赤外吸収スペクトルを示す特性図、第6
図乃至第9図は本発明の他の実施例方法を説明するため
のもので、第6図は薄膜形成装置を示す概略構成図、第
7図は基板温度と堆積速度との関係を示す特性図、第8
図は容器内圧力と堆積速度との関係を示す特性図、第9
図は赤外吸収スペクトルを示す特性図、第10図乃至第
12図はそれぞれ従来の問題点を説明するための図であ
る。 11・・・反応容器、12.81.91・・・Si基板
(被処理基体)、13・・・試料台、14.17・・・
ガス導入口、15・・・ガス排気口、16・・・マイク
ロ波放電管、18・・・マイクロ波電源、21.22・
・・バルブ、82.92・・・溝、83.93・・・シ
リコン酸化膜、84・・・空洞。 出願人代理人 弁理士 鈴江武彦 基板′jL度(”C) − 第2図 液収(cm”) − 第 6 図 基板1tL(”C) − 第7図 f: f7(Torr) → 第8図 浪収(cm−1) − 第10図 第11 !!!
1 to 5 are for explaining a method according to an embodiment of the present invention. FIG. 1 is a schematic configuration diagram showing a thin film forming apparatus used in the method of the embodiment, and FIG. A characteristic diagram showing the relationship between the deposition rate and the deposition shape. Figure 3 is a characteristic diagram showing the relationship between the deposition rate and the deposition shape with respect to the pressure inside the container. Figure 4 is a characteristic diagram showing the relationship between the deposition rate and the deposition shape with respect to the partial pressure ratio. , FIG. 5 is a characteristic diagram showing the infrared absorption spectrum of the silicon oxide film formed by the method of the same example, and FIG.
9 to 9 are for explaining other embodiment methods of the present invention, FIG. 6 is a schematic configuration diagram showing a thin film forming apparatus, and FIG. 7 is a characteristic showing the relationship between substrate temperature and deposition rate. Figure, 8th
The figure is a characteristic diagram showing the relationship between the pressure inside the container and the deposition rate.
The figure is a characteristic diagram showing an infrared absorption spectrum, and FIGS. 10 to 12 are diagrams for explaining the problems of the conventional technology. 11... Reaction container, 12.81.91... Si substrate (substrate to be processed), 13... Sample stand, 14.17...
Gas inlet, 15... Gas exhaust port, 16... Microwave discharge tube, 18... Microwave power supply, 21.22.
...Valve, 82.92...Groove, 83.93...Silicon oxide film, 84...Cavity. Applicant's representative Patent attorney Takehiko Suzue Substrate degree (''C) - Figure 2 Liquid yield (cm'') - Figure 6 Substrate 1tL (''C) - Figure 7 f: f7 (Torr) → Figure 8 Wasted revenue (cm-1) - Figure 10, Figure 11!!!

Claims (4)

【特許請求の範囲】[Claims] (1)表面に溝が形成された被処理基体を反応容器内に
収容し、容器内に該容器とは別の領域で励起した反応性
ガスを導入すると共に、同時に容器内に原料ガスを導入
し、且つ被処理基体の温度と反応容器内の圧力を原料ガ
ス又は原料ガスと反応性ガスとの反応生成物が液化する
範囲に設定し、被処理基体の表面に原料ガス又は反応生
成物を液化して付着させることにより、被処理基体の表
面の溝をシリコン酸化膜で埋込むシリコン酸化膜の形成
方法において、 前記原料ガスとしてシリコン原子の4つの全ての結合手
に酸素原子が直接結合しているシリコン化合物を用いた
ことを特徴とするシリコン酸化膜の形成方法。
(1) A substrate to be processed with grooves formed on its surface is housed in a reaction vessel, and a reactive gas excited in a region other than the vessel is introduced into the vessel, and at the same time, a raw material gas is introduced into the vessel. In addition, the temperature of the substrate to be treated and the pressure in the reaction vessel are set within a range in which the raw material gas or the reaction product of the raw material gas and the reactive gas is liquefied, and the raw material gas or the reaction product is applied to the surface of the substrate to be treated. In a method for forming a silicon oxide film, in which a silicon oxide film fills grooves on the surface of a substrate to be processed by liquefying and depositing the film, oxygen atoms are directly bonded to all four bonds of silicon atoms as the source gas. A method for forming a silicon oxide film, characterized in that it uses a silicon compound that is
(2)表面に溝が形成された被処理基体を反応容器内に
収容し、容器内に該容器とは別の領域で励起した反応性
ガス及び原料ガスを導入すると共に、被処理基体の温度
と反応容器内の圧力を原料ガス又は原料ガスと反応性ガ
スとの反応生成物が液化する範囲に設定し、被処理基体
の表面に原料ガス又は反応生成物を液化して付着させる
ことにより、被処理基体の表面の溝をシリコン酸化膜で
埋込むシリコン酸化膜の形成方法において、 前記原料ガスとしてシリコン原子の4つの全ての結合手
に酸素原子が直接結合しているシリコン化合物を用いた
ことを特徴とするシリコン酸化膜の形成方法。
(2) A substrate to be processed with grooves formed on its surface is housed in a reaction vessel, a reactive gas and source gas excited in a region other than the vessel are introduced into the vessel, and the temperature of the substrate to be processed is By setting the pressure in the reaction vessel to a range in which the raw material gas or the reaction product of the raw material gas and the reactive gas liquefies, and liquefying and attaching the raw material gas or the reaction product to the surface of the substrate to be treated, In a method for forming a silicon oxide film in which grooves on the surface of a substrate to be processed are filled with a silicon oxide film, a silicon compound in which oxygen atoms are directly bonded to all four bonds of silicon atoms is used as the source gas. A method for forming a silicon oxide film characterized by:
(3)前記原料ガスとしてテトラメトキシシラン、前記
反応性ガスとして酸素ガスを用い、テトラメトキシシラ
ンの酸素ガスに対する分圧比は0.55より大、被処理
基体の温度は70℃未満、容器内圧力は0.3Torr
を越え10Torr未満として、前記被処理基体の表面
の溝内を不純物を含まないシリコン酸化膜で埋込むこと
を特徴とする請求項1又は2記載のシリコン酸化膜の形
成方法。
(3) Tetramethoxysilane is used as the source gas, oxygen gas is used as the reactive gas, the partial pressure ratio of tetramethoxysilane to oxygen gas is greater than 0.55, the temperature of the substrate to be treated is less than 70°C, and the pressure inside the container is 0.3 Torr
3. The method of forming a silicon oxide film according to claim 1, wherein the grooves on the surface of the substrate to be processed are filled with a silicon oxide film containing no impurities at a pressure exceeding 10 Torr.
(4)前記原料ガスとしてテトラエトキシシラン、前記
反応性ガスとして酸素ガスを用い、テトラエトキシシラ
ンの酸素ガスに対する分圧比は、0.1より大、被処理
基体の温度は0℃未満、容器内圧力は10Torr未満
として、前記被処理基体の表面の溝内を不純物を含まな
いシリコン酸化膜で埋込むことを特徴とする請求項1又
は2記載のシリコン酸化膜の形成方法。
(4) Tetraethoxysilane is used as the raw material gas, oxygen gas is used as the reactive gas, the partial pressure ratio of tetraethoxysilane to oxygen gas is greater than 0.1, the temperature of the substrate to be treated is less than 0°C, and the inside of the container is 3. The method of forming a silicon oxide film according to claim 1, wherein the pressure is less than 10 Torr, and the trenches on the surface of the substrate to be processed are filled with a silicon oxide film containing no impurities.
JP6025088A 1988-03-16 1988-03-16 Method of forming silicon oxide film Expired - Lifetime JP2763104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6025088A JP2763104B2 (en) 1988-03-16 1988-03-16 Method of forming silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6025088A JP2763104B2 (en) 1988-03-16 1988-03-16 Method of forming silicon oxide film

Publications (2)

Publication Number Publication Date
JPH01235259A true JPH01235259A (en) 1989-09-20
JP2763104B2 JP2763104B2 (en) 1998-06-11

Family

ID=13136741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6025088A Expired - Lifetime JP2763104B2 (en) 1988-03-16 1988-03-16 Method of forming silicon oxide film

Country Status (1)

Country Link
JP (1) JP2763104B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254171A (en) * 1991-04-16 1993-10-19 Sony Corporation Bias ECR plasma CVD apparatus comprising susceptor, clamp, and chamber wall heating and cooling means
US5340553A (en) * 1993-03-22 1994-08-23 Rockwell International Corporation Method of removing oxygen from a controlled atmosphere
JP2007005572A (en) * 2005-06-24 2007-01-11 Matsushita Electric Ind Co Ltd Method of forming interlayer insulation film, precursor solution for forming interlayer insulation film, cvd material for forming interlayer insulation film, and material for forming siloxane oligomer
JP2009135450A (en) * 2007-10-22 2009-06-18 Applied Materials Inc Method for forming dielectric layer within trench
JP2009152551A (en) * 2007-10-22 2009-07-09 Applied Materials Inc Method and system for improving dielectric film quality for void free gap fill
JP2010507259A (en) * 2006-10-16 2010-03-04 アプライド マテリアルズ インコーポレイテッド Formation of high-quality dielectric films of silicon dioxide for STI: Use of different siloxane-based precursors for HARPII-remote plasma enhanced deposition process
US8889566B2 (en) 2012-09-11 2014-11-18 Applied Materials, Inc. Low cost flowable dielectric films
US8980382B2 (en) 2009-12-02 2015-03-17 Applied Materials, Inc. Oxygen-doping for non-carbon radical-component CVD films
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9285168B2 (en) 2010-10-05 2016-03-15 Applied Materials, Inc. Module for ozone cure and post-cure moisture treatment
US9404178B2 (en) 2011-07-15 2016-08-02 Applied Materials, Inc. Surface treatment and deposition for reduced outgassing
US9412581B2 (en) 2014-07-16 2016-08-09 Applied Materials, Inc. Low-K dielectric gapfill by flowable deposition
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254171A (en) * 1991-04-16 1993-10-19 Sony Corporation Bias ECR plasma CVD apparatus comprising susceptor, clamp, and chamber wall heating and cooling means
US5340553A (en) * 1993-03-22 1994-08-23 Rockwell International Corporation Method of removing oxygen from a controlled atmosphere
JP2007005572A (en) * 2005-06-24 2007-01-11 Matsushita Electric Ind Co Ltd Method of forming interlayer insulation film, precursor solution for forming interlayer insulation film, cvd material for forming interlayer insulation film, and material for forming siloxane oligomer
JP2010507259A (en) * 2006-10-16 2010-03-04 アプライド マテリアルズ インコーポレイテッド Formation of high-quality dielectric films of silicon dioxide for STI: Use of different siloxane-based precursors for HARPII-remote plasma enhanced deposition process
JP2009135450A (en) * 2007-10-22 2009-06-18 Applied Materials Inc Method for forming dielectric layer within trench
JP2009152551A (en) * 2007-10-22 2009-07-09 Applied Materials Inc Method and system for improving dielectric film quality for void free gap fill
US8980382B2 (en) 2009-12-02 2015-03-17 Applied Materials, Inc. Oxygen-doping for non-carbon radical-component CVD films
US9285168B2 (en) 2010-10-05 2016-03-15 Applied Materials, Inc. Module for ozone cure and post-cure moisture treatment
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9404178B2 (en) 2011-07-15 2016-08-02 Applied Materials, Inc. Surface treatment and deposition for reduced outgassing
US8889566B2 (en) 2012-09-11 2014-11-18 Applied Materials, Inc. Low cost flowable dielectric films
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9412581B2 (en) 2014-07-16 2016-08-09 Applied Materials, Inc. Low-K dielectric gapfill by flowable deposition

Also Published As

Publication number Publication date
JP2763104B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
JP2848647B2 (en) Method for producing silicon-containing coating using organic silicon compound and nitrogen trifluoride
US5314845A (en) Two step process for forming void-free oxide layer over stepped surface of semiconductor wafer
US5089442A (en) Silicon dioxide deposition method using a magnetic field and both sputter deposition and plasma-enhanced cvd
US5354387A (en) Boron phosphorus silicate glass composite layer on semiconductor wafer
US6787483B1 (en) Gap fill for high aspect ratio structures
JPH01235259A (en) Formation of silicon oxide film
KR910006164B1 (en) Making method and there device of thin film
CN102265383B (en) Method of depositing tungsten film with reduced resistivity and improved surface morphology
KR20170119314A (en) Precursors for cvd silicon carbo-nitride films
JPH0120228B2 (en)
US6566228B1 (en) Trench isolation processes using polysilicon-assisted fill
US7001854B1 (en) Hydrogen-based phosphosilicate glass process for gap fill of high aspect ratio structures
US10741390B2 (en) Forming method of epitaxial layer, forming method of 3D NAND memory and annealing apparatus
EP0421203B1 (en) An integrated circuit structure with a boron phosphorus silicate glass composite layer on semiconductor wafer and improved method for forming same
TW200935514A (en) Reduction of etch-rate drift in HDP processes
WO2001001472A1 (en) Method and apparatus for forming a film on a substrate
TW200926291A (en) Impurity control in HDP-CVD dep/etch/dep processes
CN104347491B (en) The method of tungsten deposition
US7176039B1 (en) Dynamic modification of gap fill process characteristics
SE536605C2 (en) Culture of silicon carbide crystal in a CVD reactor using chlorination chemistry
US7067440B1 (en) Gap fill for high aspect ratio structures
JP2645215B2 (en) Thin film forming equipment
Beach Design of low-temperature thermal chemical vapor deposition processes
JP2801604B2 (en) Silicon oxide film forming method
JP2637110B2 (en) Thin film formation method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term