JPH02175608A - Production of active carbon - Google Patents

Production of active carbon

Info

Publication number
JPH02175608A
JPH02175608A JP88329788A JP32978888A JPH02175608A JP H02175608 A JPH02175608 A JP H02175608A JP 88329788 A JP88329788 A JP 88329788A JP 32978888 A JP32978888 A JP 32978888A JP H02175608 A JPH02175608 A JP H02175608A
Authority
JP
Japan
Prior art keywords
activated carbon
weight
graphite
parts
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP88329788A
Other languages
Japanese (ja)
Other versions
JP2690986B2 (en
Inventor
Etsuo Sugiyama
杉山 悦夫
Takao Hayashida
林田 孝夫
Hiroyasu Suenaga
末永 広恭
Mitsuru Minami
充 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Industrial Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Industrial Co Ltd, Toyota Motor Corp filed Critical Cataler Industrial Co Ltd
Priority to JP63329788A priority Critical patent/JP2690986B2/en
Publication of JPH02175608A publication Critical patent/JPH02175608A/en
Application granted granted Critical
Publication of JP2690986B2 publication Critical patent/JP2690986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an active carbon having good absorbing characteristics after endurance in good yield by molding, carbonizing and activating a mixture of active carbon raw material, graphite and binder. CONSTITUTION:1 pts.wt. active carbon raw material (e.g. coal) is blended with 0.001-0.3 pts.wt. graphite and binder and the blend is in a desired form and then carbonized and activated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は活性炭の製造方法に関し、更に詳しくは、耐久
後の吸着性能の良好な活性炭を生産収率を低下させずに
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing activated carbon, and more particularly, to a method for producing activated carbon with good adsorption performance after durability without reducing production yield.

[従来の技術] 従来より蒸発燃料が大気中に放出されるのを防止するた
めに活性炭を用いた蒸発燃料捕集装置が公知である。こ
の蒸発燃料捕集装置では通常燃料タンク等の燃料系から
発生する蒸発燃料を活性炭に一旦吸着させ、その後外気
を活性炭に導入することによって、活性炭に吸着された
蒸発燃料を脱離させ、脱離した蒸発燃料を機関シリンダ
内に送り込んで燃焼せしめるようにしている。
[Prior Art] A fuel vapor collection device using activated carbon is conventionally known in order to prevent fuel vapor from being released into the atmosphere. In this evaporated fuel collection device, evaporated fuel generated from a fuel system such as a fuel tank is temporarily adsorbed on activated carbon, and then outside air is introduced into the activated carbon to desorb the evaporated fuel adsorbed on the activated carbon. The evaporated fuel is sent into the engine cylinder and combusted.

このような装置に用いる活性炭は、通常石炭やヤシ殻か
ら成る炭素を含んだ粒子をそのまま、あるいは、粒子と
バインダーを混合、成形し、次いで加熱、乾留すること
により揮発性物質を放出させ、同時にタール等を炭化さ
せることによって粒子表面に細孔を形成する。次にこの
粒子を水蒸気、炭酸ガス、あるいは空気等の酸化性ガス
雰囲気中で加熱することにより炭素を部分的に燃焼させ
て、細孔内に細孔から周囲に延びる微細孔を形成し、同
時に粒子表面に史に細孔あるいは微細孔を形成するため
、賦活を行なう。このようにして多数の微細孔を有する
活性炭が形成される。
Activated carbon used in such devices is made of particles containing carbon, usually made from coal or coconut shells, either as is, or by mixing the particles and a binder, forming them, and then heating and carbonizing them to release volatile substances. Pores are formed on the particle surface by carbonizing tar, etc. Next, by heating these particles in an oxidizing gas atmosphere such as water vapor, carbon dioxide gas, or air, the carbon is partially combusted, forming micropores within the pores that extend from the pores to the surroundings, and at the same time Activation is performed to form pores or micropores on the particle surface. In this way, activated carbon having a large number of micropores is formed.

[発明か解決しようとする課題] 上記したように賦活工程は、乾留炭を水蒸気、炭酸ガス
、あるいは空気等の酸化性ガス雰囲気中で比較的長時間
かけて反応させ微細孔すなわちミクロ域のボアを形成さ
せるものである。このミクロ域のボアは、細孔半径か2
0Å以下と非常に小さいためガソリン成分等が一旦吸着
すると脱離しにくくなり、吸着性能が低下する。一方賦
活時間を長くすると、ミクロ域のボアが、徐々に大きく
拡張されミクロ域の細孔分布が細孔半径の大きい側に移
動するが、炭素質が減少するため、生産収率が低下し、
量産性、製造コストの面で大変不利になるという問題が
生じる。
[Problems to be solved by the invention] As described above, the activation process involves reacting carbonized coal in an oxidizing gas atmosphere such as water vapor, carbon dioxide, or air over a relatively long period of time to form fine pores, that is, microscopic bores. is formed. The bore in this micro region is the pore radius or 2
Since it is very small (less than 0 Å), once gasoline components etc. are adsorbed, it becomes difficult to desorb, resulting in a decrease in adsorption performance. On the other hand, when the activation time is increased, the bore in the micro region gradually expands and the pore distribution in the micro region moves to the side with a larger pore radius, but the production yield decreases because the carbon content decreases.
This poses a problem of being very disadvantageous in terms of mass production and manufacturing costs.

本発明は、かかる点に鑑みてなされたものであり、生産
収率を低下させず、かつ耐久後の吸着性能を低下させな
い活性炭の製造方法を提供するものである。
The present invention has been made in view of these points, and provides a method for producing activated carbon that does not reduce production yield and adsorption performance after durability.

[課題を解決するための手段] 前記課題を解決するため、本発明は、活性炭原料と、該
原料1重量部に対して0.001〜0.3重量部の黒鉛
、およびバインダーを混合し、成形、乾留、賦活するこ
とを特徴とするものである。原料は一般に石炭およびヤ
シ殻等を用いる。
[Means for Solving the Problems] In order to solve the above problems, the present invention mixes an activated carbon raw material, 0.001 to 0.3 parts by weight of graphite and a binder per 1 part by weight of the raw material, It is characterized by molding, carbonization, and activation. Coal and coconut shells are generally used as raw materials.

また黒鉛の配合量は、黒鉛が原料1重量部に対して0.
001重量部より少ない割合で混合すると、ミクロ域の
細孔分布が細孔半径の大きい側へ少ししか移動ぜず、0
.3重量部より多い割合で混合すると吸着性能が急激に
低下してしまうので、0.001〜0.3重量部の範囲
である。
The blending amount of graphite is 0.0% graphite per 1 part by weight of the raw material.
When mixed in a proportion less than 0.001 parts by weight, the pore distribution in the micro region shifts only slightly to the side with a larger pore radius, and
.. If it is mixed in a proportion greater than 3 parts by weight, the adsorption performance will drop sharply, so the amount is in the range of 0.001 to 0.3 parts by weight.

[作用コ 本発明方法においては、活性炭原料と、該原料1重量部
に対して0.001〜0.3重量部の黒鉛、およびバイ
ンダーを混合し、成形、乾留、賦活するので、活性炭の
ミクロ域で形成された細孔がミクロ域で細孔半径の大き
い側へ分布する。これは黒鉛の細孔が細孔半径20Å以
上のトラディショナルポアとして残るためと考えられる
。この結果、脱離時に細孔の奥まで脱離エアーが拡散で
きるので、ミクロポア内の残存物が蓄積されるのを抑制
し、耐久性能が向上する。また、短い賦活時間で行なえ
るため生産収率も向上する。
[Function] In the method of the present invention, an activated carbon raw material, 0.001 to 0.3 parts by weight of graphite and a binder per 1 part by weight of the raw material are mixed, molded, carbonized, and activated. The pores formed in the micro region are distributed toward the side with a larger pore radius. This is considered to be because the pores of graphite remain as traditional pores with a pore radius of 20 Å or more. As a result, the desorbed air can diffuse deep into the pores during desorption, suppressing the accumulation of residue within the micropores and improving durability. In addition, since activation can be carried out in a short time, the production yield is also improved.

[実施例] 以下、第1図に示す、活性炭の製造工程にもとづく本発
明の実施例を示すか、本発明はこれに限定されるもので
はない。
[Example] Hereinafter, an example of the present invention based on the activated carbon manufacturing process shown in FIG. 1 will be shown, but the present invention is not limited thereto.

実施例1 原料である石炭100重量部、黒鉛10重量部およびバ
インダー20重量部を混練し、直径3 ++v。
Example 1 100 parts by weight of coal as raw materials, 10 parts by weight of graphite and 20 parts by weight of a binder were kneaded to give a diameter of 3 ++v.

長さ10+nmの形状に押出し成形した。この成形炭を
乾留し、更に温度950 ’C1乾留炭1gに対する水
蒸気量0.66g/時間の条件で外熱式回転炉に於いて
賦活し活性炭を得た。
It was extruded into a shape with a length of 10+ nm. This briquette was carbonized and further activated in an externally heated rotary furnace at a temperature of 950' C1 at a rate of 0.66 g/hour of steam per 1 g of carbonized coal to obtain activated carbon.

実施例2 黒鉛を0,5重量部にした以外は、実施例1と同様の方
法で行ない活性炭を得た。実施例3黒鉛を30重量部に
した以外は、実施例1と同様の方法で行ない活性炭を得
た。
Example 2 Activated carbon was obtained in the same manner as in Example 1, except that graphite was changed to 0.5 parts by weight. Example 3 Activated carbon was obtained in the same manner as in Example 1, except that 30 parts by weight of graphite was used.

比較例] 原料である石炭100重量部、およびバインダ20重量
部を混練し、直径3mm、長さ10mmの形状に押出し
成形した。この成形炭を乾留し、更に温度950℃、乾
留炭1gに対する水蒸気量0.66g/時間の条件で外
熱式回転炉に於いて賦活し活性炭を得た。
Comparative Example] 100 parts by weight of raw material coal and 20 parts by weight of binder were kneaded and extruded into a shape with a diameter of 3 mm and a length of 10 mm. This briquette was carbonized and further activated in an externally heated rotary furnace at a temperature of 950° C. and an amount of water vapor of 0.66 g/hour per gram of carbonized coal to obtain activated carbon.

比較例2 原料である石炭100重量部、黒鉛35重量部、および
バインダー20重量部を比較例1と同様に成形、乾留、
賦活して活性炭を得た。
Comparative Example 2 In the same manner as in Comparative Example 1, 100 parts by weight of coal, 35 parts by weight of graphite, and 20 parts by weight of binder were molded, carbonized, and
Activated carbon was obtained.

比較例3 原料である石炭100重量部、黒鉛0,05重量部、お
よびバインダー20重量部を比較例1と同様に成形、乾
留、賦活して活性炭を得た。
Comparative Example 3 In the same manner as in Comparative Example 1, 100 parts by weight of coal, 0.05 parts by weight of graphite, and 20 parts by weight of a binder were molded, carbonized, and activated to obtain activated carbon.

実施例]および比較例1で得られた活性炭の細孔分布を
メタノール吸着法により測定し、各3種類の賦活時間に
ついての微分形の細孔容積分布をそれぞれ第2図および
第3図に示す。(メタノール吸着測定は、株式会社田中
科学機器製作所製、自動吸着量測定装置で行なった。)
なお、第2図および第3図における縦軸のdV/dρo
gRは、細孔容積(V)を細孔半径(R)の対数で微分
した値である。
The pore distribution of the activated carbon obtained in [Example] and Comparative Example 1 was measured by the methanol adsorption method, and the differential pore volume distribution for each of the three types of activation times is shown in Figures 2 and 3, respectively. . (Methanol adsorption measurement was performed using an automatic adsorption amount measuring device manufactured by Tanaka Scientific Instruments Manufacturing Co., Ltd.)
In addition, dV/dρo on the vertical axis in FIGS. 2 and 3
gR is a value obtained by differentiating the pore volume (V) with the logarithm of the pore radius (R).

第2図および第3図より、黒鉛を混合した実施例1の活
性炭の方が、黒鉛を混合しない比較例1の活性炭に比べ
て細孔半径分布がミクロ域の大きい側に移動しているこ
とがわかる。このことは、賦活時間が同一の場合、実施
例の方が、ミクロ域の細孔半径がより大きな活性炭が製
造できることを示している。
From Figures 2 and 3, the activated carbon of Example 1 mixed with graphite has a pore radius distribution shifted to the larger side of the micro region compared to the activated carbon of Comparative Example 1 without graphite mixed. I understand. This shows that when the activation time is the same, activated carbon with a larger pore radius in the micro region can be produced in the example.

また、実施例1〜3および比較例1〜3の活性炭を製造
する賦活I程において賦活時間を4〜7時間の範囲で食
代させて活性炭を製造し、各々の場合における活性炭の
性能を第1表に示した。
In addition, in the activation step I for producing the activated carbons of Examples 1 to 3 and Comparative Examples 1 to 3, activated carbons were produced by varying the activation time in the range of 4 to 7 hours, and the performance of the activated carbons in each case was evaluated as follows. It is shown in Table 1.

第 表 第1表から明らかなように、実施例1〜3は、吸着性能
を示ず細孔半径および細孔容積、生産収率についていず
れも大きな開きはなく、いずれも細孔半径が13.0人
を越えるのに賦活時間か5〜6時間かかるのに対して、
黒鉛を混合しない比較例1では6時間を越えないと細孔
半径か13.0人を越えないことが読取れる。また、比
較例1及び原料1重量部に対して0.001重量部未満
の黒鉛を混合した比較例3の生産収率は全体に悪く、特
に賦活時間が長い程生産収率が極端に落ちていることが
分る。更に原料1重量部に対して0.3重量部をこえた
以上の黒鉛を混合した比較例2は、細孔容積が低く、吸
着性能が劣ることがわかる。
As is clear from Table 1, Examples 1 to 3 showed no adsorption performance, and there were no large differences in pore radius, pore volume, or production yield, and all had pore radius of 13. Whereas it takes 5 to 6 hours of activation time to exceed 0 people,
It can be seen that in Comparative Example 1 in which graphite was not mixed, the pore radius did not exceed 13.0 pores until 6 hours had passed. In addition, the production yields of Comparative Example 1 and Comparative Example 3 in which less than 0.001 parts by weight of graphite was mixed with 1 part by weight of the raw material were poor overall, and in particular, the longer the activation time, the lower the production yields were. I know that there is. Furthermore, it can be seen that Comparative Example 2, in which more than 0.3 parts by weight of graphite was mixed with 1 part by weight of the raw material, had a low pore volume and poor adsorption performance.

更に、実施例1〜3および比較例1〜3で得た活性炭の
耐久試験およびBWC(ブタンワーキングキャパシティ
)の吸着性能調査を第4図および第5図に示す装置によ
り行なった。
Furthermore, durability tests and BWC (butane working capacity) adsorption performance investigations of the activated carbons obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were conducted using the apparatus shown in FIGS. 4 and 5.

第4図は、通常キャニスタと称される蒸発燃料捕集装置
1を示す。蒸発燃料捕集装置1は、そのケーシング2内
に一対の多孔板3.4を具イーし、これら多孔板3.4
によって、ケーシング2の内部は活性炭充填室5と、蒸
発燃料室6と、大気室7とに分離される。蒸発燃料室6
は一方では蒸発燃料流入ポート8を介して燃料タンク9
に接続され、他方では蒸発燃料流出ポート10を介して
内燃機関11の吸気通路12に接続される。大気室7は
大気ポート13を介して大気に開放されている。各多孔
板3.4の内側面上にはフィルタ]4、]4か配置され
、これらフィルタ14.14間に多数の活性炭15か充
填される。蒸発燃料の吸着時には燃料タンク9内で発生
した蒸発燃料が蒸発燃料流入ポート8を介して蒸発燃料
室6内に送り込まれ、次いで活性炭充填室5内に送り込
まれて活性炭]5に吸着される。次いて燃料成分が除去
された空気が大気ポート]3から外気中に放出される。
FIG. 4 shows an evaporative fuel collection device 1 commonly referred to as a canister. The evaporative fuel collection device 1 includes a pair of perforated plates 3.4 in its casing 2, and these perforated plates 3.4
As a result, the inside of the casing 2 is divided into an activated carbon filling chamber 5, an evaporated fuel chamber 6, and an atmospheric chamber 7. Evaporated fuel chamber 6
On the one hand, the fuel tank 9 is connected to the fuel tank 9 via the evaporated fuel inlet port 8.
On the other hand, it is connected to an intake passage 12 of an internal combustion engine 11 via an evaporative fuel outflow port 10. The atmospheric chamber 7 is open to the atmosphere via an atmospheric port 13. Filters ]4, ]4 are arranged on the inner surface of each porous plate 3.4, and a large number of activated carbons 15 are filled between these filters 14.14. During adsorption of evaporated fuel, evaporated fuel generated in the fuel tank 9 is sent into the evaporated fuel chamber 6 via the evaporated fuel inlet port 8, and then into the activated carbon filling chamber 5 where it is adsorbed by the activated carbon 5. The air from which the fuel components have been removed is then discharged into the outside air from the atmospheric port]3.

一方、蒸発燃料の脱離時には、外気が大気ポート]3を
介して大気室7内に流入し、次いて活性炭充填室5内に
送り込まれて活性炭]5に吸着された蒸発燃料が脱離せ
しめられる。そして燃料成分を含んだ空気は蒸発燃料室
6を通って蒸発燃料流出ポート10から機関吸気通路1
2内に送り込まれ、機関シリンダ内において燃焼せしめ
られる。この工程を1サイクルとし、この工程を100
サイクル行なった。
On the other hand, when the evaporated fuel is desorbed, outside air flows into the atmospheric chamber 7 through the atmospheric port 3, and is then sent into the activated carbon filling chamber 5, where the evaporated fuel adsorbed on the activated carbon 5 is desorbed. It will be done. The air containing fuel components passes through the evaporated fuel chamber 6 and exits from the evaporated fuel outflow port 10 to the engine intake passage 1.
2 and is combusted in the engine cylinder. This process is considered as one cycle, and this process is repeated 100 times.
I did the cycle.

第5図は燃料としてn−ブタンを用いて活性炭の吸着能
力を調べる実験装置を示している。この装置は流量計2
0を介して蒸発燃料流入ポート8に接続されたn−ブタ
ンタンク21と、流量計22および三方切換弁23を介
して大気ポート13に接続された圧縮空気ボンベ24と
、蒸発燃料流出ポート10に接続された弁25を具備す
る。
FIG. 5 shows an experimental apparatus for examining the adsorption capacity of activated carbon using n-butane as fuel. This device is a flowmeter 2
n-butane tank 21 connected to the evaporated fuel inlet port 8 via 0, a compressed air cylinder 24 connected to the atmospheric port 13 via a flow meter 22 and a three-way switching valve 23, and connected to the evaporated fuel outlet port 10. A valve 25 is provided.

このような装置を用い、先ず三方切換弁23を介して一
定濃度のn−ブタンが流出するまで、即ち吸着能力が飽
和するまで、n−ブタンタンク21からn−ブタンを活
性炭充填室5内に供給し、その後蒸発燃料捕集装置1の
重量測定を行なう。そして圧縮空気を圧縮空気ボンベ2
4より活性炭充填室5内に一定量供給してn−ブタンを
脱離させ、その後蒸発燃料捕集装置1の重量測定を行な
う。
Using such a device, first, n-butane is supplied from the n-butane tank 21 into the activated carbon filling chamber 5 until a constant concentration of n-butane flows out through the three-way switching valve 23, that is, until the adsorption capacity is saturated. Then, the weight of the evaporative fuel collection device 1 is measured. Then the compressed air is transferred to compressed air cylinder 2.
4, a certain amount of activated carbon is supplied into the activated carbon filling chamber 5 to desorb n-butane, and then the weight of the evaporated fuel collection device 1 is measured.

これらの重量の差は飽和BWC(ブタンワーキングキャ
パシティ)と称され、活性炭]5の吸着能力を表わして
いる。
The difference in these weights is called saturated BWC (butane working capacity) and represents the adsorption capacity of the activated carbon.

第2表および第3表に実施例1〜3および比較例1〜3
で得られた活性炭のn−ブタンの吸着量(初期および耐
久後の飽和BWC)およびガソリン成分の残存量のそれ
ぞれにつき示した。
Tables 2 and 3 show Examples 1 to 3 and Comparative Examples 1 to 3.
The adsorption amount of n-butane (initial and post-durability saturated BWC) and the residual amount of gasoline components of the activated carbon obtained in the above are shown respectively.

第   2   表 第 表 第2表より、原料に黒鉛を混合しない比較例1及び原料
1重量部に対して0.001重量部未満の黒鉛を混合し
た比較例3の活性炭では耐久後の、吸着性能がやや悪く
、原料1重量部に対して0.3重量部をこえて黒鉛を含
む比較例2の活性炭は、全体に吸着性能が悪いことがわ
かる。
Table 2 Table 2 shows that the activated carbon of Comparative Example 1, in which graphite was not mixed in the raw material, and Comparative Example 3, in which less than 0.001 part by weight of graphite was mixed with 1 part by weight of the raw material, had a high adsorption performance after durability. It can be seen that the activated carbon of Comparative Example 2, which contains more than 0.3 parts by weight of graphite per 1 part by weight of the raw material, has poor adsorption performance as a whole.

また第3表より、原料に黒鉛を混合しない比較例1及び
原料1重量部に対して0.001重量部未満の黒鉛を混
合した比較例3の活性炭はn−ブタンの残存量が高く、
吸着能力に影響を及ぼすことが判明した。
Furthermore, from Table 3, the activated carbons of Comparative Example 1 in which graphite was not mixed in the raw material and Comparative Example 3 in which less than 0.001 part by weight of graphite was mixed with 1 part by weight of the raw material had a high residual amount of n-butane.
It was found that the adsorption capacity was affected.

[発明の効果] 以上説明したごとく、本発明に係る活性炭の製造方法は
、賦活時間に対するミクロ域の細孔分布がミクロ域で細
孔半径の大きい側に移動して吸着性能が良く、かつ生産
収率も高く耐久性能の向上を可能とするものである。
[Effects of the Invention] As explained above, in the method for producing activated carbon according to the present invention, the pore distribution in the micro region with respect to the activation time shifts to the side with a larger pore radius in the micro region, resulting in good adsorption performance and improved productivity. It also has a high yield and makes it possible to improve durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の活性炭の製造工程を示す工程図、第
2図は、実施例1で得られた活性炭の細1’J/1 孔半径と微分形の細孔容積の関係を示す曲線図、第3図
は、比較例1で得られた活性炭の細孔半径と微分形の細
孔容積の関係を示す曲線図、第4図は、蒸発燃料捕集装
置を示す説明図および第5図は、活性炭の吸着能力を調
べるための実験装置である。 1・・・蒸発燃料捕集装置、3,4・・・多孔板、5活
性炭充填室、9・・・燃料タンク、12・・・吸気通路
、15・・・活性炭。
Fig. 1 is a process diagram showing the manufacturing process of the activated carbon of the present invention, and Fig. 2 shows the relationship between the fine 1'J/1 pore radius and differential pore volume of the activated carbon obtained in Example 1. A curve diagram, FIG. 3 is a curve diagram showing the relationship between the pore radius and differential pore volume of the activated carbon obtained in Comparative Example 1, and FIG. 4 is an explanatory diagram and FIG. Figure 5 shows an experimental device for investigating the adsorption capacity of activated carbon. DESCRIPTION OF SYMBOLS 1... Evaporated fuel collection device, 3, 4... Porous plate, 5... Activated carbon filling chamber, 9... Fuel tank, 12... Intake passage, 15... Activated carbon.

Claims (1)

【特許請求の範囲】 活性炭原料と、該原料1重量部に対して 0.001〜0.3重量部の黒鉛、およびバインダーを
混合し、成形、乾留、賦活することを特徴とする活性炭
の製造方法。
[Claims] Production of activated carbon, characterized by mixing an activated carbon raw material, 0.001 to 0.3 parts by weight of graphite per 1 part by weight of the raw material, and a binder, followed by molding, carbonization, and activation. Method.
JP63329788A 1988-12-27 1988-12-27 Activated carbon production method Expired - Lifetime JP2690986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63329788A JP2690986B2 (en) 1988-12-27 1988-12-27 Activated carbon production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63329788A JP2690986B2 (en) 1988-12-27 1988-12-27 Activated carbon production method

Publications (2)

Publication Number Publication Date
JPH02175608A true JPH02175608A (en) 1990-07-06
JP2690986B2 JP2690986B2 (en) 1997-12-17

Family

ID=18225269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63329788A Expired - Lifetime JP2690986B2 (en) 1988-12-27 1988-12-27 Activated carbon production method

Country Status (1)

Country Link
JP (1) JP2690986B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196013A (en) * 1989-01-25 1990-08-02 Cataler Kogyo Kk Production of activated carbon for water treatment
JPWO2009011287A1 (en) * 2007-07-13 2010-09-24 株式会社キャタラー Adsorbent and canister

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196013A (en) * 1989-01-25 1990-08-02 Cataler Kogyo Kk Production of activated carbon for water treatment
JPWO2009011287A1 (en) * 2007-07-13 2010-09-24 株式会社キャタラー Adsorbent and canister
US8361207B2 (en) 2007-07-13 2013-01-29 Cataler Corporation Adsorbent and canister

Also Published As

Publication number Publication date
JP2690986B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
Zhang et al. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes
US5304527A (en) Preparation for high activity, high density carbon
KR950000880B1 (en) High capacity coconut shell char for carbon molecular sieves
US5238470A (en) Emission control device
CN106006636A (en) Biomass-based nitrogen-doped porous carbon material, and preparation method and application thereof
US8361207B2 (en) Adsorbent and canister
JPH05269331A (en) Separation of air for recovering nitrogen by pressure swing adsorption
JP4393747B2 (en) Fuel vapor adsorbent
KR20110108140A (en) Method for manufacturing carbon dioxide absorbent
Mochida et al. Influence of heat-treatment on the selective adsorption of CO2 in a model natural gas over molecular sieve carbons
JPH02175608A (en) Production of active carbon
JP2007107518A (en) Pelletized activated carbon, method for manufacturing pelletized activated carbon, and canister
Vyas et al. Synthesis of carbon molecular sieves by activation and coke deposition
Vyas Carbon molecular sieves from bituminous coal by controlled coke deposition
JPH02175607A (en) Production of active carbon
JPH01131015A (en) Monolith activated carbon
CN107640768B (en) Preparation method of nitrogen-rich modified desulfurization adsorption material
GB247241A (en) Improvements in the manufacture and use of active carbons
JP3224117B2 (en) Activated carbon
JPH02153818A (en) Production of zeolite moldings
Pstrowska et al. Characterization of activated beech wood char—Methane storage application
Gao et al. Preparation of molded biomass carbon from coffee grounds and its CH4/N2 separation performance
CN107381571A (en) A kind of preparation method of automobile canister special-purpose activated charcoal
JP7423839B1 (en) Porous material for hydrogen purification, its manufacturing method, and hydrogen purification equipment
JPH01141814A (en) Production of activated carbon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12