JP2690986B2 - Activated carbon production method - Google Patents

Activated carbon production method

Info

Publication number
JP2690986B2
JP2690986B2 JP63329788A JP32978888A JP2690986B2 JP 2690986 B2 JP2690986 B2 JP 2690986B2 JP 63329788 A JP63329788 A JP 63329788A JP 32978888 A JP32978888 A JP 32978888A JP 2690986 B2 JP2690986 B2 JP 2690986B2
Authority
JP
Japan
Prior art keywords
activated carbon
weight
graphite
raw material
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63329788A
Other languages
Japanese (ja)
Other versions
JPH02175608A (en
Inventor
悦夫 杉山
孝夫 林田
広恭 末永
充 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63329788A priority Critical patent/JP2690986B2/en
Publication of JPH02175608A publication Critical patent/JPH02175608A/en
Application granted granted Critical
Publication of JP2690986B2 publication Critical patent/JP2690986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は活性炭の製造方法に関し、更に詳しくは、耐
久後の吸着性能の良好な活性炭を生産収率を低下させず
に製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing activated carbon, and more particularly to a method for producing activated carbon having good adsorption performance after endurance without lowering the production yield.

[従来の技術] 従来より蒸発燃料が大気中に放出されるのを防止する
ために活性炭を用いた蒸発燃料捕集装置が公知である。
この蒸発燃料捕集装置では通常燃料タンク等の燃料系か
ら発生する蒸発燃料を活性炭に一旦吸着させ、その後外
気を活性炭に導入することによって、活性炭に吸着され
た蒸発燃料を脱離させ、脱離した蒸発燃料を機関シリン
ダ内に送り込んで燃焼せしめるようにしている。
[Prior Art] Conventionally, an evaporated fuel collecting device using activated carbon is known to prevent the evaporated fuel from being released into the atmosphere.
In this evaporative fuel collection device, the evaporative fuel normally generated from the fuel system such as a fuel tank is once adsorbed on the activated carbon, and then the outside air is introduced into the activated carbon to desorb and desorb the evaporated fuel adsorbed on the activated carbon. The evaporated fuel is sent into the engine cylinder for combustion.

このような装置に用いる活性炭は、通常石炭やヤシ殻
から成る炭素を含んだ粒子をそのまま、あるいは、粒子
とバインダーを混合、成形し、次いで加熱、乾留するこ
とにより揮発性物質を放出させ、同時にタール等を炭化
させることによって粒子表面に細孔を形成する。次にこ
の粒子を水蒸気、炭酸ガス、あるいは空気等の酸化性ガ
ス雰囲気中で加熱することにより炭素を部分的に燃焼さ
せて、細孔内に細孔から周囲に延びる微細孔を形成し、
同時に粒子表面に更に細孔あるいは微細孔を形成するた
め、賦活を行なう。このようにして多数の微細孔を有す
る活性炭が形成される。
Activated carbon used in such an apparatus is usually particles containing carbon, which is usually coal or coconut shell, as it is, or a mixture of particles and a binder, molding, and then heating and dry distillation to release volatile substances, at the same time. Pores are formed on the particle surface by carbonizing tar or the like. Next, carbon is partially burned by heating the particles in an atmosphere of an oxidizing gas such as steam, carbon dioxide, or air to form fine pores extending from the pores to the periphery in the pores,
At the same time, activation is performed to form further pores or fine pores on the particle surface. In this way, activated carbon having a large number of micropores is formed.

[発明が解決しようとする課題] 上記したように賦活工程は、乾留炭を水蒸気、炭酸ガ
ス、あるいは空気等の酸化性ガス雰囲気中で比較的長時
間かけて反応させ微細孔すなわちミクロ域のポアを形成
させるものである。このミクロ域のポアは、細孔半径が
20Å以下と非常に小さいためガソリン成分等が一旦吸着
すると脱離しにくくなり、吸着性能が低下する。一方賦
活時間を長くすると、ミクロ域のポアが、徐々に大きく
拡張されミクロ域の細孔分布が細孔半径の大きい側に移
動するが、炭素質が減少するため、生産収率が低下し、
量産性、製造コストの面で大変不利になるという問題が
生じる。
[Problems to be Solved by the Invention] As described above, in the activation step, dry-distilled carbon is allowed to react in an oxidizing gas atmosphere such as steam, carbon dioxide, or air for a relatively long period of time, and fine pores, that is, pores in the micro range are generated. Is formed. The pores in this micro area have a pore radius of
Since it is very small at 20 Å or less, once the gasoline component etc. is adsorbed, it becomes difficult to desorb and the adsorption performance deteriorates. On the other hand, if the activation time is lengthened, the pores in the micro region gradually expand greatly and the pore distribution in the micro region moves to the side with a larger pore radius, but the carbonaceous material decreases, so the production yield decreases,
There is a problem that it is very disadvantageous in terms of mass productivity and manufacturing cost.

本発明は、かかる点に鑑みてなされたものであり、生
産収率を低下させず、かつ耐久後の吸着性能を低下させ
ない活性炭の製造方法を提供するものである。
The present invention has been made in view of the above points, and provides a method for producing activated carbon that does not reduce the production yield and the adsorption performance after endurance.

[課題を解決するための手段] 前記課題を解決するため、本発明は、活性炭原料と、
該原料1重量部に対して0.001〜0.3重量部の黒鉛、およ
びバインダーを混合し、成形、乾留、賦活することを特
徴とするものである。原料は一般に石炭およびヤシ殻等
を用いる。また黒鉛の配合量は、黒鉛が原料1重量部に
対して0.001重量部より少ない割合で混合すると、ミク
ロ域の細孔分布が細孔半径の大きい側へ少ししか移動せ
ず、0.3重量部より多い割合で混合すると吸着性能が急
激に低下してしまうので、0.001〜0.3重量部の範囲であ
る。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides an activated carbon raw material,
It is characterized in that 0.001 to 0.3 parts by weight of graphite and a binder are mixed with 1 part by weight of the raw material, and the mixture is molded, dried and activated. As a raw material, coal, coconut shell, etc. are generally used. When graphite is mixed at a ratio of less than 0.001 part by weight to 1 part by weight of raw material, the distribution of micropores in the micro region slightly moves to the side with a larger pore radius, and 0.3 parts by weight or more. If it is mixed in a large proportion, the adsorption performance will drop sharply, so it is in the range of 0.001 to 0.3 parts by weight.

[作用] 本発明方法においては、活性炭原料と、該原料1重量
部に対して0.001〜0.3重量部の黒鉛、およびバインダー
を混合し、成形、乾留、賦活するので、活性炭のミクロ
域で形成された細孔がミクロ域で細孔半径の大きい側へ
分布する。これは黒鉛の細孔が細孔半径20Å以上のトラ
ディショナルポアとして残るためと考えられる。この結
果、脱離時に細孔の奥まで脱離エアーが拡散できるの
で、ミクロポア内の残存物が蓄積されるのを抑制し、耐
久性能が向上する。また、短い賦活時間で行なえるため
生産収率も向上する。
[Operation] In the method of the present invention, the activated carbon raw material, 0.001 to 0.3 parts by weight of graphite per 1 part by weight of the raw material, and the binder are mixed, molded, carbonized, and activated. The fine pores are distributed to the side having a larger pore radius in the micro region. It is considered that this is because the pores of graphite remain as traditional pores with a pore radius of 20Å or more. As a result, since the desorbed air can diffuse to the depths of the pores at the time of desorption, accumulation of the residue in the micropores is suppressed and the durability performance is improved. Further, the production yield is improved because the activation time can be shortened.

[実施例] 以下、第1図に示す、活性炭の製造工程にもとづく本
発明の実施例を示すが、本発明はこれに限定されるもの
ではない。
[Examples] Examples of the present invention based on the production process of activated carbon shown in FIG. 1 are shown below, but the present invention is not limited thereto.

実施例1 原料である石炭100重量部、黒鉛10重量部およびバイ
ンダー20重量部を混練し、直径3mm、長さ10mmの形状に
押出し成形した。この成形炭を乾留し、更に温度950
℃、乾留炭1gに対する水蒸気量0.66g/時間を条件で外熱
式回転炉に於いて賦活し活性炭を得た。
Example 1 100 parts by weight of raw material coal, 10 parts by weight of graphite and 20 parts by weight of a binder were kneaded and extruded into a shape having a diameter of 3 mm and a length of 10 mm. This formed charcoal is carbonized and the temperature is raised to 950.
Activated carbon was obtained by activating it in an externally heated rotary furnace under the conditions of ℃ and steam content of 0.66 g / hour for 1 g of dry-distilled coal.

実施例2 黒鉛を0.5重量部にした以外は、実施例1と同様の方
法で行ない活性炭を得た。実施例3 黒鉛を30重量部にした以外は、実施例1と同様の方法
で行ない活性炭を得た。
Example 2 Activated carbon was obtained in the same manner as in Example 1 except that the amount of graphite was changed to 0.5 part by weight. Example 3 Activated carbon was obtained in the same manner as in Example 1, except that 30 parts by weight of graphite was used.

比較例1 原料である石炭100重量部、およびバインダー20重量
部を混練し、直径3mm、長さ10mmの形状に押出し成形し
た。この成形炭を乾留し、更に温度950℃、乾留炭1gに
対する水蒸気量0.66g/時間の条件で外熱式回転炉に於い
て賦活し活性炭を得た。
Comparative Example 1 100 parts by weight of raw material coal and 20 parts by weight of a binder were kneaded and extruded into a shape having a diameter of 3 mm and a length of 10 mm. The formed charcoal was subjected to dry distillation, and further activated in an externally heated rotary furnace under the conditions of a temperature of 950 ° C. and a steam content of 0.66 g / hour for 1 g of dry distillation charcoal to obtain activated carbon.

比較例2 原料である石炭100重量部、黒鉛35重量部、およびバ
インダー20重量部を比較例1と同様に成形、乾留、賦活
して活性炭を得た。
Comparative Example 2 100 parts by weight of raw material coal, 35 parts by weight of graphite, and 20 parts by weight of a binder were molded, carbonized and activated in the same manner as in Comparative Example 1 to obtain activated carbon.

比較例3 原料である石炭100重量部、黒鉛0.05重量部、および
バインダー20重量部を比較例1と同様に成形、乾留、賦
活して活性炭を得た。
Comparative Example 3 100 parts by weight of raw material coal, 0.05 parts by weight of graphite, and 20 parts by weight of a binder were molded, carbonized and activated in the same manner as in Comparative Example 1 to obtain activated carbon.

実施例1および比較例1で得られた活性炭の細孔分布
をメタノール吸着法により測定し、各3種類の賦活時間
についての微分形の細孔容積分布をそれぞれ第2図およ
び第3図に示す。(メタノール吸着測定は、株式会社田
中科学機器製作所製、自動吸着量測定装置で行なっ
た。)なお、第2図および第3図における縦軸のdV/dlo
gRは、細孔容積(V)を細孔半径(R)の対数で微分し
た値である。
The pore distributions of the activated carbons obtained in Example 1 and Comparative Example 1 were measured by the methanol adsorption method, and differential pore volume distributions for each of the three activation times are shown in FIGS. 2 and 3, respectively. . (Methanol adsorption measurement was performed with an automatic adsorption amount measuring device manufactured by Tanaka Scientific Instruments Co., Ltd.) Note that dV / dlo on the vertical axis in FIGS. 2 and 3.
gR is a value obtained by differentiating the pore volume (V) by the logarithm of the pore radius (R).

第2図および第3図より、黒鉛を混合した実施例1の
活性炭の方が、黒鉛を混合しない比較例1の活性炭に比
べて細孔半径分布がミクロ域の大きい側に移動している
ことがわかる。このことは、賦活時間が同一の場合、実
施例の方が、ミクロ域の細孔半径がより大きな活性炭が
製造できることを示している。
2 and 3, that the activated carbon of Example 1 mixed with graphite has moved to the larger micro-region side in the pore radius distribution than the activated carbon of Comparative Example 1 not mixed with graphite. I understand. This indicates that, when the activation times are the same, the example can produce activated carbon having a larger micropore radius in the micro region.

また、実施例1〜3および比較例1〜3の活性炭を製
造する賦活工程において賦活時間を4〜7時間の範囲で
変化させて活性炭を製造し、各々の場合における活性炭
の性能を第1表に示した。
In addition, in the activation step for producing the activated carbons of Examples 1 to 3 and Comparative Examples 1 to 3, activated carbon was produced by changing the activation time in the range of 4 to 7 hours, and the performance of the activated carbon in each case is shown in Table 1. It was shown to.

第1表から明らかなように、実施例1〜3は、吸着性
能を示す細孔半径および細孔容積、生産収率についてい
ずれも大きな開きはなく、いずれも細孔半径が13.0Åを
越えるのに賦活時間が5〜6時間かかるのに対して、黒
鉛を混合しない比較例1では6時間を越えないと細孔半
径が13.0Åを越えないことが読取れる。また、比較例1
及び原料1重量部に対して0.001重量部未満の黒鉛を混
合した比較例3の生産収率は全体に悪く、特に賦活時間
が長い程生産収率が極端に落ちていることが分る。更に
原料1重量部に対して0.3重量部をこえた以上の黒鉛を
混合した比較例2は、細孔容積が低く、吸着性能が劣る
ことがわかる。
As is clear from Table 1, in Examples 1 to 3, there is no large difference in the pore radius and pore volume showing the adsorption performance, and the production yield, and in all, the pore radius exceeds 13.0Å. It can be read that the activation time takes 5 to 6 hours, whereas in Comparative Example 1 in which graphite is not mixed, the pore radius does not exceed 13.0 Å unless it exceeds 6 hours. Comparative Example 1
Also, it can be seen that the production yield of Comparative Example 3 in which less than 0.001 part by weight of graphite is mixed with 1 part by weight of the raw material is poor overall, and the production yield is extremely lowered as the activation time becomes longer. Further, it can be seen that Comparative Example 2 in which more than 0.3 parts by weight of graphite was mixed with 1 part by weight of the raw material had a small pore volume and was inferior in adsorption performance.

更に、実施例1〜3および比較例1〜3で得た活性炭
の耐久試験およびBWC(ブタンワーキングキャパシテ
ィ)の吸着性能調査を第4図および第5図に示す装置に
より行なった。
Further, a durability test of the activated carbons obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and a BWC (butane working capacity) adsorption performance investigation were conducted by the apparatus shown in FIGS. 4 and 5.

第4図は、通常キャニスタと称される蒸発燃料捕集装
置1を示す。蒸発燃料捕集装置1は、そのケーシング2
内に一対の多孔板3、4を具備し、これら多孔板3、4
によって、ケーシング2の内部は活性炭充填室5と、蒸
発燃料室6と、大気室7とに分離される。蒸発燃料室6
は一方では蒸発燃料流入ポート8を介して燃料タンク9
に接続され、他方では蒸発燃料流出ポート10を介して内
燃機関11の吸気通路12に接続される。大気室7は大気ポ
ート13を介して大気に開放されている。各多孔板3、4
の内側面上にはフィルタ14、14が配置され、これらフィ
ルタ14、14間に多数の活性炭15が充填される。蒸発燃料
の吸着時には燃料タンク9内で発生した蒸発燃料が蒸発
燃料流入ポート8を介して蒸発燃料室6内に送り込ま
れ、次いで活性炭充填室5内に送り込まれて活性炭15に
吸着される。次いで燃料成分が除去された空気が大気ポ
ート13から外気中に放出される。一方、蒸発燃料の脱離
時には、外気が大気ポート13を介して大気室7内に流入
し、次いで活性炭充填室5内に送り込まれて活性炭15に
吸着された蒸発燃料が脱離せしめられる。そして燃料成
分を含んだ空気は蒸発燃料室6を通って蒸発燃料流出ポ
ート10から機関吸気通路12内に送り込まれ、機関シリン
ダ内において燃焼せしめられる。この工程を1サイクル
とし、この工程を100サイクル行なった。
FIG. 4 shows an evaporated fuel collecting device 1 which is usually called a canister. The evaporative fuel collecting apparatus 1 has a casing 2 thereof.
It is equipped with a pair of perforated plates 3 and 4 inside.
Thus, the inside of the casing 2 is separated into an activated carbon filling chamber 5, an evaporated fuel chamber 6 and an atmosphere chamber 7. Evaporative fuel chamber 6
On the other hand, the fuel tank 9
On the other hand, it is connected to the intake passage 12 of the internal combustion engine 11 via the evaporated fuel outflow port 10. The atmosphere chamber 7 is open to the atmosphere via the atmosphere port 13. Perforated plates 3, 4
Filters 14, 14 are arranged on the inner surface of the filter, and a large number of activated carbons 15 are filled between the filters 14, 14. At the time of adsorbing the evaporated fuel, the evaporated fuel generated in the fuel tank 9 is sent into the evaporated fuel chamber 6 through the evaporated fuel inflow port 8 and then into the activated carbon filling chamber 5 to be adsorbed on the activated carbon 15. Next, the air from which the fuel component has been removed is released from the atmospheric port 13 into the outside air. On the other hand, when desorbing the evaporated fuel, the outside air flows into the atmosphere chamber 7 through the atmosphere port 13, is then sent into the activated carbon filling chamber 5, and the evaporated fuel adsorbed by the activated carbon 15 is desorbed. Then, the air containing the fuel component is sent from the evaporated fuel outflow port 10 into the engine intake passage 12 through the evaporated fuel chamber 6, and is burned in the engine cylinder. This process was defined as one cycle, and this process was repeated 100 times.

第5図は燃料としてn−ブタンを用いて活性炭の吸着
能力を調べる実験装置を示している。この装置は流量計
20を介して蒸発燃料流入ポート8に接続されたn−ブタ
ンタンク21と、流量計22および三方切換弁23を介して大
気ポート13に接続された圧縮空気ボンベ24と、蒸発燃料
流出ポート10に接続された弁25を具備する。このような
装置を用い、先ず三方切換弁23を介して一定濃度のn−
ブタンが流出するまで、即ち吸着能力が飽和するまで、
n−ブタンタンク21からn−ブタンを活性炭充填室5内
に供給し、その後蒸発燃料捕集装置1の重量測定を行な
う。そして圧縮空気を圧縮空気ボンベ24より活性炭充填
室5内に一定量供給してn−ブタンを脱離させ、その後
蒸発燃料捕集装置1の重量測定を行なう。これらの重量
の差は飽和BWC(ブタンワーキングキャパシティ)と称
され、活性炭15の吸着能力を表わしている。
FIG. 5 shows an experimental apparatus for investigating the adsorption capacity of activated carbon using n-butane as a fuel. This device is a flow meter
An n-butane tank 21 connected to the evaporated fuel inflow port 8 via 20, a compressed air cylinder 24 connected to the atmosphere port 13 via a flow meter 22 and a three-way switching valve 23, and an evaporated fuel outflow port 10 The valve 25 is provided. Using such a device, first, through the three-way switching valve 23, n-
Until butane flows out, that is, until the adsorption capacity is saturated,
The n-butane is supplied from the n-butane tank 21 into the activated carbon filling chamber 5, and then the weight of the evaporated fuel trap 1 is measured. Then, a fixed amount of compressed air is supplied from the compressed air cylinder 24 into the activated carbon filling chamber 5 to desorb n-butane, and then the weight of the evaporated fuel trap 1 is measured. The difference in these weights is called saturated BWC (butane working capacity) and represents the adsorption capacity of activated carbon 15.

第2表および第3表に実施例1〜3および比較例1〜
3で得られた活性炭のn−ブタンの吸着量(初期および
耐久後の飽和BWC)およびガソリン成分の残存量のそれ
ぞれにつき示した。
Tables 2 and 3 show Examples 1 to 3 and Comparative Examples 1 to 1.
The amount of n-butane adsorbed on the activated carbon obtained in Example 3 (saturated BWC after initial and endurance) and the residual amount of gasoline component are shown.

第2表より、原料に黒鉛を混合しない比較例1及び原
料1重量部に対して0.001重量部未満の黒鉛を混合した
比較例3の活性炭では耐久後の吸着性能がやや悪く、原
料1重量部に対して0.3重量部をこえて黒鉛を含む比較
例2の活性炭は、全体に吸着性能が悪いことがわかる。
From Table 2, it can be seen that the activated carbon of Comparative Example 1 in which graphite was not mixed with the raw material and Comparative Example 3 in which less than 0.001 part by weight of the raw material was mixed with 1 part by weight of the raw material had a slightly poor adsorption performance after endurance and 1 part by weight of the raw material. On the other hand, it can be seen that the activated carbon of Comparative Example 2 containing more than 0.3 parts by weight of graphite has poor adsorption performance as a whole.

また第3表より、原料に黒鉛を混合しない比較例1及
び原料1重量部に対して0.001重量部未満の黒鉛を混合
した比較例3の活性炭はn−ブタンの残存量が高く、吸
着能力に影響を及ぼすことが判明した。
Further, from Table 3, the activated carbons of Comparative Example 1 in which graphite was not mixed with the raw material and Comparative Example 3 in which less than 0.001 part by weight of graphite was mixed with 1 part by weight of the raw material had a high residual amount of n-butane and had a high adsorption capacity. It turned out to have an effect.

[発明の効果] 以上説明したごとく、本発明に係る活性炭の製造方法
は、賦活時間に対するミクロ域の細孔分布がミクロ域で
細孔半径の大きい側に移動して吸着性能が良く、かつ生
産収率も高く耐久性能の向上を可能とするものである。
[Effects of the Invention] As described above, according to the method for producing activated carbon of the present invention, the pore distribution in the micro region with respect to the activation time moves to the larger pore radius side in the micro region, the adsorption performance is good, and the production is good. The yield is high and the durability performance can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の活性炭の製造工程を示す工程図、第
2図は、実施例1で得られた活性炭の細孔半径と微分形
の細孔容積の関係を示す曲線図、第3図は、比較例1で
得られた活性炭の細孔半径と微分形の細孔容積の関係を
示す曲線図、第4図は、蒸発燃料捕集装置を示す説明図
および第5図は、活性炭の吸着能力を調べるための実験
装置である。 1……蒸発燃料捕集装置、3,4……多孔板、5……活性
炭充填室、9……燃料タンク、12……吸気通路、15……
活性炭。
FIG. 1 is a process diagram showing the activated carbon production process of the present invention, and FIG. 2 is a curve diagram showing the relationship between the pore radius and the differential pore volume of the activated carbon obtained in Example 1. FIG. 4 is a curve diagram showing the relationship between the pore radius of activated carbon obtained in Comparative Example 1 and the pore volume of the differential form, FIG. 4 is an explanatory diagram showing an evaporated fuel trap, and FIG. 5 is activated carbon. This is an experimental device for investigating the adsorption capacity of 1 ... Evaporative fuel collecting device, 3, 4 ... Perforated plate, 5 ... Activated carbon filling chamber, 9 ... Fuel tank, 12 ... Intake passage, 15 ...
Activated carbon.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 南 充 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平1−103910(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuru Minami 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (56) Reference JP-A-1-103910 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】活性炭原料と、該原料1重量部に対して0.
001〜0.3重量部の黒鉛、およびバインダーを混合し、成
形、乾留、賦活することを特徴とする活性炭の製造方
法。
1. A raw material of activated carbon and 0.
A method for producing activated carbon, which comprises mixing 001 to 0.3 parts by weight of graphite and a binder, followed by molding, carbonization and activation.
JP63329788A 1988-12-27 1988-12-27 Activated carbon production method Expired - Lifetime JP2690986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63329788A JP2690986B2 (en) 1988-12-27 1988-12-27 Activated carbon production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63329788A JP2690986B2 (en) 1988-12-27 1988-12-27 Activated carbon production method

Publications (2)

Publication Number Publication Date
JPH02175608A JPH02175608A (en) 1990-07-06
JP2690986B2 true JP2690986B2 (en) 1997-12-17

Family

ID=18225269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63329788A Expired - Lifetime JP2690986B2 (en) 1988-12-27 1988-12-27 Activated carbon production method

Country Status (1)

Country Link
JP (1) JP2690986B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196013A (en) * 1989-01-25 1990-08-02 Cataler Kogyo Kk Production of activated carbon for water treatment
CN101687174B (en) 2007-07-13 2013-05-01 株式会社科特拉 Adsorbent material, and canister

Also Published As

Publication number Publication date
JPH02175608A (en) 1990-07-06

Similar Documents

Publication Publication Date Title
JP2618581B2 (en) Activated carbon
US5726118A (en) Activated carbon for separation of fluids by adsorption and method for its preparation
US5304527A (en) Preparation for high activity, high density carbon
US5206207A (en) Preparation for high activity high density carbon
JP5941852B2 (en) Method for reducing transpiration fuel emission, canister and adsorbent thereof
US5238470A (en) Emission control device
Bae et al. Macadamia nut shell-derived carbon composites for post combustion CO2 capture
KR950000880B1 (en) High capacity coconut shell char for carbon molecular sieves
US20100298134A1 (en) Chemically activated carbon and methods for preparing same
JPH05269331A (en) Separation of air for recovering nitrogen by pressure swing adsorption
Bello et al. Carbon molecular sieves from Eucalyptus globulus charcoal
JP2006213544A (en) Granular active carbon and its manufacturing method
JP4393747B2 (en) Fuel vapor adsorbent
US8361207B2 (en) Adsorbent and canister
JP2690986B2 (en) Activated carbon production method
Thu et al. Highly microporous activated carbon from acorn nutshells and its performance in water vapor adsorption
Zhang et al. Influence of pore structure of granular activated carbon prepared from anthracite on the adsorption of CO2, CH4 and N2
Nandi et al. Carbon molecular sieves for the concentration of oxygen from air
Boonamnuayvitaya et al. The preparation and characterization of activated carbon from coffee residue
KR20220133445A (en) manufacturing method of ACTIVATED CARBON to improve TO IMPROVE MESOPORE RATIO AND SPECIFC SURFACE AREA by SURFACE OXIDATION OF PETROLEUM RESIDUE PITCH OR COAL TAR PITCH and activated carbon manufactured thereby
JPWO2008044587A1 (en) Activated carbon, canister and intake system filter using the same
KR102579778B1 (en) Pitch-based activated carbon for canister and manufacturing method thereof
JPH02175607A (en) Production of active carbon
JP3224117B2 (en) Activated carbon
WO2024162009A1 (en) Molded body and production method therefor, assembly, and gas separation device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12