JPH02175726A - Copolysilazane and its production - Google Patents

Copolysilazane and its production

Info

Publication number
JPH02175726A
JPH02175726A JP32847288A JP32847288A JPH02175726A JP H02175726 A JPH02175726 A JP H02175726A JP 32847288 A JP32847288 A JP 32847288A JP 32847288 A JP32847288 A JP 32847288A JP H02175726 A JPH02175726 A JP H02175726A
Authority
JP
Japan
Prior art keywords
group
tables
formulas
formula
polysilazane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32847288A
Other languages
Japanese (ja)
Other versions
JP2700233B2 (en
Inventor
Toru Funayama
舟山 徹
Mikiro Arai
新井 幹郎
Yuji Tashiro
裕治 田代
Kiyoshi Sato
清 佐藤
Takeshi Isoda
磯田 武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KATSUSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KATSUSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KATSUSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KATSUSEIKA CENTER
Priority to JP32847288A priority Critical patent/JP2700233B2/en
Publication of JPH02175726A publication Critical patent/JPH02175726A/en
Application granted granted Critical
Publication of JP2700233B2 publication Critical patent/JP2700233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Silicon Polymers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PURPOSE:To obtain a copolysilazane which is desirable as a silicon nitride precursor and can give a silicon nitride sinter of an extensively cotrollable carbon content when fired at high temperatures by uniting an inorganic polysilazane part having a specified MW with an organic polysilazane part having a specified MW. CONSTITUTION:A block copolysilazane of a number-average MW of 100-50000 consisting of an inorganic polysilazane part A of a number-average MW of 100-50000 and an organic polysilazane part B of a number-average MW of 100-50000. Part A chiefly has a skeleton of formula I, while part B a skeleton of formula II. In formula II, R<1> and R<2> are each a hydrogen atom or an alkyl, alkenyl, cycloalkyl, alkylamino, aryl, aralkyl or alkylsilyl which may have a substituent, provided that the case where both R<1> and R<2> are hydrogen atoms is excluded.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は共重合シラザン及びその製造法に関し、更に詳
しくは窒化珪素及び窒化珪素含有セラミックスの前駆体
として使用することのできるブロック共重合シラザン及
びその製造法に関する。 〔従来の技術〕 窒化珪素焼結体は、高温強度、′耐熱衝撃性、耐酸化性
に優れているため、ガスタービン、ディーゼルエンジン
等の高温構造材料として、或いは切削用バイト等、省エ
ネルギー、省資源の多大の寄与をし得る高性能材料の一
つとして重要である。 従来、窒化珪素の製造方法としては、■金属シリコン粉
末を窒素又はアンモニア気流中で、1300℃〜150
0℃で加熱して直接窒化するシリコン直接窒化法、■シ
リカ又は含シリカ物質を炭素と共に窒素雰囲気下で加熱
し、尿素でシリカを還元して、生成する珪素と窒素とを
反応させるシリカ還元法、■四塩化珪素とアンモニアと
を高温で直接反応せしめる気相合成法、■四塩化珪素を
アンモノリシスして得られるシリコンジイミドを非酸化
性雰囲気中で加熱して窒化珪素を得るイミド熱分解法等
が採用されている。 しかし、上記■の方法の場合には、反応時間が長く、加
熱工程が煩雑である上、得られる窒化珪素は粗大で不純
物を多く含むβ型窒化珪素が主体であり、■の方法の場
合には、原料の精製が困難なばかりでなく、反応時間が
長く、得られる生成物はα型窒化珪素とβ型窒化珪素の
混合系であり、■の方法の場合には、生成した窒化珪素
は一般に非晶質であり、■の方法の場合には、高純度の
α型窒化珪素を収率よく製造し得るという利点があるも
のの、窒化珪素前駆体であるシリコンジイミド[Si 
(NH)z )xは溶媒に溶けないために実質的に用途
が限定されざるを得ない等の欠点があった。 更に、最近、有機ポリシラザンを熱分解して得られるポ
リシラザンを800〜2000℃で加熱して窒化珪素を
合成する方法も提案されている(斉藤肇、繊維学会誌、
VoQ38 Nu1頁65−72CL982年〕)が、
この方法では窒化珪素と同時に炭化珪素や遊離の炭素が
生成するという欠点があった。 一方、溶媒に可溶である無機ポリシラザンは、1921
年に5tack(Ber、54. (1,921)、p
740)等によって合成されており、1983年には5
eyferth (Go++++++、Am。 Ceram、Soc、C−13/14+ (83) )
等によって、これが窒化珪素前駆体として有用であるこ
とが証明されている。本発明者等は、かかる観点に注目
し無機ポリシラザンを加熱処理することにより、高純度
のα型窒化珪素を得る方法を提案した(特開昭59−2
07812号)。 〔発明が解決しようとする課題〕 ところが、従来の無機ポリシラザンの製造方法において
は、何れの場合も気化性の高いジクロロシランを原料と
して用いるために、■反応装置のガス配管又は反応器壁
に生成したポリシラザンが固着してガス流路を閉塞する
恐れがある、■上記弊害を防止するためには反応温度を
低温に維持してジクロロシランの飛散を防止する必要が
ある、■ジクロロシランは毒性及び引火性が強いので低
温密閉容器に入れて利用せねばならないなど取扱が煩雑
である等の欠点があった。更に、合成されたポリシラザ
ンは5tack等の場合には、−(SiH2N)l)n
−の構造を有するn=7〜8のオリゴマーにすぎず常温
では粘性のある液体であり、5eyferth等の場合
には、5tack等の場合より複雑な構造を有し、5i
−H/N−Hのプロトン比が約3.3のオイル状液体で
あるが、約200℃で加熱するから室温で3〜5日放置
することにより固化するものであり、何れのポリシラザ
ンの場合であっても、常温で賦形化した窒化珪素焼結体
のための前駆体として充分な性質を有していると言える
ものではなかった。 このような点をを解決するために、本発明者らは先に珪
素−水素結合を有する無機又は有機ポリR\、 RI 又は−N−(但しR及びR′は置換基を有していてもよ
いアルキル基、アルケニル基、シクロアルキル基、アル
キルアミノ基、アリール基、アルアルキル基又はアルキ
ルシリル基を示し、またnは1又は2を示す、)を導入
した窒化珪素前駆体として好適な、高分子量化されたポ
リシラザンを提案した(特願昭63−28295号、同
63−28296号、同63−74919号)。 しかしながら、該ポリシラザンを高温焼成して得られる
窒化珪素焼結体は、電気的性質や遠赤外効果について選
択の幅が不充分であった。 従って1本発明は、高温焼成後に得られる窒化珪素焼結
体中の炭素含有量をより広範囲に制御できる、即ち、電
気的性質や遠赤外効果に関してより広範囲に選択するこ
とができる。窒化珪素前駆体として好適なポリシラザン
を提供することを目的とする。 〔課題を解決するための手段〕 本発明によれば、数平均分子量が100〜so、oo。 の無機ポリシラザン部分Aと数平均分子量が100〜5
0,000の有機ポリシラザン部分Bとからなる数平均
分子量が200〜500,000のブロック共重合シラ
ザンであって、Aは主として式 リシラザンブロックであることを特徴とするブロック共
重合シラザン(式中、R1及びR2は水素原子、置換基
を有していてもよいアルキル基、アルケニル基、シクロ
アルキル基、アルキルアミノ基、アリール基、アルアル
キル基又はアルキルシリル基を、夫々示す。但し、R1
及びR″の両方が水素原子である場合を除く。)が提供
され、また式00である有機ポリシラザンとを、塩基性
条件下に反応させることを特徴とする請求項(1)記載
のブロック共重合シラザン(式中、R1及びR2は前記
と同一)の製造法が提供される。 本発明の共重合シラザンは、下記式(■)で表わされる
骨格を有する数平均分子量が100〜50,000の無
機ポリシラザン部分A(以下ブロックAと記す)と下記
式(■)で表わされる骨格を有する数平均分子量が10
0〜50,000の有機ポリシラザン部分B(以下ブロ
ックBと記す)からなる数平均分子量が200〜500
,000のものである。 口 前記式中R1及びR2は、水素原子、置換基を有してい
てもよいアルキル基、アルケニル基、シクロアルキル基
、アルキルアミノ基、アリール基、アルアルキル基又は
アルキルシリル基を、夫々示すが、R1及びR2の両方
が水素原子である場合は除かれる。この場合、アルキル
基としては、メチル、エチル、プロピル、ブチル、オク
チル、デシル等が挙げられ、アルケニル基としては、ビ
ニル、アリル、ブテニル、オクテニル、デセニル等が挙
げられ、シクロアルキル基としては、シクロヘキシル、
メチルシクロヘキシル等が挙げられ、アルキルアミノ基
としては、メチルアミノ基、エチルアミノ基等が挙げら
れ、アリール基としてはフェニル、1−リル、キシリル
、ナフチル等が挙げられ、アルアルキル基としては、ベ
ンジル基が挙げられ、アルキルシリル基としては、メチ
ルシリル、エチルシリル、プロピルシリル、ブチルシリ
ル、オクチルシリル、デシルシリル等が挙げられる。ま
た、前記置換基としては、珪素原子に結合する水素原子
に反応性を示さないものであればよく、アルキル基やア
リール基、アルコキシ基、アルコキシカルボニル基等が
挙げられる。 なお、ブロックA及びBは共に100〜50,000の
数平均分子量を有するもので、環状ポリシラザン、鎖状
ポリシラザン或いはそれらの混合物から楕成される。本
発明において好ましいブロックA及びBは。 数平均分子量300〜2,000、特に好ましくは60
0〜1,000の鎖状ポリシラザンである。 本発明の共重合シラザンにおいては、前記各ブロックは
頭−尾結合によって連結されているか、あるいは前記両
ブロックの主鎖骨格の中間に存在する珪素原子の一部が
、アンモニア残基、第1級アミン残基、ヒドラジン残基
又は置換ヒドラジン残基を介して、架橋結合されている
。 この場合の架橋結合としては、以下の一般式(1)〜(
Vl)で表わされるものが挙げられる。 共重合シラザン中のブロックAとブロックBとの割合は
、(Si−N)ユニットを基準として、1001):1
〜1:1000の範囲が好ましい。ブロックBが上記範
囲を超過すると、焼成後に得られる窒化珪素焼結体中に
遊離炭素が生成して1機械的強度が低下し、逆にブロッ
クBが上記範囲未満では、窒化珪素焼結体中に遊離珪素
が発生して1機械的強度が低下する。 本発明の共重合シラザンを製造するには、式が100〜
50,000である無機ポリシラザンと、式(式中、R
3及びR4は置換基を有していてもよいアルキル基、ア
ルケニル基、シクロアルキル基、アリール基、アルアル
キル基又は複素環基を、夫々示す。) 100〜50,000である有機ポリシラザン(式中、
R1及びR2は前記と同一のものを示す)とを、塩基性
条件下に脱水素重合反応させることによって得られる。 また、前記一般式(1)〜(VI)で表わされる架橋結
合を有する共重合シラザンを得る場合には、反芯系に更
に反応剤としてアンモニア、第1級アミン、ヒドラジン
又は置換ヒドラジンを加え、脱水素重合反応させること
によって得られる。 原料の無機及び有機ポリシラザンは、下記に示すような
従来公知の方法で合成することができる。 ■本発明者特許出願(特開昭60−145903号)・
5i82CQ、 + 2Py −+ 5iH2CQ2*
2Py adduct・5iH2G4 ・2Py ad
duct + 3N)l、→−(Sin2NH殆+2N
H,C,Q + 2Py■D、5eyferthら(U
SP 4,397,828)・5jH2CQ2+ 3N
H,凱輿−+5it(z N)廓+2Nll、CA■A
、5tock(Ber、54. (1921) 、P−
740)■W、M、5cantlinら、Inorg、
Chei、1972.11・2(H,3g3N+ JL
H→SiH4+ ((It、5i)2N:12SiH2
■B、J、Aylett(USP 3,318,823
)・5i11.CQ、 + Me2NH→H2Si(N
Me2)2+ Me2NH−)1cQ・H2Si(Me
、)2+ HeNH2→(H,SiNMe殆+阿e、N
H+ H。 ■D、5eyferthら(USP 4,482,66
9)H2CQ2 ・MeSiHC4÷3NH3−→−+H−3iHNH)
i +2NHqCQ■本発明者特許出願(特開昭61−
89230号)・MeSi)IC4+ 2Py−+Me
SiHCQ、・2Py adduct・MeSiHCQ
、・2Py adduct + 3NH1→−(MeS
iHN)I)n+ 2Py + 2NH4CQ本発明に
おいては、出発原料である前記無機及び有機ポリシラザ
ンを塩基性条件下に重合反応させる。塩基性条件として
は、反応系に塩基性化合物1例えば、第3級アミン類や
、立体障害性の基を有する2級アミン類、フォスフイン
等を共存させることを意味する。このような塩基性条件
は、反応溶媒中に塩基性化合物を添加することによって
形成し得る他、反応溶媒として塩基性溶媒又は塩基性溶
媒と非塩基性溶媒との混合物を用いることによって形成
することができる。塩基性化合物の添加量は、反応溶媒
100重量部に対し少なくとも5重量部、好ましくは2
0重量部以上である。塩基性化合物の添加量がこれより
少なくなると、重合反応が円滑に促進されない。 前記塩基性溶媒としては、出発原料である無機及び有機
ポリシラザンを分解しないものであれば任意のものが使
用できる。このようなものとしては、例えば、トリメチ
ルアミン、ジメチルエチルアミン、ジエチルメチルアミ
ン及びトリエチルアミン等のトリアルキルアミン、ピリ
ジン、ピコリン、ジメチルアニリン、ピラジン、ピリミ
ジン、ピリダジン及びこれらの誘導体等の第3級アミン
類の他、ピロール、3−ピロリン、ピラゾール、2−ピ
ラゾリン、及びそれらの混合物等を挙げることができる
。また、非塩基性溶媒としては、例えば、脂肪族炭化水
素、脂環式炭化水素、芳香族炭化水素の炭化水素溶媒、
ハロゲン化メタン、ハロゲン化エタン、ハロゲン化ベン
ゼン等のハロゲン化炭化水素、脂肪族エーテル、脂環式
エーテル等のエーテル類が使用できる。好ましい溶媒は
、塩化メチレン、クロロホルム、四塩化炭素、ブロモホ
ルム、塩化エチレン、塩化エチリデン、トリクロロエタ
ン、テトラクロロエタン等のハロゲン化炭化水素、エチ
ルエーテル、イソプロピルエーテル、エチルブチルエー
テル、ブチルエーテル、1,2−ジオキシエタン、ジオ
キサン、ジメチルジオキサン、テトラヒドロフラン、テ
トラヒドロピラン等のエーテル類、ペンタン、ヘキサン
、イソヘキサン、メチルペンタン、ヘプタン、イソへプ
タシ、オクタン、イソオクタン、シクロペンタン、メチ
ルシクロペンタン、シクロヘキサン、メチルシクロヘキ
サン、ベンゼン、トルエン、キシレン、エチルベンゼン
等の炭化水素等である。 本発明では、好ましい態様において、更に反応剤として
アンモニア、第1級アミン、ヒドラジン又は置換ヒドラ
ジンが添加され、これらの化合物残基からなる架橋結合
を有する共重合シラザンが得られる。 この場合第1級アミンとしては、芳香族系及び脂肪族系
のものを用いることができ、次の一般式%式% この式中、R3は置換基を有していてもよいアルキル基
、アルケニル基、シクロアルキル基、アリール基又はア
ルアルキル基を表わす。 この第1級アミンの具体例としては、例えば、メチルア
ミン、エチルアミン、プロピルアミン。 イソプロピルアミン、ブチルアミン、イソブチルアミン
、アミルアミン、ヘキシルアミン、ヘプチルアミン、オ
クチルアミン、アリルアミン、クロチルアミン、シクロ
プロピルアミン、シクロブチルアミン、シクロペンチル
アミン、シクロヘキシルアミン、2−メチルシクロヘキ
シルアミン、2−アミノ−1−シクロペンチルプロパン
、アニリン、トルイジン、ベンジルアミン、ナフチルア
ミン等を挙げることができる。 また、置換ヒドラジンとしては、■−置換、1,2−置
換又は1,1−置換ヒドラジンが用いられ、1−置換ヒ
ドラジンとしては、次の一般式で表わされるものを用い
ることができる。 ン、4−メチルフェニルヒドラジン、4−エチルフェニ
ルヒドラジン、1−フェニルエチルヒドラジン。 2−フェニルエチルヒドラジン、1−ナフチルヒドラジ
ン、2−ナフチルヒドラジン、2−ヒドラジノビフェニ
ル、3−ヒドラジノビフェニル、4−ヒドラジノビフェ
ニル、1−ヒドラジノフタラジン、2−ヒドラジノキノ
リン、3−ヒドラジノキノリン、4−ヒドラジノキノリ
ン、8−ヒドラジノキノリン等を挙げることができる。 また、1.2−fi置換ヒドラジンしては、次の一般式
で表わされるものを用いることができる。 この式中、R3は置換基を有していてもよいアルキル基
、アルケニル基、シクロアルキル基、アリール基、アル
アルキル基又は複素環基を表わす。 このl−置換ヒドラジンの具体例としては、例えば、メ
チルヒドラジン、エチルヒドラジン、イソプロピルヒド
ラジン、プロピルヒドラジン、フェニルヒドラジン、ベ
ンジルヒドラジン、2−メチルフェニルヒドラジン、3
−メチルフェニルヒドラジこの式中、R3及びR4は置
換基を有していてもよいアルキル基、シクロアルキル基
、アリール基、アルアルキル基又は複素環基を、夫々表
わす。 この1.2−fi置換ヒドラジン具体例としては1例え
ば、1,2−ジメチルヒドラジン、1.2−ジエチルヒ
ドラジン、N1−イソプロピル−N2−メチルヒドラジ
ン、1−メチル−2−フェニルヒドラジン、1−エチル
−2−フェニルヒドラジン、1,2−ジベンジルヒドラ
ジン、2,2′−ヒドラゾビフェニル、4,4′−ヒド
ラゾビフェニル、2,2′−ジメチルヒドラゾベンゼン
、2,4−ジメチルヒドラゾベンゼン、3,3′−ジメ
チルヒドラゾベンゼン、3,4′−ジメチルヒドラゾベ
ンゼン、3.5−ジメチルヒドラゾベンゼン、4,4′
−ジメチルヒドラゾベンゼン、2−アミノヒドラゾベン
ゼン、3−アミノヒドラゾベンゼン、4−7ミノヒドラ
ゾベンゼン、1,2−ジ(1−ナフチル)ヒドラジン、
1,2−ジ(2−ナフチル)ヒドラジン、2.2’ 、
3.3’−テトラメチルヒドラゾベンゼン、2.2’ 
、4.4’−テトラメチルヒドラゾベンゼン、2.2’
 、5,5’−テトラメチルヒドラゾベンゼン、3.3
’ 、4.4’−テトラメチルヒドラゾベンゼン、3.
3’5.5’−テトラヒドラゾベンゼン等を挙げること
ができる。 また、1.1−5t換ヒドラジンとしては1次の一般式
で表わされるものを用いることができる。 1                   (Xll)
R3−N−NH。 この式中、R3及びR4は前記一般式(X[)で示した
ものと同じである。 この1.1−M換ヒドラジンとしては、例えば、トリメ
チルヒドラジン、1.2−ジメチル−1−フェニルヒド
ラジン、1.1−ジメチル−2−フェニルヒドラジン、
ベンジリデンメチルヒドラジン等が挙げられる。 本発明の重合反応は、前記したような溶媒中で好ましく
は実施されるが、この場合、原料面ポリシラザン(合計
量)の溶媒中濃度は0.01〜60重量2、好ましくは
0.1〜30重景%重量る。原料ポリシラザンの濃度が
これより低いと重合反応が充分進行せず、またそれより
高いと重合反応が進みすぎてゲルを生成するようになる
。反応温度は、−78〜400℃、好ましくは−40−
250℃であり、それより低い温度では重合反応が充分
進行せず、それより高い温度では重合反応が進みすぎて
ゲルを生成する。 なお、前記アンモニア、第1級アミン、ヒドラジン又は
置換ヒドラジン等の反応剤(以下単にアンモニア等の反
応剤と記す)を用いる場合には、該反応剤の使用量は、
原料面ポリシラザン(合計lf)1モル(平均モル)当
りのモル比で、0.01〜5000、好ましくは0.5
〜1000の範囲であり、それより低いと重合反応が充
分進行せず、それより高いと重合反応が進みすぎてゲル
を生成する。 反応雰囲気としては、大気の使用が可能であるが、好ま
しくは、水素雰囲気や、乾燥窒素、乾燥アルゴン等の不
活性ガス雰囲気或いはそれらの混合雰囲気が使用される
。なお、アンモニア等の反応剤を用いた場合には、好ま
しくは、アンモニア、第1級アミン、ヒドラジン、置換
ヒドラジン等からなる塩基性雰囲気や不活性ガス雰囲気
或いはそれらの混合雰囲気が使用される。 本発明における重合反応においては、副生物の水素によ
って、またアンモニア等の反応剤を用いた場合には、該
反応剤化合物によって、反応の際に圧力がかかるが、必
ずしも加圧は必要でなく。 常圧を採用することができる。なお、反応時間は。 出発原料の無機及び有機ポリシラザンの種類、濃度、塩
基性溶媒の種類、濃度及び重合反応温度或いはアンモニ
ア等の反応剤を添加する場合には添加する該反応剤の添
加量など諸条件により異なるが、−船釣に0.5〜20
時間の範囲とすれば充分である。 重合反応の最適条件は出発原料の無機及び有機ポリシラ
ザンの平均分子量、分子量分布及び共重合シラザンの分
子構造によって、また、アンモニア等の反応剤を添加す
る場合は、該反応剤として何れの化合物を選ぶかによっ
て異なる。条件設定の一般的な考慮は、出発原料の無機
及び有機ポリシラザンの平均分子量が低い程よりきびし
い条件(温度、反応時間)が必要とされるということで
ある。 本発明において、塩基性溶媒を用いて重合反応を行なう
場合、得られる共重合シラザンを含む塩基性溶媒溶液は
、その溶液組成調整して、塩基性溶媒含量を、全溶媒中
30重量%以下、好ましくは5重量x以下にするのが好
ましい。塩基性溶媒は、共重合シラザンの重合反応触媒
として作用するため、その溶媒に対する割合が余りにも
多くなると、室温で長時間保存している間にゲルを生成
する。 二の溶媒組成の調整は、例えば、前記重合反応工程で得
られた塩基性化合物を含む共重合シラザン溶液を蒸発処
理して、それに含まれる塩基性化合物を蒸発除去した後
、非塩基性(非反応性)溶媒を添加することによって行
なうことができる。溶液中の塩基性化合物の含量が高い
場合や、反応溶媒として塩基性のものを用いる場合は、
前記した塩基性化合物の蒸発除去と非塩基性溶媒添加と
からなる溶液組成調整工程を繰返し行なうことによって
安定性の良い溶液組成とすることができる0本発明にお
いて共重合シラザンの安定溶液を形成するたの非塩基性
溶媒としては、前記で示した如き脂肪族炭化水素、脂環
式炭化水素、芳香族炭化水素、ハロゲン化炭化水素、脂
肪族エーテル、脂環式エーテル等を用いることができる
。 本発明の共重合シラザンは、前記したように無機ポリシ
ラザン部分A(ブロックA)と有機ポリシラザン部分B
(ブロックB)からなるものであって、分子構造的には
、 IM料無機ポリシラザンと有機ポリシラザンとの反
応により、新たに以下に述べる結合が形成されているこ
とを特徴としている。 (t) rff求項C1)の共重合シラザン(i)ブロ
ックBのR2が水素の場合 (n)ブロックBのR2が水素原子以外の場合請求項(
1)の共重合シラザンは、前記の如き分子構造的特徴を
有するとともに、物性的には、架橋結合を有しながら、
有機溶媒に可溶であり、特に溶液から溶媒を除去して得
られた固体重合体は、溶媒に対して再可溶性を有すると
いう大きな特徴を示す。従来の無機シラザンの場合、安
定性が悪く、その溶液から溶媒を除去すると樹脂状固体
を生成し、このものは溶媒に不溶であったが、請求項(
1)の共重合シラザンはこのような傾向を示さない。従
って、従来の無機シラザンの場合、固体重合体としての
取扱いが不可能ないし著しく困難であったのに対し、請
求項(1)の共重合シラザンは固体重合体として容易に
取扱うことができる。 (2)請求項(2)の共重合シラザン 即ち、請求項(2)の共重合シラザンは、前記−般式(
I)〜(VI)で示された如き新しい架橋結合が導入さ
れ、高分子量化されたものである。請求項(2)の共重
合シラザンは、原料ポリシラザンに対して、分子構造的
には次の点を特徴とする。 (i)珪素原子に結合する窒素原子の割合が増加する。 請求項(2)の共重合シラザンは、前記のように、新し
い架橋基を含むものであり、この架橋基に基づく窒素原
子の割合が増加する。請求項(2)の共重合シラザン中
の珪素原子に結合する窒素原子と珪素原子との比(N/
Si)の上限は、該共重合シラザンのゲル化が起らない
範囲、換言すれば、溶媒可溶性を示す範囲内に規定され
るが、通常は2゜5以下、好ましくは2.0以下である
。 (ii)数平均分子i範囲は、200〜500 、00
0 テある。 請求項(2)の共重合シラザンは、前記のように数平均
分子量100〜50,000のポリシラザンを原料とし
て用い、これをアンモニア、第1級アミン、ヒドラジン
及び置換ヒドラジンから選ばれる少くとも1種を架橋剤
として用いて架橋高分子化することによって形成される
ことから、その分子量は、当然のことながら、原料ポリ
シラザンの分子量よりも増加されたものとなる。−船釣
には、本発明の目的とする共重合シラザンは、数平均分
子量200〜500,000、好ましくは、1500〜
10000を有する。 請求項(2)の共重合シラザンは、分子構造的には前記
の如き特徴を有し、原料ポリシラザンと区別されるもの
であるが、その他、多くの枝分れ構造を有する点もその
特徴の1つである。この枝分れ構造のために、請求項(
2)の共重合シラザンは、原料ポリシラザンに比して高
分子量化されたものでありながら、むしろ溶媒可溶性に
おいて改善された結果を与える。5eyferth等が
提案した無機シラザンは、5i−H/N−)1のプロト
ン比が約3.3のオイル状液体であり、約200’Cで
加熱するが、室温で3〜5日放置することにより固化す
るものである。これに対し、請求項(2)の共重合シラ
ザンは、200〜5oooooの分子量を持ち、前記し
た如き新しい架橋基を含み、窒素原子と珪素原子との比
(N/Si)は原料ポリシラザンよりも高く、しがも溶
媒再可溶性を有する。請求項(2)の共重合シラザンが
原料ポリシラザンに比してより多くの枝分れ構造を有す
る理由は、本発明における重縮合反応では、重縮合反応
以外に、ポリシラザンの不均化反応等が起ることによる
ものと考えられる。 請求項(2)の共重合シラザンは、前記の如き分子構造
的特徴を有するとともに、物性的には、新しい架橋結合
を有しながら、多くの場合有機溶媒に可溶であり、特に
該共重合シラザン溶液から溶媒を除去した固体重合体は
、溶媒に対して再可溶性を有するという大きな特徴を示
す。従来のポリシラザンの場合、安定性が悪く、その溶
液から溶媒を除去すると樹脂状固体を生成し、このもの
は溶媒に不溶であったが、請求項(2)の共重合シラザ
ンはこのような傾向を示さない。従って、従来のポリシ
ラザンの場合、固体重合体としての取扱いが不可能ない
し著しく困難であったのに対し。 請求項(2)の共重合シラザンは固体重合体として容易
に取扱うことができる。 〔発明の効果〕 本発明の共重合シラザンは、前記のような構成からなっ
ているので、以下のような効果を奏する。 請求項(1)の共重合シラザンにおいて、■共重合シラ
ザンは、有機溶媒に可溶であり、焼成して窒化珪素或い
は窒化珪素含有セラミックスに変換できるため、高性能
のセラミックス成形体即ち、高温機械強度が高く、耐熱
性、耐食性、耐酸化性、耐熱?#撃性に優れた連続繊維
、フィルム、被覆膜を容易に得ることができる。また、
セラミックス収率が高いので、焼結用結合剤、含浸剤等
としての利用も可能である、 ■共重合シラザンは、その重合体中に分解を促進する残
留触媒等の不純物の混入がないため、安定性が向上し、
取扱いが容易になり、その上高温焼成後のセラミックス
の純度が向上する、 ■共重合シラザンは、原料無機及び有機ポリシラザンに
比べて分子量が増加しているため、凝固性が向上し、常
温ですみやかに賦形化が可能となる、 ■高分子量のため、高温焼成時の蒸発損失が小さいので
、セラミックス収率が向上する。 ■不純物の混入がないため、高温焼成後のセラミックス
の純度が向上する、 ■共重合シラザンを紡糸する場合、紡糸助剤を添加せず
に連続紡糸が可能となる、 ■共重合シラザン中のブロック八とブロックBとの割合
を変えることにより、高温焼成後のセラミックスの電気
的性質として、絶縁体から半導体まで、任意のものが得
られる、また、同様にしてSiCの生成量を制御できる
ことにより、遠赤外効果を連続的に変化させることがで
きる、 ■高温焼成後のセラミックスの結晶化温度が高い。 請求項(2)の共重合シラザンにおいては、前記架橋結
合を有することにより。 ■更に共重合シラザンの高分子量化が容易になる、 ■更に溶媒可溶性が向上する。 また、請求項(3)の共重合シラザンの製造法において
は、 ■遷移金属等の触媒を用いないため、生成物と触媒との
分離工程を必要としない、 ■共重合シラザン中に触媒が残存しないため、安定性が
向上し、溶媒を除き、単離後も長期保存が可能である、 ■高価で危険な触媒を使用しないため、低コストで安全
である、 ■共重合であるので高分子量化が容易である、■高温焼
成後のセラミックスの炭素含有量を広範囲に制御できる
、 ■共重合であるので、高温焼成後のセラミックスの元素
組成を制御できる。 請求項(4)の製造方法においては、 ■更に共重合シラザンの高分子量化が容易になる。 〔実施例〕 以下、実施例により本発明を更に詳細に説明する。 参考例1 内容積1Ωの四つロフラスコにガス吹きこみ管、メカニ
カルスターラー、ジュワーコンデンサーを装置した。反
応器内部を脱酸素した乾燥窒素で置換した後、四つロフ
ラスコに脱気した乾燥ピリジン490−を入れ、これを
氷冷した。次にジクロロシラン51.6gを加えると白
色固体状のアダクト(SiH2CQ2・2C,H,N)
が生成した。反応混合物を氷冷し、撹拌しながら、水酸
化ナトリウム管及び活性炭管を通して精製したアンモニ
ア51.0gを吹き込んだ。 反応終了後、反応混合物を遠心分離し、乾燥ピリジンを
用いて洗浄した後、更に窒素雰囲気下で濾過し、濾液8
50成を得た。濾液5−から溶媒を減圧留去すると樹脂
固体ベルヒドロポリシラザン0.102gが得られた。 得られたポリマーの数平均分子量はGPCにより測定し
たところ、980であった。また、このポリマーのIR
(赤外吸収)スペクトル(I媒:乾燥0−キシレン;ペ
ルヒドロポリシラザンの濃度:10.2g/Q)を検討
すると、波数(cm−L)3350 (見かけの吸光係
数t =0.557Qg−1cm−1)及び1175の
NHに基づく吸収;2170(ε=3.14)のSLH
に基づく吸収;1020〜820のSiH及びS i 
N Siに基づく吸収を示すことが確認された。 またこのポリマーの1HNMR(プロI〜ン核磁気共鳴
)スペクトル(60MHz、溶媒CDCQ3/基準物質
TMS)を検討すると、何れも帳広い吸収を示している
ことが確認された。即ち64.8及び4.4(br、5
iH);1.4(br。 NH)の吸収が確認された。 参考例2 参考例1と同一の装置を用いて反応を行なった。 即ち、参考例1で示した四つロフラスコに脱気した乾燥
ジクロロメタン500−を入れ、これを水冷した。次に
ジクロロシラン48.6gを加えた。この溶液を水冷し
、撹拌しながら、水酸化ナトリウム管及び活性炭管を通
して精製したアンモニア42.5gを窒素との混合ガス
とした吹き込んだ。反応中ガス流路に粉霧が生成したの
で、ガス流路を時々たたいて閉塞を防いだ。 反応混合物を参考例1と同様処理すると粘性油状ペルヒ
ドロポリシラザンが9.6g得られた。得られたポリマ
ーの数平均分子量はGPCにより測定したところ640
であった。 参考例3 参考例1と同一の装置を用いて反応を行なった。 即ち、参考例1で示した四つロフラスコに脱気した乾燥
テトラヒドロフラン450m12を入れ、これをドライ
アイス−メタノール浴で冷却した。次にジクロロシラン
46.2匹を加えた。この溶液を冷却し、撹拌しながら
無水メチルアミン44.2gを窒素との混合ガスとして
吹き込んだ。 反応終了後、反応混合物を遠心分離し、乾燥テトラヒド
ロフランを用いて洗浄した後、さらに窒素雰囲気下で濾
過して濾液820−を得た。溶媒を減圧留去すると粘性
油状N−メチルシラザンが8.4g得られた。得られた
ポリマーの数平均分子量は、GPCにより測定したとこ
ろ1100であった。 参考例4 内容積IQの四つロフラスコにガス吹き込み管、メカニ
カルスターラー、ジュワーコンデンサーを装置した。反
応器内部を脱酸素した乾燥窒素で置換した後、四つロフ
ラスコに乾燥ジクロロメタン300mQ及びメチルジク
ロロシラン24.3g (0,211mou)を入れ、
水冷した。撹拌しながら水酸化ナトリウム管及び活性炭
管を通して精製したアンモニア18.1g(1,06m
oQ)を吹き込んだ。 反応終了後1反応器合物を遠心分離し、乾燥ジクロロメ
タンを用いて洗浄後、窒素雰囲気下で濾過した。濾液か
ら溶媒を減圧留去すると、無色透明の液体を8.81g
得た。この生成物の数平均分子量はGPCにより測定し
たところ、380であった。 参考例5 参考例1と同一の装置を用いて反応を行なった。 即ち参考例1で示した四つロフラスコに脱気した乾燥ベ
ンゼン450−を入れ、これを氷冷した。次にジクロロ
シラン40.6gを加えた。この溶液を水冷し、撹拌し
ながら、水酸化ナトリウム管及び活性炭管を通して精製
したアンモニア42.0gを窒素との混合ガスとして吹
き込んだ。反応中ガス流路に粉霧が生成したので、ガス
流路を時々たたいて閉塞を防いだ。 反応混合物を参考例1と同様に処理すると粘性油状ペル
ヒドロポリシラザンが5.2g得られた。得られたポリ
マーの数平均分子量はGPCにより81す定したところ
320であった。 参考例6 内容積IQの四つロフラスコに滴下ろうと、メカニカル
スターラー、ジュワーコンデンサーと装置した。反応器
内部の脱酸素した乾燥窒素で置換した後、四つロフラス
コに脱気した乾燥ベンゼン400−と公知の方法(J、
Am、Chem、Soc、、Vol、67.1813(
1945))により得た、アリルジクロロシラン64.
5gを入れ、撹拌した1滴下ろうとに、公知の方法(J
、A+o、Che+a、Soc、 、Vol、70.4
35(1948))により得たトリエチルアミノシラン
42.5gと乾燥ベンゼン5〇−を入れた。トリエチル
アミノシランのベンゼン溶液をアリルジクロロシランの
ベンゼン溶液に滴下した。滴下終了後、撹拌しながらオ
イルバスで加熱還流して反応を行なった。 反応終了後、反応混合物を遠心分離し、乾燥ベンゼンを
用いて洗浄した後、更に窒素雰囲気下で濾過して、濾液
680−を得た。濾液より溶媒を除くと液体状のN−(
トリエチルシリル)アリルシラザンが19.2g得られ
た。得られたポリマーの数平均分子量はGPCにより測
定したところ360であった。 参考例7 シクロヘキシルブロマイドより合成したグリニヤール試
薬62.Ogをトリクロロシラン110gにゆっくりと
添加した。減圧蒸留したところ、シクロへキシルジクロ
ロシランが16.4g得られた。参考例6と同様の装置
を用いた。四つロフラスコにシクロへキシルジクロロシ
ラン12.0gと乾燥ベンゼン42〇−を入れ撹拌した
。滴下ろうとに1,1−ジメチルヒドラジン15.6g
と乾燥ベンゼン40−を入れた。1,1−ジメチルヒド
ラジンのベンゼン溶液をシクロヘキシルジグロロシラン
のベンゼン溶液に滴下した。 滴下終了後、室温で撹拌しながら反応を行なった。 反応終了後1反応混合物を遠心分離し、乾燥ベンゼンを
用して洗浄した後、更に窒素雰囲気下で濾過して、濾液
730戒を得た。濾液より溶媒を除くと油状のN−(ジ
メチルアミノ)シクロへキシルシラザンが3.2g得ら
れた。得られたポリマーの数平均分子量はGPCにより
測定したところ390であった。 参考例8 参考例1と同一の装置を用いた反応を行なった。 即ち、参考例1で示した四つロフラスコに脱気した乾燥
トルエン500mQを入れ、これを氷冷した。 次に、フエニルジクロロシラン52.]、gを加えた。 この溶液を氷冷し、撹拌しながら、水酸化ナトリウム管
及び活性炭管を通して精製したアンモニア30.0gを
窒素との混合ガスとして吹き込んだ。 反応混合物を参考例1と同様に処理すると油状フェニル
ポリシラザンが6.8g得られた。得られたポリマーの
数平均分子量はGPCにより測定したところ380であ
った。 実施例1 参考例1で得られたベルヒドロポリシラザンのピリジン
溶液70cc(ベルヒドロポリシラザン4.OOg)に
参考例4で得られたメチルシラザン1.93gを加え、
内容積300 m12の耐圧反応容器に入れ、精製した
無水アンモニア8.7g(0,512mol)を加えて
密閉系で120℃で3時間撹拌しながら反応を行なった
。この間大量の気体が発生した。反応前後で圧力は1.
1kg/d上昇した。この気体は、ガスクロマトグラフ
ィー (GC)測定により、水素であった。室温に冷却
後、乾燥0−キシレン200−を加え圧力3−5mmH
g、温度50〜70℃で溶媒を除いたところ、5.34
gの白色粉末が得られた。この粉末はトルエン、テトラ
ヒドロフラン、クロロホルム及びその他の有機溶媒に可
溶であった。 前記重合体粉末の数平均分子量は、GPCにより測定し
たところ1790であった。また、そのIRスペクトル
(溶媒;0−キシレン)の分析の結果、波数(cm−”
 )3350及び1175のNHに基づく吸収;217
0のSiHに基づく吸収;1020〜820の5i)l
及び5iNSiに基づく吸収;2980.2950.2
880.1270のCHに基づく吸収を示すことが確認
された。更に、前記重合体粉末の18NMRスペクトル
(CDCI2.、 TMS)を分析したところ、何れも
幅広い吸収を示している。即ち、δ4.8(br、Si
H,)、δ4.4 (brkSiHa ) −δ)、4
(br、NH)、δ0.3(br、5iC)I、 )の
吸収が観測された。 また、前記重合体粉末の元素分析結果は(重量′1)S
i:57.1%、N:27.1%、O:4.17%、C
ニア、30%であった。 実施例2 参考例5で得られたベルヒドロポリシラザンのピリジン
溶液80cc (ベルヒドロポリシラザン1.60.)
に参考例3で得られたN−メチルシラザン1.50gと
参考例4で得られたメチルシラザン0.95Eを加え、
内容積300−の耐圧反応容器に入れ、精製した無水ア
ンモニア4.2g(0,247mol)を加えて密閉系
で130℃で3時間撹拌しながら反応を行なった。この
間大量の気体が発生したが、GC測定によりこの気体は
水素であった。反応前後における圧力上昇は1゜4kg
/cdであった。実施例1と同様に溶媒を減圧留去する
と白色粉末が3.24g得られた。 前記重合体粉末の数平均分子量は、GPCにより測定し
たところ2030であった。またIRスペクトル(溶媒
二〇−キシレン)の分析の結果、波数(am−”)33
50及び1175のNHに基づく吸収;2170のSi
Hに基づく吸収;1020〜820のSiH及び5iN
Siに基づく吸収:2940.2900.2820及び
1270のC)Iに基づく吸収を示すことが確認された
。更に前記重合体粉末のiHNMRスペクトル(CDC
l2、TMS)を分析した結果、δ4 、8 (br 
。 SiH,)、δ4,4(br、5Ji)、δ1.4(b
r、NH)、δ2.6(br、NCH++)、δ0.3
(br、5iclI、)の吸収が観測された。 実施例3 参考例1で得られたベルヒドロポリシラザンのγ−ピコ
リン溶液100cc(ベルヒドロポリシラザン4゜44
g)に参考例7で得られたN−(ジメチルアミノ)−シ
クロへキシルシラザン1.48gを加え、内容積30〇
−の耐圧反応容器に入れ、M製した無水アンモニア5 
、7g (0,335mol)を加えて密閉系で150
℃で5時間撹拌しながら反応を行なった。この間大量の
気体が発生したが、GC測定により、この気体は水素で
あった。反応前後における圧力」二昇は0.9kg/a
+fであった。実施例1と同様に溶媒を減圧留去すると
、黄色ゴム状固体が4.14g得られた。 前記重合体の数平均分子量はGPCにより測定したとこ
ろ1730であった。 実施例4 参考例1で得られたベルヒドロポリシラザンのピリジン
溶液100cc(ベルヒドロポリシラザン3.21g)
に参考例6で得られたN−(トリエチルシリル)−アリ
ルシラザン2.02gを加え、内容積300−の耐圧反
応容器に入れ、精製した無水アンモニア4.8g(0,
282mol)を加えて密閉系で150℃で6時間撹拌
しながら反応を行なった。この間大量の気体が発生した
が、GC測定により、この気体は水素であった。反応前
後における圧力上昇は1.0kg/a+tであった。実
施例1と同様に溶媒を減圧留去すると、黄色ゴム状固体
が3゜54g得られた。 前記重合体の数平均分子量はGPCにより測定したとこ
ろ1880であった。 実施例5 参考例2で得られたベルヒドロポリシラザンのピリジン
溶液100cc(ベルヒドロポリシラザン4.62g)
に参考例8で得られたフェニルシラザン1.21gを加
え、内容積300 m12の耐圧反応容器に入れ、無水
ヒドラジン8.9g(0,278mol)を加えて密閉
系で100℃で3時間撹拌しながら反応を行なった。こ
の間大意の気体が発生したが、GC測定により、この気
体は水素であった。反応前後における圧力上昇は1.2
kg/dであった。実施例1と同様に溶媒を減圧留去す
ると、白色粉末が3.79g得られた。 前記重合体の数平均分子量はGPCにより測定したとこ
ろ2250であった。 実施例6 参考例3で得られたN−メチルシラザンのピリジン溶液
80cc(N−メチルシラザン4.31g)に参考例4
で得られたメチルシラザン2.02gを加え、内容積3
00−の耐圧反応容器に入れ、無水エチルヒドラジン2
5g(0,416mol)を加えて密閉系で120”C
で6時間撹拌しながら反応を行なった。この間大量の気
体が発生したが、GC?lI!I定により、この気体は
水素であった。反応前後における圧力上昇は1.0kg
/aJであった。実施例1と同様に溶媒を減圧留去する
と、白色粉末が4.30g得られた。 前記重合体の数平均分子量は、GPCにより測定したと
ころ、2130であった。 実施例7 参考例1で得られたベルヒドロポリシラザンのピリジン
溶液100cc(ベルヒドロポリシラザン2.47g)
に参考例3で得られたN−メチルシラザン3.24gを
加え、内容積300−の耐圧反応容器に入れ、n−ブチ
ルアミン7.4g(0,101mol)を加えて、密閉
系で140℃で6時間撹拌しながら反応を行なった。こ
の間大景の気体が発生したが、GC測により、この気体
は水素であった。反応前後における圧力上昇は0.9k
g/cn?であった。実施例1と同様に溶媒を減圧留去
すると、淡黄色ゴム状固体が3.94g得られた。 前記重合体の数平均分子量はGPCにより測定したとこ
ろ、1850であった。 実施例8 参考例2で得られたベルヒドロポリシラザンのピリジン
溶液100cc(ベルヒドロポリシラザン3.70g)
に参考例4で得られたメチルシラザン1.62gを加え
、内容積300−の耐圧反応容器に入れ、■、1−ジメ
チルヒドラジン15g(0,250mol)を加えて、
1.20’Cで4時間撹しながら反応を行なった。この
間大量の気体が発生したが、 Gcg定により、この気
体は水素であった。反応の前後における圧力上昇は1.
0kg/co!であった。実施例1と同様に溶媒を減圧
留去すると、白色粉末が3.19g得られた。 前記重合体の数平均分子量はGPCにより測定したとこ
ろ、2160であった。 実施例9 実施例1で得られた共重合シラザンを窒素中で1500
℃まで昇温速度3℃/分で加熱し、熱分解することで灰
黒色固体を88.6重量%の収率で得た。得られたセラ
ミックスの粉末X線回折測定を行なったところ、非晶質
であることが確認された。 次に、この固体を更に窒素中で1700℃まで昇温速度
10℃/分で加熱焼成して黒緑色固体を得た。 この物質の粉末X線回折測定を行なったところ、2θ=
20.5’にα−3i、 N4の(101)回折線、2
θ、22.9’にα−813N4の(110)回折線、
2θ=26.4”にα−3i3N。 の(200)回折線、2θ=30.9″′にα−3i、
 N4の(201)回折線、2 B =31.7’ I
c a−513N4(7)(002)回折線、2o=3
4−5’ Ic α−313N−(71(102) 回
折k、2 B =35.2°ニα−5i、 N、の(2
10)回折線、2θ=38.8°にα−3i3N4の(
211)回折線、2θ=39.4@にα−8i3N、の
(112)回折線、2θ=4.0.1’にα−5i3N
、の(300)回折線、2θ=41.8″l: α−3
i3N、(7)(202)回折AI!、 2θ=43.
4’4Ca−5L3N、の(301)回折線、2θ=4
6.9°にα−5i3N4の(220)回折線、2θ=
48.2°にα−3i3N、の(212)回折線、2θ
=48.8°にα−3i3N、の(310)回折線、更
に2θ=23.3″′にβ−3i、 N、の(110)
回折線、2θ= 26.9°にβ−5i3N4の(20
0)回折線、2θ=33.6’にβ−5i3〜4の(1
01)回折線、20 =36.0’にβ−3i、 N、
の(210)回折線、2θ=41.4”にβ−5i、 
N4の(201)回折線、2θ=49.9’にβ−Si
、 N、の(310)回折線、20 =34.2°にα
−5iCの(101)回折線、2θ=35゜7°にα−
5iCの(006)回折線、(102)回折線、2θ=
38.2°にα−3iCの(103)回折線、20 =
41.5″にα−5iC(104)回折線が認められ、
結晶質の窒化珪素−炭化珪素混合セラミックスであるこ
とが確認された。 この結晶質混合セラミックスの元素分析結果はく重量%
)Si:64.4、N:、26.0、O:2.2、C:
6.8であった。
[Industrial Field of Application] The present invention relates to a copolymerized silazane and a method for producing the same, and more particularly to a block copolymerized silazane that can be used as a precursor for silicon nitride and silicon nitride-containing ceramics, and a method for producing the same. [Prior art] Silicon nitride sintered bodies have excellent high-temperature strength, thermal shock resistance, and oxidation resistance, so they are used as high-temperature structural materials for gas turbines, diesel engines, etc., or as cutting tools, etc., for energy saving and saving purposes. It is important as one of the high-performance materials that can make a large contribution to resources. Conventionally, methods for producing silicon nitride include: heating metal silicon powder at 1300°C to 150°C in a nitrogen or ammonia stream;
Silicon direct nitriding method, in which the silicon is directly nitrided by heating at 0°C; ■ Silica reduction method, in which silica or a silica-containing substance is heated together with carbon in a nitrogen atmosphere, the silica is reduced with urea, and the produced silicon reacts with nitrogen. , ■ Gas phase synthesis method in which silicon tetrachloride and ammonia are directly reacted at high temperature, ■ Imide thermal decomposition method in which silicon diimide obtained by ammonolysis of silicon tetrachloride is heated in a non-oxidizing atmosphere to obtain silicon nitride, etc. has been adopted. However, in the case of method (2) above, the reaction time is long, the heating process is complicated, and the silicon nitride obtained is mainly β-type silicon nitride that is coarse and contains many impurities. In method (2), not only is it difficult to purify the raw materials, but the reaction time is long, and the product obtained is a mixed system of α-type silicon nitride and β-type silicon nitride. Generally, silicon nitride is amorphous, and although method (2) has the advantage of producing high-purity α-type silicon nitride in good yield, silicon diimide [Si
(NH)z)x has drawbacks such as being insoluble in solvents and thus having substantially limited uses. Furthermore, a method has recently been proposed in which silicon nitride is synthesized by heating polysilazane obtained by thermally decomposing organic polysilazane at 800 to 2000°C (Hajime Saito, Journal of the Japan Institute of Textile Technology,
VoQ38 Nu1 pages 65-72CL982]
This method has the disadvantage that silicon carbide and free carbon are produced simultaneously with silicon nitride. On the other hand, inorganic polysilazane that is soluble in solvents is
5 tack (Ber, 54. (1,921), p
740) and others, and in 1983, 5
eyferth (Go++++++++, Am. Ceram, Soc, C-13/14+ (83))
It has been demonstrated that it is useful as a silicon nitride precursor. The present inventors focused on this point of view and proposed a method for obtaining highly pure α-type silicon nitride by heat-treating inorganic polysilazane (Japanese Unexamined Patent Publication No. 59-2
No. 07812). [Problems to be Solved by the Invention] However, in all conventional methods for producing inorganic polysilazane, since highly volatile dichlorosilane is used as a raw material, There is a risk that the polysilazane that has been removed may stick and block the gas flow path. ■ To prevent the above-mentioned adverse effects, it is necessary to maintain the reaction temperature at a low temperature to prevent dichlorosilane from scattering. ■ Dichlorosilane is toxic and Since it is highly flammable, it has drawbacks such as being complicated to handle and requiring use in a low-temperature airtight container. Furthermore, in the case of 5tack etc., the synthesized polysilazane is -(SiH2N)l)n
It is only an oligomer of n=7 to 8 having a structure of - and is a viscous liquid at room temperature.
It is an oily liquid with a -H/N-H proton ratio of about 3.3, but since it is heated at about 200°C, it will solidify if left at room temperature for 3 to 5 days. Even so, it could not be said that it had sufficient properties as a precursor for a silicon nitride sintered body shaped at room temperature. In order to solve this problem, the present inventors first developed an inorganic or organic polycarbonate having a silicon-hydrogen bond, R\, RI or -N- (where R and R' have a substituent and suitable as a silicon nitride precursor into which an alkyl group, an alkenyl group, a cycloalkyl group, an alkylamino group, an aryl group, an aralkyl group, or an alkylsilyl group is introduced, and n is 1 or 2. A polysilazane with a high molecular weight was proposed (Japanese Patent Application No. 63-28295, No. 63-28296, No. 63-74919). However, the silicon nitride sintered body obtained by firing the polysilazane at a high temperature has an insufficient range of selection in terms of electrical properties and far-infrared effects. Therefore, according to the present invention, the carbon content in the silicon nitride sintered body obtained after high-temperature firing can be controlled over a wider range, that is, electrical properties and far-infrared effects can be selected over a wider range. The present invention aims to provide polysilazane suitable as a silicon nitride precursor. [Means for Solving the Problems] According to the present invention, the number average molecular weight is 100 to so, oo. Inorganic polysilazane moiety A and number average molecular weight of 100 to 5
A block copolymerized silazane having a number average molecular weight of 200 to 500,000 and consisting of an organic polysilazane moiety B of 0,000, wherein A is mainly a lysilazane block of the formula , R1 and R2 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an alkylamino group, an aryl group, an aralkyl group, or an alkylsilyl group which may have a substituent.However, R1
and R'' are both hydrogen atoms), and is reacted with an organic polysilazane of formula 00 under basic conditions. A method for producing a polymerized silazane (in the formula, R1 and R2 are the same as above) is provided. The copolymerized silazane of the present invention has a skeleton represented by the following formula (■) and has a number average molecular weight of 100 to 50,000. having an inorganic polysilazane moiety A (hereinafter referred to as block A) and a skeleton represented by the following formula (■) and a number average molecular weight of 10
0 to 50,000 organic polysilazane moiety B (hereinafter referred to as block B) with a number average molecular weight of 200 to 500
,000. In the above formula, R1 and R2 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an alkylamino group, an aryl group, an aralkyl group, or an alkylsilyl group, which may have a substituent. , R1 and R2 are both hydrogen atoms. In this case, the alkyl group includes methyl, ethyl, propyl, butyl, octyl, decyl, etc., the alkenyl group includes vinyl, allyl, butenyl, octenyl, decenyl, etc., and the cycloalkyl group includes cyclohexyl ,
Examples of the alkylamino group include methylamino group, ethylamino group, etc., examples of the aryl group include phenyl, 1-lyl, xylyl, naphthyl, etc., and examples of the aralkyl group include benzyl. Examples of the alkylsilyl group include methylsilyl, ethylsilyl, propylsilyl, butylsilyl, octylsilyl, decylsilyl, and the like. Further, the substituent may be any substituent as long as it does not show reactivity with the hydrogen atom bonded to the silicon atom, and examples thereof include an alkyl group, an aryl group, an alkoxy group, an alkoxycarbonyl group, and the like. The blocks A and B both have a number average molecular weight of 100 to 50,000 and are made of cyclic polysilazane, chain polysilazane, or a mixture thereof. Blocks A and B are preferred in the present invention. Number average molecular weight 300 to 2,000, particularly preferably 60
It is a chain polysilazane having a molecular weight of 0 to 1,000. In the copolymerized silazane of the present invention, each of the blocks is connected by a head-to-tail bond, or some of the silicon atoms present in the middle of the main chain skeleton of both blocks are ammonia residues, primary They are cross-linked via amine residues, hydrazine residues or substituted hydrazine residues. In this case, the crosslinking bond is expressed by the following general formulas (1) to (
Examples include those represented by Vl). The ratio of block A and block B in the copolymerized silazane is 1001):1 based on the (Si-N) unit.
The range of 1:1000 is preferable. If block B exceeds the above range, free carbon will be generated in the silicon nitride sintered body obtained after firing, resulting in a decrease in mechanical strength. Free silicon is generated and the mechanical strength is reduced. In order to produce the copolymerized silazane of the present invention, the formula is 100-
50,000 and an inorganic polysilazane having the formula (where R
3 and R4 each represent an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, or a heterocyclic group which may have a substituent. ) 100 to 50,000 (in the formula,
(R1 and R2 are the same as above) under basic conditions through dehydrogenation polymerization reaction. In addition, when obtaining a copolymerized silazane having a crosslinked bond represented by the general formulas (1) to (VI), ammonia, a primary amine, hydrazine or substituted hydrazine is further added to the anti-core system as a reactant, Obtained by dehydrogenation polymerization reaction. The inorganic and organic polysilazane raw materials can be synthesized by conventionally known methods as shown below. ■Inventor patent application (Unexamined Japanese Patent Publication No. 145903/1983)・
5i82CQ, + 2Py −+ 5iH2CQ2*
2Py adduct・5iH2G4・2Py ad
duct + 3N)l, →-(Sin2NH almost +2N
H, C, Q + 2Py■D, 5eyferth et al. (U
SP 4,397,828)・5jH2CQ2+ 3N
H, Kaikoshi-+5it(z N)廓+2Nll, CA■A
, 5tock (Ber, 54. (1921), P-
740) ■W, M, 5cantlin et al., Inorg.
Chei, 1972.11.2 (H, 3g3N+ JL
H→SiH4+ ((It, 5i)2N:12SiH2
■B, J, Aylett (USP 3,318,823
)・5i11. CQ, +Me2NH→H2Si(N
Me2)2+ Me2NH-)1cQ・H2Si(Me
,)2+ HeNH2→(H,SiNMemost+Ae,N
H+H. ■D, 5eyferth et al. (USP 4,482,66
9) H2CQ2 ・MeSiHC4÷3NH3−→−+H−3iHNH)
i + 2NHqCQ
No. 89230)・MeSi)IC4+ 2Py-+Me
SiHCQ, ・2Py adduct・MeSiHCQ
,・2Py adduct + 3NH1→−(MeS
iHN) I) n+ 2Py + 2NH4CQ In the present invention, the inorganic and organic polysilazane starting materials are subjected to a polymerization reaction under basic conditions. The basic condition means that a basic compound 1 such as tertiary amines, secondary amines having a sterically hindered group, phosphine, etc. is allowed to coexist in the reaction system. Such basic conditions can be formed by adding a basic compound to the reaction solvent, or by using a basic solvent or a mixture of a basic solvent and a non-basic solvent as the reaction solvent. Can be done. The amount of the basic compound added is at least 5 parts by weight, preferably 2 parts by weight, per 100 parts by weight of the reaction solvent.
It is 0 parts by weight or more. If the amount of the basic compound added is less than this, the polymerization reaction will not be smoothly promoted. Any basic solvent can be used as long as it does not decompose the inorganic and organic polysilazane starting materials. Examples of such substances include trialkylamines such as trimethylamine, dimethylethylamine, diethylmethylamine, and triethylamine; tertiary amines such as pyridine, picoline, dimethylaniline, pyrazine, pyrimidine, pyridazine, and derivatives thereof; , pyrrole, 3-pyrroline, pyrazole, 2-pyrazoline, and mixtures thereof. In addition, examples of non-basic solvents include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons;
Halogenated hydrocarbons such as halogenated methane, halogenated ethane, and halogenated benzene, and ethers such as aliphatic ethers and alicyclic ethers can be used. Preferred solvents include halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, bromoform, ethylene chloride, ethylidene chloride, trichloroethane, and tetrachloroethane, ethyl ether, isopropyl ether, ethyl butyl ether, butyl ether, 1,2-dioxyethane, and dioxane. , ethers such as dimethyldioxane, tetrahydrofuran, tetrahydropyran, pentane, hexane, isohexane, methylpentane, heptane, isoheptane, octane, isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, These include hydrocarbons such as ethylbenzene. In a preferred embodiment of the present invention, ammonia, a primary amine, hydrazine or substituted hydrazine is further added as a reactant, and a copolymerized silazane having a crosslinked bond consisting of residues of these compounds is obtained. In this case, as the primary amine, aromatic and aliphatic ones can be used, and the following general formula % formula % In this formula, R3 is an alkyl group which may have a substituent, alkenyl group, cycloalkyl group, aryl group or aralkyl group. Specific examples of this primary amine include methylamine, ethylamine, and propylamine. Isopropylamine, butylamine, isobutylamine, amylamine, hexylamine, heptylamine, octylamine, allylamine, crotylamine, cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, 2-methylcyclohexylamine, 2-amino-1-cyclopentylpropane , aniline, toluidine, benzylamine, naphthylamine and the like. Further, as the substituted hydrazine, a ■-substituted, 1,2-substituted or 1,1-substituted hydrazine can be used, and as the 1-substituted hydrazine, those represented by the following general formula can be used. 4-methylphenylhydrazine, 4-ethylphenylhydrazine, 1-phenylethylhydrazine. 2-phenylethylhydrazine, 1-naphthylhydrazine, 2-naphthylhydrazine, 2-hydrazinobiphenyl, 3-hydrazinobiphenyl, 4-hydrazinobiphenyl, 1-hydrazinophthalazine, 2-hydrazinoquinoline, 3-hydra Examples include dinoquinoline, 4-hydrazinoquinoline, 8-hydrazinoquinoline, and the like. Moreover, as the 1.2-fi substituted hydrazine, those represented by the following general formula can be used. In this formula, R3 represents an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, or a heterocyclic group which may have a substituent. Specific examples of this l-substituted hydrazine include methylhydrazine, ethylhydrazine, isopropylhydrazine, propylhydrazine, phenylhydrazine, benzylhydrazine, 2-methylphenylhydrazine,
-Methylphenylhydrazi In this formula, R3 and R4 each represent an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, or a heterocyclic group which may have a substituent. Specific examples of this 1,2-fi substituted hydrazine include 1,2-dimethylhydrazine, 1,2-diethylhydrazine, N1-isopropyl-N2-methylhydrazine, 1-methyl-2-phenylhydrazine, 1-ethyl -2-phenylhydrazine, 1,2-dibenzylhydrazine, 2,2'-hydrazobiphenyl, 4,4'-hydrazobiphenyl, 2,2'-dimethylhydrazobenzene, 2,4-dimethylhydrazobenzene , 3,3'-dimethylhydrazobenzene, 3,4'-dimethylhydrazobenzene, 3,5-dimethylhydrazobenzene, 4,4'
-dimethylhydrazobenzene, 2-aminohydrazobenzene, 3-aminohydrazobenzene, 4-7minohydrazobenzene, 1,2-di(1-naphthyl)hydrazine,
1,2-di(2-naphthyl)hydrazine, 2.2',
3.3'-tetramethylhydrazobenzene, 2.2'
, 4.4'-tetramethylhydrazobenzene, 2.2'
, 5,5'-tetramethylhydrazobenzene, 3.3
', 4.4'-tetramethylhydrazobenzene, 3.
Examples include 3'5,5'-tetrahydrazobenzene. Further, as the 1.1-5t-substituted hydrazine, those represented by the first-order general formula can be used. 1 (Xll)
R3-N-NH. In this formula, R3 and R4 are the same as those shown in the general formula (X[). Examples of the 1.1-M-converted hydrazine include trimethylhydrazine, 1,2-dimethyl-1-phenylhydrazine, 1,1-dimethyl-2-phenylhydrazine,
Examples include benzylidenemethylhydrazine. The polymerization reaction of the present invention is preferably carried out in the solvent as described above, but in this case, the concentration of polysilazane (total amount) on the raw material side in the solvent is 0.01 to 60% by weight2, preferably 0.1 to 60% by weight2. 30% heavy weight. If the concentration of the raw material polysilazane is lower than this, the polymerization reaction will not proceed sufficiently, and if it is higher than this, the polymerization reaction will proceed too much and a gel will be produced. The reaction temperature is -78 to 400°C, preferably -40-
The temperature is 250°C, and at a temperature lower than that, the polymerization reaction does not proceed sufficiently, and at a temperature higher than that, the polymerization reaction proceeds too much and forms a gel. When using a reactant such as ammonia, primary amine, hydrazine or substituted hydrazine (hereinafter simply referred to as "reactant such as ammonia"), the amount of the reactant used is as follows:
Molar ratio per mole (average mole) of polysilazane (total lf) on the raw material side, 0.01 to 5000, preferably 0.5
-1000, and if it is lower than that, the polymerization reaction will not proceed sufficiently, and if it is higher than that, the polymerization reaction will proceed too much and a gel will be produced. As the reaction atmosphere, air can be used, but preferably a hydrogen atmosphere, an inert gas atmosphere such as dry nitrogen or dry argon, or a mixed atmosphere thereof is used. Note that when a reactant such as ammonia is used, preferably a basic atmosphere, an inert gas atmosphere, or a mixed atmosphere consisting of ammonia, a primary amine, hydrazine, substituted hydrazine, or the like is used. In the polymerization reaction of the present invention, pressure is applied during the reaction by hydrogen as a by-product and, if a reactant such as ammonia is used, by the reactant compound, but pressurization is not necessarily required. Normal pressure can be used. Furthermore, the reaction time is Although it varies depending on various conditions such as the type and concentration of the inorganic and organic polysilazane starting materials, the type and concentration of the basic solvent, the polymerization reaction temperature, and when adding a reactant such as ammonia, the amount of the reactant added. -0.5~20 for boat fishing
A time range is sufficient. The optimum conditions for the polymerization reaction depend on the average molecular weight and molecular weight distribution of the inorganic and organic polysilazane starting materials, and the molecular structure of the copolymerized silazane.If a reactant such as ammonia is added, which compound should be selected as the reactant. It depends. A general consideration in setting conditions is that the lower the average molecular weight of the starting inorganic and organic polysilazane, the more stringent conditions (temperature, reaction time) are required. In the present invention, when the polymerization reaction is carried out using a basic solvent, the basic solvent solution containing the resulting copolymerized silazane is adjusted to have a basic solvent content of 30% by weight or less in the total solvent. Preferably, it is 5 weight x or less. Since the basic solvent acts as a polymerization reaction catalyst for the copolymerized silazane, if its proportion to the solvent is too large, a gel will be formed during long-term storage at room temperature. Adjustment of the second solvent composition can be carried out, for example, by evaporating the copolymerized silazane solution containing the basic compound obtained in the polymerization reaction step to remove the basic compound contained therein. (reactivity) can be carried out by adding a solvent. When the content of basic compounds in the solution is high or when using basic compounds as the reaction solvent,
A stable solution composition can be obtained by repeatedly performing the solution composition adjustment process consisting of evaporation removal of the basic compound and addition of a non-basic solvent. In the present invention, a stable solution of copolymerized silazane is formed. As other non-basic solvents, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, aliphatic ethers, alicyclic ethers, etc. as shown above can be used. As described above, the copolymerized silazane of the present invention comprises an inorganic polysilazane part A (block A) and an organic polysilazane part B.
(Block B), and its molecular structure is characterized by the new bond described below being formed by the reaction between the IM material inorganic polysilazane and organic polysilazane. (t) Copolymerized silazane of rff claim C1) (i) When R2 of block B is hydrogen (n) When R2 of block B is other than a hydrogen atom Claim (
The copolymerized silazane of 1) has the above-mentioned molecular structural characteristics, and in terms of physical properties, while having crosslinking bonds,
Solid polymers that are soluble in organic solvents, and in particular obtained by removing the solvent from a solution, exhibit a significant feature of being re-soluble in the solvent. Conventional inorganic silazane has poor stability, and when the solvent is removed from its solution, it produces a resinous solid, which is insoluble in the solvent.
The copolymerized silazane of 1) does not exhibit this tendency. Therefore, while conventional inorganic silazane is impossible or extremely difficult to handle as a solid polymer, the copolymerized silazane of claim (1) can be easily handled as a solid polymer. (2) The copolymerized silazane of claim (2), that is, the copolymerized silazane of claim (2), has the general formula (
New crosslinking bonds as shown in I) to (VI) are introduced to increase the molecular weight. The copolymerized silazane of claim (2) is characterized by the following molecular structure compared to the raw material polysilazane. (i) The proportion of nitrogen atoms bonded to silicon atoms increases. As described above, the copolymerized silazane of claim (2) contains a new crosslinking group, and the proportion of nitrogen atoms based on this crosslinking group increases. The ratio of nitrogen atoms bonded to silicon atoms to silicon atoms in the copolymerized silazane of claim (2) (N/
The upper limit of Si) is defined within a range in which gelation of the copolymerized silazane does not occur, in other words, within a range that shows solvent solubility, and is usually 2.5 or less, preferably 2.0 or less. . (ii) Number average molecule i range is 200-500,00
0 There is. The copolymerized silazane of claim (2) uses polysilazane having a number average molecular weight of 100 to 50,000 as a raw material as described above, and at least one type selected from ammonia, primary amines, hydrazine, and substituted hydrazine. Since it is formed by crosslinking and polymerizing using polysilazane as a crosslinking agent, its molecular weight is naturally higher than that of the raw material polysilazane. - For boat fishing, the copolymerized silazane targeted by the present invention has a number average molecular weight of 200 to 500,000, preferably 1500 to 500,000.
It has 10000. The copolymerized silazane of claim (2) has the above-mentioned characteristics in terms of molecular structure and is distinguished from the raw material polysilazane, but another characteristic is that it has many branched structures. There is one. Because of this branched structure, the claim (
Although the copolymerized silazane of 2) has a higher molecular weight than the raw material polysilazane, it provides results with improved solvent solubility. The inorganic silazane proposed by 5eyferth et al. is an oily liquid with a proton ratio of 5i-H/N-)1 of about 3.3, and is heated at about 200'C, but left at room temperature for 3 to 5 days. It is solidified by On the other hand, the copolymerized silazane of claim (2) has a molecular weight of 200 to 5oooooo, contains the above-mentioned new crosslinking group, and has a ratio of nitrogen atoms to silicon atoms (N/Si) that is higher than that of the raw material polysilazane. It has high solvent resolubility. The reason why the copolymerized silazane of claim (2) has a more branched structure than the raw material polysilazane is that in the polycondensation reaction of the present invention, in addition to the polycondensation reaction, a disproportionation reaction of polysilazane, etc. This is thought to be due to what happens. The copolymerized silazane of claim (2) has the above-mentioned molecular structural characteristics, and has a new crosslinking bond in terms of physical properties, but is soluble in organic solvents in most cases, and is particularly suitable for the copolymerized silazane. The solid polymer obtained by removing the solvent from the silazane solution exhibits a significant feature of being re-soluble in the solvent. In the case of conventional polysilazane, stability is poor and when the solvent is removed from the solution, a resinous solid is produced, which is insoluble in the solvent, but the copolymerized silazane of claim (2) does not have this tendency. does not indicate. Therefore, in the case of conventional polysilazane, it was impossible or extremely difficult to handle it as a solid polymer. The copolymerized silazane of claim (2) can be easily handled as a solid polymer. [Effects of the Invention] Since the copolymerized silazane of the present invention has the above-described structure, it exhibits the following effects. In the copolymerized silazane of claim (1), (1) the copolymerized silazane is soluble in organic solvents and can be converted into silicon nitride or silicon nitride-containing ceramics by firing; High strength, heat resistance, corrosion resistance, oxidation resistance, heat resistance? # Continuous fibers, films, and coatings with excellent impact resistance can be easily obtained. Also,
Since the ceramic yield is high, it can also be used as a binder for sintering, an impregnating agent, etc. ■ Copolymerized silazane does not contain impurities such as residual catalyst that promotes decomposition in the polymer. Improved stability
It is easier to handle and also improves the purity of ceramics after high-temperature firing. Copolymerized silazane has a higher molecular weight than the raw material inorganic and organic polysilazane, so it has improved solidification and can be quickly processed at room temperature. (1) Due to its high molecular weight, evaporation loss during high-temperature firing is small, improving ceramic yield. ■Since there is no contamination of impurities, the purity of ceramics after high-temperature firing is improved. ■When spinning copolymerized silazane, continuous spinning is possible without adding a spinning aid. ■Blocks in copolymerized silazane By changing the ratio of 8 and block B, it is possible to obtain any electrical property of the ceramic after high-temperature firing, from an insulator to a semiconductor.Also, by being able to control the amount of SiC produced in the same way, The far-infrared effect can be changed continuously. ■The crystallization temperature of ceramics after high-temperature firing is high. In the copolymerized silazane according to claim (2), by having the crosslinking bond. (2) Further, it becomes easier to increase the molecular weight of the copolymerized silazane. (2) Further, the solvent solubility is improved. In addition, in the method for producing copolymerized silazane according to claim (3), (1) no catalyst such as a transition metal is used, so there is no need for a separation step between the product and the catalyst, and (2) the catalyst remains in the copolymerized silazane. ∎Low cost and safety as no expensive and dangerous catalysts are used; ∎High molecular weight due to copolymerization. (1) The carbon content of the ceramics after high-temperature firing can be controlled over a wide range; (2) Since it is copolymerization, the elemental composition of the ceramics after high-temperature firing can be controlled. In the production method of claim (4), (1) it is also easier to increase the molecular weight of the copolymerized silazane; [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. Reference Example 1 A four-loop flask with an internal volume of 1Ω was equipped with a gas blowing tube, a mechanical stirrer, and a dewar condenser. After the inside of the reactor was replaced with deoxygenated dry nitrogen, degassed dry pyridine 490- was placed in a four-bottle flask and cooled on ice. Next, when 51.6 g of dichlorosilane was added, a white solid adduct (SiH2CQ2.2C,H,N) was formed.
was generated. The reaction mixture was ice-cooled, and while stirring, 51.0 g of purified ammonia was blown into the reaction mixture through a sodium hydroxide tube and an activated carbon tube. After completion of the reaction, the reaction mixture was centrifuged, washed with dry pyridine, and further filtered under nitrogen atmosphere to obtain filtrate 8.
I got 50 results. The solvent was distilled off from the filtrate 5- under reduced pressure to obtain 0.102 g of resin solid perhydropolysilazane. The number average molecular weight of the obtained polymer was 980 as measured by GPC. Also, the IR of this polymer
Examining the (infrared absorption) spectrum (I medium: dry 0-xylene; concentration of perhydropolysilazane: 10.2 g/Q), the wave number (cm-L) is 3350 (apparent extinction coefficient t = 0.557 Qg-1 cm) -1) and NH-based absorption of 1175; SLH of 2170 (ε=3.14)
Absorption based on SiH and Si of 1020-820
It was confirmed that the material exhibits absorption based on N Si. Further, when examining the 1HNMR (Prone Nuclear Magnetic Resonance) spectrum (60 MHz, solvent CDCQ3/reference material TMS) of this polymer, it was confirmed that all of them exhibited broad absorption. That is, 64.8 and 4.4 (br, 5
Absorption of iH); 1.4 (br. NH) was confirmed. Reference Example 2 A reaction was carried out using the same apparatus as Reference Example 1. That is, 500 g of degassed dry dichloromethane was placed in the four-loaf flask shown in Reference Example 1, and cooled with water. Next, 48.6 g of dichlorosilane was added. This solution was cooled with water, and while stirring, 42.5 g of purified ammonia was blown into the solution as a mixed gas with nitrogen through a sodium hydroxide tube and an activated carbon tube. During the reaction, powder mist was generated in the gas flow path, so the gas flow path was occasionally tapped to prevent clogging. The reaction mixture was treated in the same manner as in Reference Example 1 to obtain 9.6 g of viscous oily perhydropolysilazane. The number average molecular weight of the obtained polymer was 640 as measured by GPC.
Met. Reference Example 3 A reaction was carried out using the same apparatus as Reference Example 1. That is, 450 ml of degassed dry tetrahydrofuran was placed in the four-loaf flask shown in Reference Example 1, and cooled in a dry ice-methanol bath. Next, 46.2 dichlorosilane were added. This solution was cooled, and 44.2 g of anhydrous methylamine was blown into the solution as a mixed gas with nitrogen while stirring. After the reaction was completed, the reaction mixture was centrifuged, washed with dry tetrahydrofuran, and then filtered under a nitrogen atmosphere to obtain filtrate 820-. When the solvent was distilled off under reduced pressure, 8.4 g of viscous oily N-methylsilazane was obtained. The number average molecular weight of the obtained polymer was 1100 as measured by GPC. Reference Example 4 A four-loop flask with an internal volume of IQ was equipped with a gas blowing pipe, a mechanical stirrer, and a dewar condenser. After purging the inside of the reactor with deoxygenated dry nitrogen, 300 mQ of dry dichloromethane and 24.3 g (0,211 mou) of methyldichlorosilane were placed in a four-bottle flask.
Water cooled. 18.1 g (1,06 m
oQ) was injected. After the reaction was completed, the reactor mixture was centrifuged, washed with dry dichloromethane, and filtered under a nitrogen atmosphere. When the solvent was distilled off from the filtrate under reduced pressure, 8.81 g of a colorless and transparent liquid was obtained.
Obtained. The number average molecular weight of this product was 380 as measured by GPC. Reference Example 5 A reaction was carried out using the same apparatus as Reference Example 1. That is, 450 g of degassed dry benzene was placed in the four-loaf flask shown in Reference Example 1, and cooled on ice. Next, 40.6 g of dichlorosilane was added. This solution was cooled with water, and while stirring, 42.0 g of purified ammonia was blown into the solution as a mixed gas with nitrogen through a sodium hydroxide tube and an activated carbon tube. During the reaction, powder mist was generated in the gas flow path, so the gas flow path was occasionally tapped to prevent clogging. The reaction mixture was treated in the same manner as in Reference Example 1 to obtain 5.2 g of viscous oily perhydropolysilazane. The number average molecular weight of the obtained polymer was determined to be 81 by GPC and was 320. Reference Example 6 A mechanical stirrer and a dewar condenser were used to drip the liquid into a four-loaf flask with an internal volume of IQ. After replacing the interior of the reactor with deoxygenated dry nitrogen, 400% of degassed dry benzene was placed in a four-bottle flask using a known method (J,
Am, Chem, Soc,, Vol, 67.1813 (
Allyldichlorosilane 64.
Add 5g of the liquid and add one drop to the stirred funnel using a known method (J
,A+o,Che+a,Soc, ,Vol,70.4
35 (1948)) and 50 g of dry benzene were added. A benzene solution of triethylaminosilane was added dropwise to a benzene solution of allyldichlorosilane. After the dropwise addition was completed, the mixture was heated to reflux in an oil bath while stirring to carry out the reaction. After the reaction was completed, the reaction mixture was centrifuged, washed with dry benzene, and further filtered under a nitrogen atmosphere to obtain filtrate 680-. When the solvent is removed from the filtrate, liquid N-(
19.2 g of triethylsilyl)allylsilazane was obtained. The number average molecular weight of the obtained polymer was 360 as measured by GPC. Reference Example 7 Grignard reagent synthesized from cyclohexyl bromide 62. Og was slowly added to 110 g of trichlorosilane. Distillation under reduced pressure yielded 16.4 g of cyclohexyldichlorosilane. The same apparatus as in Reference Example 6 was used. 12.0 g of cyclohexyldichlorosilane and 420 g of dry benzene were placed in a four-bottle flask and stirred. 15.6 g of 1,1-dimethylhydrazine in the dropping funnel
and 40% of dry benzene. A benzene solution of 1,1-dimethylhydrazine was added dropwise to a benzene solution of cyclohexyldiglorosilane. After the dropwise addition was completed, the reaction was carried out at room temperature with stirring. After the reaction was completed, the reaction mixture was centrifuged, washed with dry benzene, and further filtered under a nitrogen atmosphere to obtain 730 ml of filtrate. When the solvent was removed from the filtrate, 3.2 g of oily N-(dimethylamino)cyclohexylsilazane was obtained. The number average molecular weight of the obtained polymer was 390 as measured by GPC. Reference Example 8 A reaction was carried out using the same apparatus as in Reference Example 1. That is, 500 mQ of degassed dry toluene was placed in the four-loaf flask shown in Reference Example 1 and cooled on ice. Next, phenyldichlorosilane 52. ], g was added. This solution was ice-cooled, and while stirring, 30.0 g of purified ammonia was blown into the solution as a mixed gas with nitrogen through a sodium hydroxide tube and an activated carbon tube. The reaction mixture was treated in the same manner as in Reference Example 1 to obtain 6.8 g of oily phenylpolysilazane. The number average molecular weight of the obtained polymer was 380 as measured by GPC. Example 1 To 70 cc of the pyridine solution of perhydropolysilazane obtained in Reference Example 1 (4.OOg of perhydropolysilazane) was added 1.93 g of methylsilazane obtained in Reference Example 4,
The mixture was placed in a pressure-resistant reaction vessel having an internal volume of 300 m12, 8.7 g (0,512 mol) of purified anhydrous ammonia was added, and the reaction was carried out in a closed system at 120° C. with stirring for 3 hours. During this time, a large amount of gas was generated. The pressure before and after the reaction is 1.
Increased by 1 kg/d. This gas was determined to be hydrogen by gas chromatography (GC) measurements. After cooling to room temperature, add 200% of dry 0-xylene to a pressure of 3-5 mmH.
g, when the solvent was removed at a temperature of 50 to 70°C, 5.34
g of white powder was obtained. This powder was soluble in toluene, tetrahydrofuran, chloroform and other organic solvents. The number average molecular weight of the polymer powder was 1790 as measured by GPC. In addition, as a result of analysis of its IR spectrum (solvent: 0-xylene), the wave number (cm-"
) 3350 and 1175 NH-based absorption; 217
Absorption based on SiH of 0; 5i)l of 1020-820
and absorption based on 5iNSi; 2980.2950.2
It was confirmed that absorption based on CH 880.1270 was exhibited. Furthermore, when the 18 NMR spectrum (CDCI2., TMS) of the polymer powder was analyzed, all of them showed broad absorption. That is, δ4.8(br, Si
H,), δ4.4 (brkSiHa) −δ), 4
(br,NH), δ0.3(br,5iC)I, ) absorption was observed. In addition, the elemental analysis results of the polymer powder are (weight'1) S
i: 57.1%, N: 27.1%, O: 4.17%, C
Near, it was 30%. Example 2 80 cc of pyridine solution of perhydropolysilazane obtained in Reference Example 5 (perhydropolysilazane 1.60.)
Add 1.50 g of N-methylsilazane obtained in Reference Example 3 and 0.95 E of methylsilazane obtained in Reference Example 4,
The mixture was placed in a pressure-resistant reaction vessel having an internal volume of 300 mL, and 4.2 g (0,247 mol) of purified anhydrous ammonia was added thereto, and the reaction was carried out in a closed system at 130° C. with stirring for 3 hours. During this time, a large amount of gas was generated, which was determined to be hydrogen by GC measurement. The pressure increase before and after the reaction is 1゜4kg.
/cd. When the solvent was distilled off under reduced pressure in the same manner as in Example 1, 3.24 g of white powder was obtained. The number average molecular weight of the polymer powder was 2030 as measured by GPC. Furthermore, as a result of the analysis of the IR spectrum (solvent 20-xylene), the wave number (am-”) was 33.
Absorption based on NH of 50 and 1175; Si of 2170
Absorption based on H; 1020-820 SiH and 5iN
Absorption based on Si: It was confirmed that absorption based on C)I of 2940.2900.2820 and 1270 was exhibited. Furthermore, the iHNMR spectrum (CDC
As a result of analyzing δ4, 8 (br
. SiH, ), δ4,4 (br, 5Ji), δ1.4 (b
r, NH), δ2.6 (br, NCH++), δ0.3
Absorption of (br, 5iclI,) was observed. Example 3 100 cc of γ-picoline solution of perhydropolysilazane obtained in Reference Example 1 (perhydropolysilazane 4°44
1.48 g of N-(dimethylamino)-cyclohexylsilazane obtained in Reference Example 7 was added to g), placed in a pressure-resistant reaction vessel with an internal volume of 300, and anhydrous ammonia 5 manufactured by M was added.
, 7g (0,335mol) was added in a closed system to 150
The reaction was carried out with stirring at .degree. C. for 5 hours. A large amount of gas was generated during this time, and GC measurements showed that this gas was hydrogen. The pressure before and after the reaction is 0.9 kg/a.
It was +f. When the solvent was distilled off under reduced pressure in the same manner as in Example 1, 4.14 g of yellow rubbery solid was obtained. The number average molecular weight of the polymer was determined to be 1730 by GPC. Example 4 100 cc of pyridine solution of perhydropolysilazane obtained in Reference Example 1 (3.21 g of perhydropolysilazane)
2.02 g of N-(triethylsilyl)-allylsilazane obtained in Reference Example 6 was added to the mixture, and the mixture was placed in a pressure-resistant reaction vessel with an internal volume of 300 mm, and 4.8 g of purified anhydrous ammonia (0,
282 mol) was added thereto, and the reaction was carried out in a closed system at 150° C. with stirring for 6 hours. A large amount of gas was generated during this time, and GC measurements showed that this gas was hydrogen. The pressure increase before and after the reaction was 1.0 kg/a+t. When the solvent was distilled off under reduced pressure in the same manner as in Example 1, 3.54 g of a yellow rubbery solid was obtained. The number average molecular weight of the polymer was 1880 as measured by GPC. Example 5 100 cc of pyridine solution of perhydropolysilazane obtained in Reference Example 2 (4.62 g of perhydropolysilazane)
1.21 g of phenylsilazane obtained in Reference Example 8 was added to the mixture, and the mixture was placed in a pressure-resistant reaction vessel with an internal volume of 300 m12, and 8.9 g (0,278 mol) of anhydrous hydrazine was added thereto, followed by stirring at 100°C for 3 hours in a closed system. The reaction was carried out while During this time, a gas was generated, which was determined to be hydrogen by GC measurement. The pressure increase before and after the reaction is 1.2
kg/d. When the solvent was distilled off under reduced pressure in the same manner as in Example 1, 3.79 g of white powder was obtained. The number average molecular weight of the polymer was 2250 as measured by GPC. Example 6 Reference Example 4 was added to 80 cc (4.31 g of N-methylsilazane) of the pyridine solution of N-methylsilazane obtained in Reference Example 3.
Add 2.02 g of methylsilazane obtained in
00- in a pressure-resistant reaction vessel, anhydrous ethylhydrazine 2
Add 5g (0,416mol) and heat to 120"C in a closed system.
The reaction was carried out with stirring for 6 hours. A large amount of gas was generated during this time, but was it GC? lI! According to I, this gas was hydrogen. The pressure increase before and after the reaction is 1.0 kg.
/aJ. When the solvent was distilled off under reduced pressure in the same manner as in Example 1, 4.30 g of white powder was obtained. The number average molecular weight of the polymer was 2130 as measured by GPC. Example 7 100 cc of pyridine solution of perhydropolysilazane obtained in Reference Example 1 (2.47 g of perhydropolysilazane)
3.24 g of N-methylsilazane obtained in Reference Example 3 was added to the mixture, and the mixture was placed in a pressure-resistant reaction vessel with an internal volume of 300 mm, and 7.4 g (0.101 mol) of n-butylamine was added thereto, and the mixture was heated at 140°C in a closed system. The reaction was carried out with stirring for 6 hours. During this time, a large amount of gas was generated, but GC measurements showed that this gas was hydrogen. The pressure increase before and after the reaction is 0.9k
g/cn? Met. When the solvent was distilled off under reduced pressure in the same manner as in Example 1, 3.94 g of pale yellow rubbery solid was obtained. The number average molecular weight of the polymer was determined to be 1850 by GPC. Example 8 100 cc of pyridine solution of perhydropolysilazane obtained in Reference Example 2 (3.70 g of perhydropolysilazane)
1.62 g of methylsilazane obtained in Reference Example 4 was added to the mixture, placed in a pressure-resistant reaction vessel with an internal volume of 300 -, and 15 g (0,250 mol) of 1-dimethylhydrazine was added.
The reaction was carried out at 1.20'C for 4 hours with stirring. During this time, a large amount of gas was generated, which was determined to be hydrogen by Gcg determination. The pressure increase before and after the reaction is 1.
0kg/co! Met. When the solvent was distilled off under reduced pressure in the same manner as in Example 1, 3.19 g of white powder was obtained. The number average molecular weight of the polymer was measured by GPC and was 2160. Example 9 The copolymerized silazane obtained in Example 1 was heated to 1500 ml in nitrogen.
The mixture was heated to 3° C./min and thermally decomposed to obtain a gray-black solid in a yield of 88.6% by weight. When the obtained ceramic was subjected to powder X-ray diffraction measurement, it was confirmed that it was amorphous. Next, this solid was further heated and calcined in nitrogen at a heating rate of 10° C./min to 1700° C. to obtain a black-green solid. Powder X-ray diffraction measurements of this substance revealed that 2θ=
α-3i at 20.5', (101) diffraction line of N4, 2
(110) diffraction line of α-813N4 at θ, 22.9′,
(200) diffraction line of α-3i3N. at 2θ=26.4″; α-3i at 2θ=30.9″’;
(201) diffraction line of N4, 2 B = 31.7' I
c a-513N4(7) (002) diffraction line, 2o=3
4-5' Ic α-313N-(71(102) Diffraction k, 2 B = 35.2° Ni α-5i, N,
10) Diffraction line, 2θ=38.8° of α-3i3N4 (
211) Diffraction line, α-8i3N at 2θ=39.4@, (112) diffraction line, α-5i3N at 2θ=4.0.1'
, (300) diffraction line, 2θ=41.8″l: α-3
i3N, (7) (202) Diffraction AI! , 2θ=43.
(301) diffraction line of 4'4Ca-5L3N, 2θ=4
(220) diffraction line of α-5i3N4 at 6.9°, 2θ=
(212) diffraction line of α-3i3N at 48.2°, 2θ
The (310) diffraction line of α-3i3N at =48.8°, and the (110) diffraction line of β-3i, N, at 2θ=23.3''
Diffraction line, β-5i3N4 (20
0) Diffraction line, (1
01) Diffraction line, 20 = 36.0' β-3i, N,
(210) diffraction line, β-5i at 2θ=41.4”,
(201) diffraction line of N4, β-Si at 2θ = 49.9'
, N, (310) diffraction line, α at 20 = 34.2°
-5iC (101) diffraction line, α- at 2θ=35°7°
5iC (006) diffraction line, (102) diffraction line, 2θ=
(103) diffraction line of α-3iC at 38.2°, 20 =
α-5iC (104) diffraction line was observed at 41.5″,
It was confirmed that it was a crystalline silicon nitride-silicon carbide mixed ceramic. Elemental analysis results of this crystalline mixed ceramic (weight%)
) Si: 64.4, N:, 26.0, O: 2.2, C:
It was 6.8.

【ほか1名】[1 other person]

Claims (4)

【特許請求の範囲】[Claims] (1)数平均分子量が100〜50,000の無機ポリ
シラザン部分Aと数平均分子量が100〜50,000
の有機ポリシラザン部分Bとからなる数平均分子量が2
00〜500,000のブロック共重合シラザンであっ
て、Aは主として式▲数式、化学式、表等があります▼
で表わされる骨格を有し、またBは主として式▲数式、
化学式、表等があります▼で表わされる骨格を有するポ
リシラザンブロックであることを特徴とするブロック共
重合シラザン。 (式中、R^1及びR^2は水素原子、置換基を有して
いてもよいアルキル基、アルケニル基、シクロアルキル
基、アルキルアミノ基、アリール基、アルアルキル基又
はアルキルシリル基を、夫々示す。但し、R^1及びR
^2の両方が水素原子である場合を除く。)
(1) Inorganic polysilazane part A with a number average molecular weight of 100 to 50,000 and a number average molecular weight of 100 to 50,000
The number average molecular weight consisting of organic polysilazane moiety B is 2
00 to 500,000 block copolymerized silazane, A is mainly a formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
It has a skeleton represented by the following formula, and B is mainly represented by the formula
A block copolymerized silazane characterized by being a polysilazane block having a skeleton represented by ▼. (In the formula, R^1 and R^2 are a hydrogen atom, an alkyl group that may have a substituent, an alkenyl group, a cycloalkyl group, an alkylamino group, an aryl group, an aralkyl group, or an alkylsilyl group, shown respectively. However, R^1 and R
Except when both ^2 are hydrogen atoms. )
(2)少くとも前記ポリシラザン部分A及びB間に下記
一般式( I )〜(VI)で表わされる少くとも一種の架
橋結合を有する請求項(1)記載のブロック共重合シラ
ザン。 ( I )▲数式、化学式、表等があります▼(▲数式、
化学式、表等があります▼はアンモニア残基) (II)▲数式、化学式、表等があります▼(▲数式、化
学式、表等があります▼は第1級アミン残基) (III)▲数式、化学式、表等があります▼(▲数式、
化学式、表等があります▼はヒドラジン残基) (IV)▲数式、化学式、表等があります▼(▲数式、化
学式、表等があります▼は1−置換ヒドラジン残基) (V)▲数式、化学式、表等があります▼(▲数式、化
学式、表等があります▼は1,2−置換ヒドラジン残基
) (VI)▲数式、化学式、表等があります▼(▲数式、化
学式、表等があります▼は1,1−置換ヒドラジン残基
) (式中、R^3及びR^4は置換基を有していてもよい
アルキル基、アルケニル基、シクロアルキル基、アリー
ル基、アルアルキル基又は複素環基を、夫々示す。)
(2) The block copolymerized silazane according to claim (1), wherein at least one type of crosslinking bond represented by the following general formulas (I) to (VI) is present between at least the polysilazane moieties A and B. (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(▲Mathematical formulas,
There are chemical formulas, tables, etc. ▼ is an ammonia residue) (II) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ is a primary amine residue) (III) ▲ Mathematical formula, There are chemical formulas, tables, etc.▼(▲Mathematical formulas,
There are chemical formulas, tables, etc. ▼ is a hydrazine residue) (IV) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ is a 1-substituted hydrazine residue) (V) ▲ Mathematical formula, There are chemical formulas, tables, etc. ▼ (▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ is a 1,2-substituted hydrazine residue) (VI) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ is a 1,1-substituted hydrazine residue) (In the formula, R^3 and R^4 are an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, which may have a substituent, or (Heterocyclic groups are shown respectively.)
(3)式▲数式、化学式、表等があります▼で表わされ
る骨格を有し数平均分子量が100〜50,000であ
る無機ポリシラザンと、式▲数式、化学式、表等があり
ます▼で表わされる骨格を有し数平均分子量が100〜
50,000である有機ポリシラザンとを、塩基性条件
下に反応させることを特徴とする請求項(1)記載のブ
ロック共重合シラザンの製造法。 (式中、R^1及びR^2は水素原子、置換基を有して
いてもよいアルキル基、アルケニル基、シクロアルキル
基、アルキルアミノ基、アリール基、アルアルキル基又
はアルキルシリル基を、夫々示す。但し、R^1及びR
^2の両方が水素原子である場合を除く。)
(3) An inorganic polysilazane with a skeleton represented by the formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼ and a number average molecular weight of 100 to 50,000, and an inorganic polysilazane that is represented by the formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Has a skeleton and has a number average molecular weight of 100~
50,000 of organic polysilazane under basic conditions. (In the formula, R^1 and R^2 are a hydrogen atom, an alkyl group that may have a substituent, an alkenyl group, a cycloalkyl group, an alkylamino group, an aryl group, an aralkyl group, or an alkylsilyl group, shown respectively. However, R^1 and R
Except when both ^2 are hydrogen atoms. )
(4)式▲数式、化学式、表等があります▼で表わされ
る骨格を有し数平均分子量が100〜50,000であ
る無機ポリシラザンと、式▲数式、化学式、表等があり
ます▼で表わされる骨格を有し数平均分子量が100〜
50,000である有機ポリシラザンと、アンモニア、
第1級アミン、ヒドラジン及び置換ヒドラジンから選ば
れる少くとも一種とを、塩基性条件下に反応させること
を特徴とする請求項(2)記載のブロック共重合シラザ
ンの製造法。 (式中、R^1及びR^2は水素原子、置換基を有して
いてもよいアルキル基、アルケニル基、シクロアルキル
基、アルキルアミノ基、アリール基、アルアルキル基又
はアルキルシリル基を、夫々示す。但し、R^1及びR
^2の両方が水素原子である場合を除く。)
(4) An inorganic polysilazane having a skeleton represented by the formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ and a number average molecular weight of 100 to 50,000, and an inorganic polysilazane represented by the formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Has a skeleton and has a number average molecular weight of 100~
50,000 organic polysilazane, ammonia,
3. The method for producing a block copolymerized silazane according to claim 2, wherein at least one selected from a primary amine, hydrazine, and substituted hydrazine is reacted under basic conditions. (In the formula, R^1 and R^2 are a hydrogen atom, an alkyl group that may have a substituent, an alkenyl group, a cycloalkyl group, an alkylamino group, an aryl group, an aralkyl group, or an alkylsilyl group, shown respectively. However, R^1 and R
Except when both ^2 are hydrogen atoms. )
JP32847288A 1988-12-26 1988-12-26 Copolymerized silazane and its production method Expired - Fee Related JP2700233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32847288A JP2700233B2 (en) 1988-12-26 1988-12-26 Copolymerized silazane and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32847288A JP2700233B2 (en) 1988-12-26 1988-12-26 Copolymerized silazane and its production method

Publications (2)

Publication Number Publication Date
JPH02175726A true JPH02175726A (en) 1990-07-09
JP2700233B2 JP2700233B2 (en) 1998-01-19

Family

ID=18210649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32847288A Expired - Fee Related JP2700233B2 (en) 1988-12-26 1988-12-26 Copolymerized silazane and its production method

Country Status (1)

Country Link
JP (1) JP2700233B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702049A1 (en) 1994-08-24 1996-03-20 Tonen Corporation Silicon-containing copolymer and method of producing same
JP2002105676A (en) * 2000-07-27 2002-04-10 Contamination Control Service:Kk Coating film, member coated with the same and method for producing the coating film
JP2005036089A (en) * 2003-07-18 2005-02-10 Clariant (Japan) Kk Polysilazane composition
US6946536B2 (en) 2001-03-30 2005-09-20 Clariant Finance (Bvi) Limited Silicon-containing copolymer and process for producing the same
US7344603B2 (en) 2001-12-27 2008-03-18 Az Electronic Materials Usa Corp. Solvent for treating polysilazane and method of treating polysilazane with the solvent
JP2008088224A (en) * 2006-09-29 2008-04-17 Toshiba Corp Method for handling polysilazane or polysilazane solution, polysilazane or polysilazane solution and method for producing semiconductor device
WO2009054522A1 (en) 2007-10-26 2009-04-30 Az Electronic Materials (Japan) K.K. Composition containing polysilazane compound, which can provide dense siliceous film
JP4767317B2 (en) * 2006-06-08 2011-09-07 アートブリード株式会社 Coating liquid and coating method
WO2011122497A1 (en) 2010-03-31 2011-10-06 リンテック株式会社 Transparent conductive film, method for producing same, and electronic device using transparent conductive film
WO2011125602A1 (en) 2010-03-31 2011-10-13 リンテック株式会社 Molded object, process for producing same, member for electronic device, and electronic device
WO2012023389A1 (en) 2010-08-20 2012-02-23 リンテック株式会社 Molding, production method therefor, part for electronic devices and electronic device
WO2012032907A1 (en) 2010-09-07 2012-03-15 リンテック株式会社 Adhesive sheet and electronic device
WO2013015096A1 (en) 2011-07-25 2013-01-31 リンテック株式会社 Gas barrier film laminate and electronic component
WO2013065812A1 (en) 2011-11-04 2013-05-10 リンテック株式会社 Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
WO2013081003A1 (en) 2011-11-30 2013-06-06 リンテック株式会社 Manufacturing method for gas barrier film, and electronic member or optical member provided with gas barrier film
EP2626378A1 (en) 2009-03-17 2013-08-14 LINTEC Corporation Molded article, process for producing the molded article, member for electronic device, and electronic device
WO2013133256A1 (en) 2012-03-06 2013-09-12 リンテック株式会社 Gas barrier film laminate, adhesive film, and electronic component
WO2013147093A1 (en) 2012-03-30 2013-10-03 リンテック株式会社 Gas barrier film laminate, member for electronic device, and electronic device
WO2014157686A1 (en) 2013-03-29 2014-10-02 リンテック株式会社 Laminate, method for producing same, member for electronic device, and electronic device
WO2014157685A1 (en) 2013-03-29 2014-10-02 リンテック株式会社 Gas barrier laminate, member for electronic device, and electronic device
WO2015163360A1 (en) * 2014-04-24 2015-10-29 アーゼット・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ Copolymerized polysilazane, manufacturing method therefor, composition comprising same, and method for forming siliceous film using same
US20170107344A1 (en) 2014-03-31 2017-04-20 Lintec Corporation Elongated gas barrier laminate and method for producing same
WO2017170547A1 (en) 2016-03-29 2017-10-05 リンテック株式会社 Gas barrier laminated body, member for electronic device, and electronic device
WO2017191049A1 (en) 2016-05-02 2017-11-09 Az Electronic Materials (Luxembourg) S.A.R.L. Composition for forming dense siliceous film
WO2018181004A1 (en) 2017-03-28 2018-10-04 リンテック株式会社 Gas barrier laminate
WO2019078069A1 (en) 2017-10-20 2019-04-25 リンテック株式会社 Base material for gas-barrier films, gas-barrier film, member for electronic devices, and electronic device
WO2020138206A1 (en) 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate
US10967618B2 (en) 2016-03-18 2021-04-06 Lintec Corporation Curable composition for forming primer layer, gas barrier laminated film, and gas barrier laminate
US11760854B2 (en) 2014-06-04 2023-09-19 Lintec Corporation Gas barrier laminated body, method for producing same, member for electronic device, and electronic device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702049A1 (en) 1994-08-24 1996-03-20 Tonen Corporation Silicon-containing copolymer and method of producing same
JP2002105676A (en) * 2000-07-27 2002-04-10 Contamination Control Service:Kk Coating film, member coated with the same and method for producing the coating film
US6946536B2 (en) 2001-03-30 2005-09-20 Clariant Finance (Bvi) Limited Silicon-containing copolymer and process for producing the same
US7344603B2 (en) 2001-12-27 2008-03-18 Az Electronic Materials Usa Corp. Solvent for treating polysilazane and method of treating polysilazane with the solvent
JP2005036089A (en) * 2003-07-18 2005-02-10 Clariant (Japan) Kk Polysilazane composition
JP4767317B2 (en) * 2006-06-08 2011-09-07 アートブリード株式会社 Coating liquid and coating method
JP2008088224A (en) * 2006-09-29 2008-04-17 Toshiba Corp Method for handling polysilazane or polysilazane solution, polysilazane or polysilazane solution and method for producing semiconductor device
US8263717B2 (en) 2007-10-26 2012-09-11 Az Electronic Materials Usa Corp. Polysilazane-containing composition capable of forming a dense siliceous film
WO2009054522A1 (en) 2007-10-26 2009-04-30 Az Electronic Materials (Japan) K.K. Composition containing polysilazane compound, which can provide dense siliceous film
EP2626378A1 (en) 2009-03-17 2013-08-14 LINTEC Corporation Molded article, process for producing the molded article, member for electronic device, and electronic device
WO2011122497A1 (en) 2010-03-31 2011-10-06 リンテック株式会社 Transparent conductive film, method for producing same, and electronic device using transparent conductive film
WO2011125602A1 (en) 2010-03-31 2011-10-13 リンテック株式会社 Molded object, process for producing same, member for electronic device, and electronic device
WO2012023389A1 (en) 2010-08-20 2012-02-23 リンテック株式会社 Molding, production method therefor, part for electronic devices and electronic device
WO2012032907A1 (en) 2010-09-07 2012-03-15 リンテック株式会社 Adhesive sheet and electronic device
WO2013015096A1 (en) 2011-07-25 2013-01-31 リンテック株式会社 Gas barrier film laminate and electronic component
EP3636432A1 (en) 2011-11-04 2020-04-15 LINTEC Corporation Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
WO2013065812A1 (en) 2011-11-04 2013-05-10 リンテック株式会社 Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
WO2013081003A1 (en) 2011-11-30 2013-06-06 リンテック株式会社 Manufacturing method for gas barrier film, and electronic member or optical member provided with gas barrier film
WO2013133256A1 (en) 2012-03-06 2013-09-12 リンテック株式会社 Gas barrier film laminate, adhesive film, and electronic component
WO2013147093A1 (en) 2012-03-30 2013-10-03 リンテック株式会社 Gas barrier film laminate, member for electronic device, and electronic device
WO2014157686A1 (en) 2013-03-29 2014-10-02 リンテック株式会社 Laminate, method for producing same, member for electronic device, and electronic device
WO2014157685A1 (en) 2013-03-29 2014-10-02 リンテック株式会社 Gas barrier laminate, member for electronic device, and electronic device
US20170107344A1 (en) 2014-03-31 2017-04-20 Lintec Corporation Elongated gas barrier laminate and method for producing same
US10377870B2 (en) 2014-03-31 2019-08-13 Lintec Corporation Elongated gas barrier laminate and method for producing same
US10093831B2 (en) 2014-04-24 2018-10-09 Az Electronic Materials (Luxembourg) S.A.R.L. Copolymerized polysilazane, manufacturing method therefor, composition comprising same, and method for forming siliceous film using same
CN106232687A (en) * 2014-04-24 2016-12-14 Az电子材料(卢森堡)有限公司 Copolymerization polysilazane, its manufacture method and the compositions comprising it and employ its forming method of silicon dioxide plasma membrane
CN106232687B (en) * 2014-04-24 2020-07-07 Az电子材料(卢森堡)有限公司 Copolymerized polysilazane, method for producing same, composition containing same, and method for forming silica film using same
WO2015163360A1 (en) * 2014-04-24 2015-10-29 アーゼット・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ Copolymerized polysilazane, manufacturing method therefor, composition comprising same, and method for forming siliceous film using same
KR20160149243A (en) * 2014-04-24 2016-12-27 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. Copolymerized polysilazane, manufacturing method therefor, composition comprising same, and method for forming siliceous film using same
US11760854B2 (en) 2014-06-04 2023-09-19 Lintec Corporation Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
US10967618B2 (en) 2016-03-18 2021-04-06 Lintec Corporation Curable composition for forming primer layer, gas barrier laminated film, and gas barrier laminate
WO2017170547A1 (en) 2016-03-29 2017-10-05 リンテック株式会社 Gas barrier laminated body, member for electronic device, and electronic device
KR20190004288A (en) 2016-05-02 2019-01-11 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. Compositions for forming dense siliceous films
US10563093B2 (en) 2016-05-02 2020-02-18 Az Electronic Materials (Luxembourg) S.A.R.L. Composition for forming dense siliceous film
WO2017191049A1 (en) 2016-05-02 2017-11-09 Az Electronic Materials (Luxembourg) S.A.R.L. Composition for forming dense siliceous film
WO2018181004A1 (en) 2017-03-28 2018-10-04 リンテック株式会社 Gas barrier laminate
US11512231B2 (en) 2017-03-28 2022-11-29 Lintec Corporation Gas barrier laminate
WO2019078069A1 (en) 2017-10-20 2019-04-25 リンテック株式会社 Base material for gas-barrier films, gas-barrier film, member for electronic devices, and electronic device
WO2020138206A1 (en) 2018-12-27 2020-07-02 リンテック株式会社 Gas barrier laminate

Also Published As

Publication number Publication date
JP2700233B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
JPH02175726A (en) Copolysilazane and its production
EP0304239B1 (en) Reformed polysilazane and method of producing same
US4840778A (en) Inorganic polysilazane and method of producing the same
JPH0463833A (en) Modified polysilazane and preparation thereof
CA1303283C (en) Polysilacyclobutasilazanes
KR920017947A (en) Boron nitride ceramics and precursor compounds, methods for their preparation and uses
US4675424A (en) Method for making polysilazanes
JPS6381122A (en) Production of novel polytitanosilazane
US5268496A (en) Process for the preparation of polysilazanes
JP2651464B2 (en) Modified polysilazane, production method thereof and use thereof
US4916200A (en) Silane modified polysilacyclobutasilazanes
US5064786A (en) Silane modified polysilacyclobutasilazanes
JPH01129033A (en) Polymer based on boron and nitrogen especially usable in production of ceramic product and article based on boron nitride and production thereof
JP2750406B2 (en) Modified polysilazane and method for producing the same
AU596237B2 (en) Novel preceramic polymers derived from cyclic silazanes and halogenated disilanes and a method for their preparation
EP0262914A1 (en) Cross-linked organosilazane polymers
JP2750405B2 (en) Modified polysilazane and method for producing the same
Boury et al. Preparation of Si/C/Al/N ceramics by pyrolysis of polyaluminasilazanes
JPS63191832A (en) Production of new polyaluminopolysilazane
JPH01129030A (en) Polymer hydridesilazanes and production thereof
GB2310667A (en) Poly(borosiloxanes) and silicon and boron oxynitrides and methods of their preparation
US5071935A (en) Boron/nitrogen preceramic polymers and boron nitride ceramic materials produced therefrom
JPS62108719A (en) Preparation of silicon nitride
CA1302619C (en) Silane modified polysilacyclobutasilazanes
US5187252A (en) Silazane polymers containing sicl groups, process for their preparation, silicon nitride-containing ceramic materials which can be prepared from them, and their preparation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees